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What is the physical origin for the arrow of time? It is a commonly held belief in the physics
community that it relates to the increase of disorder, or entropy, as it appears in the statistical
interpretation of the second law of thermodynamics. In this article, it is argued that this cannot
be the case, unless the choice is made to take the philosophical standpoint that it is the act of
measurement by an ignorant observer which create the apparent directionality in time.
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Introduction

The story often told about the role of entropy in the
second law of thermodynamics and the arrow of time typ-
ically goes as follows. Consider a gas of molecules that
are constrained within a box of small volume in the cor-
ner of a room. As a door in the box is opened, the gas
molecules will spread out into the room. That the gas
spreads outward into the room, eventually filling all of it,
rather than staying put in the corner, or coming back to
the corner within a measurable passage of time, is argued
to define a direction for the arrow of time. When the gas
has spread out evenly in the room, the room is in ther-
mal equilibrium with the gas molecules. Thus, it seems
to be the case that systems, which are left to themselves,
tend to evolve in time in such a way that they reach ther-
mal equilibrium. From the statistical mechanical point of
view, thermal equilibrium happens when all possible mi-
crostates are equally probable. The directionality in time
is in this picture thus viewed as being due to the flow of
probability from a non-uniform to a uniform distribution.
The concept of entropy then enter as a type of measure
of how far this process has come. For uniform probability
distributions, the entropy is at its maximum value. The
physical interpretation of this situation is that all states
being equally probable means that the uncertainty expe-
rienced by an observer about the exact degrees of freedom
of all gas molecules is at its maximum. Any given pair
of molecules can be interchanged without the observer
noticing it. The system is maximally disordered, in con-
trast to its initial condition where the observer was fairly
certain about the locations of the gas molecules, as they
were contained in the small box.

Consider another example. Imagine a neatly ordered
stack of cards. If the cards are laid out on a table in an
array, the system of cards has a well-defined and clear
state. There exists only a single state in which the set
of cards exist. Any disturbance to this state, such as in-
terchanging the positions of a pair of cards, will yield a
new state which is clearly distinct from the ordered ini-
tial state. Any human observer can easily tell that the
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cards have changed places. The entropy of the system
of cards is at its minimum. Consider now that the ini-
tial condition is changed by throwing the set of cards up
in the air and letting them fall randomly on the table.
There is no clear pattern to how the cards are positioned
on the table. Yet, whatever set of locations occupied by
the set of cards, it is a unique state. If a pair of cards
switch places, the physical state does change. However,
since the initial configuration of cards on the table were
random, with no apparent order, it is much more difficult
for an observer to notice the change in state coming from
interchanging the locations of a pair of cards. In fact, if
all cards are completely randomly scattered in an even
fashion on the table, it is said that the entropy for the
system of cards is, from the viewpoint of the observer,
at its maximum. This mean that it is in all practical-
ity impossible for the observer to determine any changes
in the state of the system due to interchanging locations
of cards. Whatever the locations of the cards are, and
however they are interchanged, they system will look the
same from the perspective of the observer. When this is
the situation, the system has a uniform probability dis-
tribution. All possible configurations of cards are equally
probable. Entropy is thus a measure for the uncertainty,
or ignorance, possessed by the observer about the physi-
cal state of the system. If the philosophical point of view
that the set of cards have specific physical locations on
the table is taken, i.e., that the system occupies a sin-
gle physical state at any given time, independent on the
ignorance of the observer, the concept of entropy must
be subjective and should not be considered as a funda-
mental property of Nature. Based on this reasoning, it
seems absurd to argue that the existence of time’s arrow
is due to entropy increase. At least it appears so if one
chooses to believe that time’s arrow is a property of Na-
ture rather than a property of the observer’s ability to
measure changes in the state of a system.

In this article, we will revisit the foundations of the
theory of statistical mechanics. We will arrive at the
conclusion that if we believe in time’s arrow as being due
to the increase in entropy, as it is encoded in the statisti-
cal interpretation of the second law of thermodynamics,
then the belief that time’s arrow is a fundamental prop-
erty of Nature must at the same time be given up and
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rather be viewed as only existing in the minds of ignorant
observers.

In our opinion, the subjectivity of the concept of en-
tropy, and hence the statistical interpretation of the sec-
ond law of thermodynamics and time’s arrow, should be
made clearer to students in the teaching of physics. Too
often, and certainly always at the pre-university level,
the existence of time’s arrow is stated as a fact following
directly from the increase in entropy and the second law
of thermodynamics.

Uncertainty and coarse-graining

The dynamical evolution of a system is quite compli-
cated. Most systems of interest contain a vast number
of particles that interact in complicated ways. For such
large systems, it is usually extremely hard to track the
individual evolution of each particle as the system evolve
in time. The observer does not possess enough informa-
tion to state with certainty the positions and velocities of
all particles. Perfect knowledge about the position and
velocity, or momenta, of each individual particle is lost.
The observer loose information about the system over
time. It is lost not because of a fundamental violation of
information conservation in Nature but merely because
of the difficulty for an observer to keep track of all the
degrees of freedom. Therefore, from the perspective of
the observer, there is an uncertainty ∆q associated with
the position of a state and an uncertainty ∆p associated
with the momentum of a state. For this reason, the ob-
server is unable to determine with absolute certainty the
state of the system at any given time. The observer can
only determine whether the system occupy a state which
lie within any given region Ωj on phase space, whose vol-
ume VΩj

is given by the uncertainties ∆q and ∆p, i.e.

VΩj
= ∆q∆p. (1)

The volume VΩj is thus a measure of how ignorant the ob-
server is about the details of the system, in the sense that
the observer cannot locate an individual state to a greater
precision than the size of Ωj . Due to this lack of preci-
sion, the observer is unable to distinguish between states
that lie within Ωj . All states within Ωj , with their indi-
vidual sets of degrees of freedom, has, from the perspec-
tive of the observer, collapsed into a single state whose
single set of degrees of freedom is given by q + ∆q and
p + ∆p. This so-called coarse-grained, or mixed, state
is not a fundamental, or pure, state of the system. It
is a description that average over all pure states within
Ωj . Put differently, a mixed state ψj , j ∈ [1,M ], where
M is the number of mixed states on phase space, is a
subjective representation, by an ignorant observer, of a
collection of pure states ϕα, α ∈ [1, N ], where N is the
number of pure states within Ωj . As the system evolve

in time, the observer is only able to measure the coarse-
grained flow, i.e., the jumping from one mixed state ψj

to a different mixed state ψi, i ̸= j.
It should be noted that due to the lack of perfect knowl-

edge about all the relevant degrees of freedom, the ob-
server is unable to predict a unique evolutionary path on
phase space along which the system evolves.

Probability conservation

Due to the ignorance of the observer, i.e., the observer’s
inability to distinguish the set of pure states within any
given coarse-grained region Ωj , it is necessary to intro-
duce the notion of probability on phase space. Let Pj be
the probability that the system occupies the region Ωj

and let Pα be the probability that the system occupies
the pure state ϕα within Ωj . If the observer knows with
absolute certainty that the system occupies the mixed
state ψj and not some other state ψi, i ̸= j ∈ [1,M ], it is
given that

Pi = 0,∀i ̸= j ∈ [1,M ], (2)

Pj ≡
N∑

α=1

Pα = 1. (3)

For continuous systems, the summation is replaced by an
integral, i.e.

Pj ≡
∫
Ωj

Pα dVα = 1. (4)

where dVα = dqαdpα is the phase space volume of the
pure state ϕα. If the knowledge possessed by the ob-
server about the coarse-grained flow of the system is not
lost over time, i.e., information is conserved, then the
probability Pj is constant in time, i.e.

dPj

dt
= 0. (5)

In other words, it is assumed that there is no loss of
probability from Ωj to any other coarse-grained region
Ωi, i ̸= j.
Written in terms of the probabilities Pα, the condition

of no loss of coarse-grained knowledge become

dPj

dt
=

d

dt

∫
Ωj

Pα dVα

=

∫
Ωj

(
dPα

dt
+ Pα ∇⃗ · v⃗

)
dVα

= 0, (6)

where v⃗ = (q̇, ṗ) define the phase-space velocity of the
Hamiltonian flow. Since this should hold independently
on the size of Ωj , the integrand must identically vanish,
i.e.

dPα

dt
+ Pα ∇⃗ · v⃗ = 0. (7)
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This is the continuity equation for probability flow within
any given coarse-grained region Ωj . It is referred to as the
Liouville equation for the probability distribution within
Ωj .

Statistical equilibrium

The continuity equation can be rewritten, showing that
probability is locally conserved within Ωj . Using the to-
tal time derivative of Pα, i.e.

dPα

dt
=
∂Pα

∂t
+ ∇⃗Pα · v⃗ (8)

and the product rule

∇⃗ · (Pα v⃗) = ∇⃗Pα · v⃗ + Pα ∇⃗ · v⃗, (9)

the continuity equation become

∂Pα

∂t
+ ∇⃗ · (Pα v⃗) = 0. (10)

The term ∇⃗ · (Pα v⃗) represent the difference between the
probability outflow and inflow for the pure state ϕα.

Consider a system which has been closed for a suffi-
ciently long period of time such that the density of pure
states within Ωj , and henceM , do not change with time.
In this situation, the probability distribution Pα has no
explicit dependence on time. The continuity equation is
then reduced to

∇⃗ · (Pα v⃗) = 0. (11)

This is the mathematical condition the system need to
satisfy for it to be said to exist in statistical equilibrium.
In other words, a system is in statistical equilibrium if
there is no net probability flow on phase space.

The incompressibility of the Hamiltonian flow implies
that the time the system spend in any single pure state,
before evolving to the next single pure state, is the same
for all pure states. If this were not the case, the state
points on phase space would lump together which would
signify a violation of Liouville’s theorem [1]. This imply
that over the course of an extended period of time, the
total time spent by the system in any given pure state
is expected to be the same for all pure states. This ex-
pectation, which is due to a combination of the Liouville
theorem and the law of large numbers, is in this article
interpreted to be equivalent to the ergodic theorem of
statistical mechanics [2][3][4]. Let nα denote the number
of times the system occupies the pure state ϕα. The to-
tal number of times, n, the system occupies the set of N
pure states within Ωj is then

n =

N∑
α=1

nα. (12)

The ergodic theorem then says that over an extended
period of time, such that n is large, it is expected that
the system occupies all pure states within Ωj an equal
number of times, i.e.

nα = nβ , ∀β ̸= α ∈ [1, N ], (13)

such that

n = N · nα. (14)

It is now possible to define the notion of a probability
Pα for the pure state ϕα of a closed system from the
notion of a relative frequency1,

Pα ≡ lim
n→∞

nα
n

=
nα

N · nα
=

1

N
. (15)

Thus, all the pure states within Ωj are equally proba-
ble. This imply that an observer has lost all informa-
tion, down to the scale of VΩj

, about the system, since
no distinctions can be made between the possible pure
states within Ωj . The uniform probability distribution
given by equation 15 is commonly referred to as the mi-
crocanonical [5], or fundamental [6], probability distribu-
tion. Thus, given that the system satisfies the Liouville
theorem, the microcanonical probability distribution sat-
isfy the condition for statistical equilibrium.

Ergodicity breaking

There exist also non-uniform probability distributions.
The non-uniformity arises due to interactions that the
system has or have had in the not too far distant past
with an environment. In other words, the system is, or
was recently, not isolated. Due to the interaction with
an environment, the density of states changes with time.
If the interaction is uniform on phase space, the density
changes uniformly on phase space. However, in general,
this is not the case. An interaction, characterized by
a potential energy, do depend on the specific values for
the generalized coordinates. In that scenario, the den-
sity of states is a local function on phase space. This
has the consequence that the total time spent by the
system within any given region on phase space is not
necessarily the same as within any other equally sized
region. In other words, the ergodic theorem appears to
be violated. Thus, not only is the probability distribu-
tion non-uniform when there is a non-negligible net in-
teraction with the environment, it can also change over

1 It should be noted that this relative frequency is not possible to
obtain from a set of repetitive experimental measurements, since
the observer, being ignorant, is not able to distinguish between
the set of pure states.
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time. To put it differently, if there exist an interaction
between the system and its environment, as seen from
the perspective of an observer of the system, this im-
ply that the observer possess knowledge, i.e., informa-
tion, about the interaction. This information is used by
the observer when assigning probabilities for the possible
states of the system. The fact that the observer pos-
sesses some amount of information mean necessarily that
the probability distribution is non-uniform. It is only at
statistical equilibrium, where all information is lost, that
the observer assigns a uniform probability distribution.

From the definition of probability in statistical equi-
librium it is clear that the probability for any given
pure state decrease as the number of pure states N in-
crease, i.e., as the uncertainty volume increase. In non-
equilibrium, where probabilities are not equal, it is the
average probability which decrease as the uncertainty
volume increase.

It should be emphasized that the apparent violation of
the ergodic theorem is not of a fundamental character.
It is only because that the degrees of freedom associated
with the environment cannot be excluded when defining
the degrees of freedom for the system. In other words,
the environment should be included in the definition of
the system. If that is done then there exist no envi-
ronment and hence there cannot be any net transfer of
energy and particles from, or to, the system. Then, this
redefined system, which consider all degrees of freedom,
even those which the experimenter may think belong to
an ’environment’, do indeed conserve information and er-
godicity is not broken. The probability distribution for
the states of this redefined system is uniform, i.e., all
mixed states for any given system, assuming the system
has been defined such that no degrees of freedom are be-
ing forgotten, are equally probably. In most practical
situations, however, there will always exist an environ-
ment to any system under study. The question is to
what degree this environment interacts with the system.
The weaker the interaction, the weaker is the ergodicity
breaking and the closer will the system come to a uniform
probability distribution.

Entropy

A measure for the amount of information possessed by
the observer, i.e., the amount of uncertainty in the deter-
mination of the pure state of the system, should depend
on the probability distribution {Pα}. This measure is
denoted by S({Pα}) and referred to as the entropy of the
system. To obtain a specific form for the entropy as a
function of the probability distribution, it is noted that
this function should satisfy the following conditions.

i The entropy should be zero when the observer has
complete knowledge about the evolution of the sys-

tem. In other words, if the observer knows with ab-
solute certainty that the system occupy a specific
state ϕα, such that Pα = 1 and Pβ = 0 ∀β ̸= α, the
entropy must vanish.

ii The entropy should always be either zero or a pos-
itive number, i.e. S ≥ 0.

iii The entropy should take a maximum value when
the observer is maximally ignorant. This happen
when the system is in statistical equilibrium. When
all states are equally probable, it implies that the
observer possess zero partial knowledge which can
be used to distinguish between some of the features
of the set of states. Thus,

Pα =
1

N
∀α ∈ [1, N ] → S({Pα}) = Smax. (16)

iv The entropy should, in statistical equilibrium, be
a continuously increasing function of the number
of states N . In other words, when N increase, the
uncertainty volume VΩj increase continuously.

v The entropy should satisfy the following composi-
tion law,

S({Pα} · {Pβ}) = S({Pα}) + S({Pβ}). (17)

This composition law is understood as follows. Let
Ωj be divided into two subregions Ωα

j and Ωβ
j such

that VΩj
= VΩα

j
+ VΩβ

j
. The states ϕα, α ∈ [1, Nα],

belong to Ωα
j and the states ϕβ , β ∈ [1, Nβ ], belong

to Ωβ
j , where Nα + Nβ = N . The corresponding

probability distributions, {Pα}Nα

α=1 and {Pβ}
Nβ

β=1,

satisfy
∑Nα

α=1 Pα+
∑Nβ

β=1 Pβ = 1 and, due to them
being independent of each other, their product give
the probability distribution associated with the re-
gion Ωj , i.e. P (Ωj) = {Pα}·{Pβ}. The composition
law thus state that the total uncertainty within re-
gion Ωj is the sum of the uncertainties associated
with the subregions of Ωj .

Conditions (i) and (v) suggest that the entropy has a
logarithmic dependence on the probability distribution.
Condition (ii) suggest that it is necessary to include an
additional minus sign in the definition of the entropy.
This is seen from the general definition of Pα, i.e.

logPα = lim
n→∞

log
(nα
n

)
= log nα − lim

n→∞
log n < 0, (18)

which, for a system in statistical equilibrium become

logPα = log
1

N
= log 1− logN = − logN < 0. (19)

Since the entropy function should act as a measure for
systems both in and out of statistical equilibrium, i.e.,
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for both uniform and non-uniform probability distribu-
tions, it is required to take the statistical average of all
logarithmic contributions to the entropy, i.e.

S({Pα}) ∼ −
(n1
n

logP1 + · · ·+ nN
n

logPN

)
(20)

∼ −
N∑

α=1

nα
n

logPα (21)

∼ −
N∑

α=1

Pα logPα. (22)

This entropy function then satisfies conditions (iii) and
(iv). With the proportionality constant identified with
the Boltzmann constant kB , it is referred to as the Gibbs
entropy [5] and is, in the information theoretic language,
identical to the Shannon entropy [7][8][9].

In conclusion, the entropy of a system measures the
amount of information within the system, and it is given
by the Gibbs formula

S({Pα}) = −kB
N∑

α=1

Pα logPα. (23)

In statistical equilibrium, the Gibbs entropy reduce to
the Boltzmann entropy [2][10],

S = kB logM. (24)

It is important to emphasize that entropy is not a phys-
ical quantity in the same manner as e.g. energy. It is
determined by the probability distribution of the states
of the system and as such it is a quantity which depend
both on the specifics of the system and the amount of
information possessed by the observer.

Second law of thermodynamics

If the state of a system is known with infinite precision
at some given time, and if the laws of motion are known
to infinite precision, then any earlier or later states
of the system can be predicted with infinite precision.
In such a deterministic situation, information about
the system is never lost. However, in practical reality,
the experimental precision by which the state can be
determined is limited. Instead of knowing the initial
conditions with infinite precision they are known to some
degree of error, ϵ, on phase space. Therefore, the state
of the system is only known to lie within a finite region,
Ω, of radius ϵ and volume VΩ. As the system evolve
from the initial conditions it is not possible to predict
the exact path on phase space. Any two neighboring
states within Ω, e.g. a and b, see Figure 1, might evolve
differently over time. State a might evolve into either
state c or state d. Due to the limited precision, it is
impossible to say which state it evolve into. State b,

FIG. 1. Irreversible, entropy increasing, flow on phase space.

on the other hand, might evolve into state e or state f .
This process of diverging paths continues as time unfold.
Therefore, the number of states in which the system
might exist increase over time. In other words, the
amount of uncertainty, i.e., the entropy, increase with
time. Alternatively put, over time, any observer will
continue to lose information about the system because
of not knowing the initial conditions of the system with
infinite precision. It is also possible for the entropy
to decrease over time meaning that the observer has
gained information about the system. This corresponds
to the situation when possible paths converge at some
point. For example, the states x, y and z all converge
into state k. The uncertainty of the system has thus
decreased since there are now fewer possible states in
which the system might exist. However, the probability
that paths converge to a single state is much lower than
the probability that they diverge to separate states. The
reason for this is that the state k is merely one possible
state out of a large number of possible states within
volume VΩ which x, y and z could have evolved into.
Thus, overall, the observer loose information exponen-
tially over time. Eventually, all information has been
lost. The observer has become maximally ignorant. The
entropy has reached its maximum value. At this stage,
the system has reached statistical equilibrium where all
states are equally probable since the observer is unable
to make any distinctions between them. This tendency,
of any given system, as viewed from an observer with
limited knowledge of the initial conditions, to increase
its entropy and evolve towards statistical equilibrium,
is referred to as the second law of thermodynamics. In
conclusion, it can be stated as follows:

Any given observer, whose knowledge about the ini-
tial conditions of any given system is limited, tend to
lose information about the system at an exponential rate
until there is none left.
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It is important to emphasize that the apparent vi-
olation of determinism and reversibility, i.e., violation
of the Liouville theorem, is not due to a fundamental
character in the dynamical evolution of systems. The
apparent irreversibility is only due to the ignorance of
the observer.

Arrow of time

If the point of view is that it is the second law which
dictate the directionality of time, then the following
conclusion must follow: For an infinitely wise observer,
who is able to determine the initial conditions and the
laws of motion with infinite precision, the evolution of
the system is completely reversible in time. For such an
enlightened observer, there is no arrow of time. Time
do not flow into the future from the past. The apparent
unique direction in which time flow, i.e., toward the
future, is merely a consequence of the fact that the
observer does not possess infinite knowledge about
the system under consideration. For such an ignorant
observer, it is exponentially more probable that the
system evolves in such a way that possible paths diverge
on phase space. The diverging evolution define the direc-
tion, or arrow, of time as seen from the perspective of the
observer. In the unlikely scenario that the possible paths
converged at a quicker rate than they diverged, such that
information on the average was gained, then the system
would be observed to evolve backwards in time. The
logical philosophical question to ask is then the following:

Can the seemingly universal feature of the arrow of
time, flowing towards the future for all observers, really
owe its existence to the inability of the observer to
completely specify the state of the system with infinite
precision?

To put it differently: presumably, a monkey is more
ignorant, as compared to a human physicist, about the
complete set of degrees of freedom characterizing e.g.
the falling of a glass of wine. Yet, the human is more
certain about what will happen to the glass of wine as it
falls. The directionality of time does not seem less clear
to the human despite having more precise information
about the state of the glass of wine. This contradicts the
logical consequence of the second law as stated above.
There, the human is less limited than the monkey and
therefore should loose information at a lesser rate and
hence the monkey would have a greater sense of time’s
arrow. Thus, either the monkey does really have a much
greater sense about the flow of time, or the directionality
has nothing to do with the ignorance about the system
possessed by the observer.

The philosophical standpoint, advocated in this arti-

cle, is that the true origin for the arrow of time is not
related to the concept of entropy and the second law of
thermodynamics.

Conclusion

In the contemporary formulation of the thermody-
namic arrow of time, the theory of statistical mechan-
ics and the concept of entropy is employed to give a
microscopic argument for the apparent directionality in
time. It is commonplace in textbooks both at the upper-
secondary and university levels to state time’s arrow as a
logical consequence of the tendency of systems to evolve
towards statistical equilibrium where its entropy is at its
maximum value. What is missing in this description,
however, is an acknowledgment of the subjective nature
of the concept of entropy. It is subjective in the sense that
it is dependent not only on the properties of the system
under consideration, but also on the probability distri-
bution assigned by the observer. Thus, the value for the
entropy depends on the amount of knowledge possessed
by the observer about the system.
In this article, we have argued that time’s arrow, as

understood within the statistical interpretation of the
second law of thermodynamics, is not compatible with
the philosophical standpoint that its physical origin is an
objective truth characterizing a fundamental property of
Nature. Rather, the statistical arrow of time owes its ex-
istence to the ignorance of the observer. Whatever the
true physical origin for time’s arrow might be, it is our
opinion that students and teachers of physics should be
aware of this subtle subjectivity in the thermodynamic
arrow of time.
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