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   Mobilization of LTR and non-LTR transposable elements have been implicated in several human diseases

(Bundo et al. 2014; Li et al., 2015; Mager and Stoye, 2015; Saeliw et al., 2018). LINE1, an autonomous non-

LTR, has by far attracted the most attention. A reason for that is it seems to be the only retrotransposon

established to be both present and fully active in humans. Preclinical research into retrotransposons like L1

could then tell us a great deal about its role and impact in human conditions. A long line of research has

established a role for retrotransposons in genetic disorders and cancer, as well as major players in genome

evolution (Fedoroff, 2012; Hunter, 2020; Kazazian & Moran, 2017). However, the degree to which L1 and

its kin play a role in neurodevelopmental and psychiatric diseases has only recently begun to be studied

(Daskalaskis et al, 2018; Muotri et al., 2010; Bundo et al.,2014; Doyle et al.,2017; Lapp and Hunter, 2019)

and it is now clear that regulation of this TE by environmental factors may entail both major risks to

neurodevelopment as well as enhanced flexibility (Erwin et al., 2014). This paper is one of a small number

which have thus far grappled with the functional consequences of developmental retrotransposon activity

in the brain. 

   The study explored the implication of stress and LINE1, in the development of social behavior during the

juvenile stage, comparing between sexes. More specifically, it looked at the effect of early life stress, using

an ethological-based model of predator odor exposure, on the expression of the retrotransposon LINE1

open reading frames (ORF) 1 and 2 in the juvenile male and female brain. Using RT-qPCR, they examined

ORF 1 and 2 DNA and mRNA copies. ORF1 encodes an RNA-binding protein that has a chaperone activity.

ORF2 encodes both an endonuclease and a reverse transcriptase. L1 relies upon these autonomously

produced RNA transcripts to translocate back into target sites within the genome. Therefore, both reading

frames are necessary for successful retro-transposition activity. The level at which L1 is inserted back in

the DNA is thought to be more indicative of genomic instability and potential pathology than the level of

RNA transcript. It is commendable that they looked at both. In the amygdala, they observed a significant

effect of stress on ORF1 DNA copy number along with a sex difference. Females showed significantly

higher L1 ORF1 and ORF2 DNA copy number than males. In the juvenile hippocampus, there was a

significant sex difference in L1 ORF1 with males expressing lower DNA copy number than females. In the

prefrontal cortex, they found that male showed more L1 ORF1 DNA copies than females. As far as mRNA
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copy number is concerned, stress and sex had no effect in the hippocampus and prefrontal cortex.

Nevertheless, there was a sex difference in L1 ORF1 in the amygdala with males expressing more mRNA

copies than females. Lastly, they examined a correlation between L1 ORF1 DNA copy numbers with the

frequency of social play in the amygdala and prefrontal cortex. They found a significant negative

correlation in the amygdala. There was no correlation in the prefrontal cortex. The study was well

conducted, and the findings add to our growing knowledge. However, some limitations remain.

   One limitation here is the stress-non-responsive period which is characteristic of the neonatal rodent. We

know that the offspring relies exclusively on the mother’s stress response system during pregnancy, which

can put the unborn at risk from maternal insults and cortisol secretion. It is not until about a week or two

that the neonate’s hypothalamic-pituitary-adrenal system mature, and a significant neuroendocrine

response is observed (Schapiro et al, 1962; S Levine et al, 1967; Hary L et al, 1981) when exposed to a

stressor. As it appears from the results that stress did not consistently have significant effects in these

rather highly stress-sensitive regions it would be warranted to look at later developmental timepoints when

treating the rats and compare across different postnatal stages. The authors briefly and carefully made

note of this. 

   Another important avenue for consideration in future investigations of these stress-related epigenetic

modulations is the relation to the HPA system. When we examine stress models, it would be useful to

consider the extent to which our stress response system may be involved. So, we may ask how does the

stress-response machinery interact with the epigenetic cellular machinery in engendering resilience or

pathology? Next generation sequencing techniques have helped providing some answers to such question.

Our previous work in rodents shows that acute stress and corticosterone treatment generate alterations in

H3K9 methylation at B2 SINE, and other retrotransposons loci in the hippocampus (Hunter et al, 2012;

Bartlett, 2020). This could suggest a regulatory activity of GR on these TEs in response to stress. Lastly, in

terms of sex difference, females are known to have a stronger response to stress as well as to be more

susceptible to stress-related psychiatric disorders than men (Holden, 2005), and as we have noted

elsewhere, sex steroid interactions with the transposome are likely to play a role here as well (Hunter

2014, Hunter 2016, Lapp and Hunter 2019). Again, looking at a possible sex difference in the stress

system-epigenetic machinery interplay with transposable elements would provide more insight into both

psychiatric disorders and neurological development.

   In conclusion, this study conducted by Cuarenta and colleagues not only adds to the growing evidence of

the effect that environmental stressors can have on the genome integrity and structure, but also connects

this effect to a behavioral endpoint. The work raises a number of interesting questions about the

regulatory role of retrotransposons like L1 in the development and expression of the brain and behavior

that opens the door to much future research. 
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