
13 May 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

On the Hydrogen Atom in a Spherical Box

Francisco M. Fernández1

1. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, La Plata, Argentina

We derive some properties of the hydrogen atom inside a box with an impenetrable wall that have not

been discussed before. Suitable scaling of the Hamiltonian operator proves to be useful for the

derivation of some general properties of the eigenvalues. The radial part of the Schrödinger equation

is conditionally solvable, and the exact polynomial solutions provide useful information. There are

accidental degeneracies that take place at particular values of the box radius, some of which can be

determined from the conditionally-solvable condition. Some of the roots stemming from the

conditionally-solvable condition appear to converge towards the critical values of the model

parameter. This analysis is facilitated by the Rayleigh-Ritz method, which provides accurate

eigenvalues.
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1. Introduction

Quantum mechanical models of particles con�ned within boxes of different shapes have received

considerable attention for many years[1][2][3][4]. In such reviews, one can �nd all kinds of atomic and

molecular systems enclosed inside surfaces that are impenetrable or penetrable. In a recent paper, Amore

and Fernández[5]  came across a most interesting accidental degeneracy that had not been discussed

before. The purpose of this paper is the analysis of possible accidental degeneracies in the case of the

hydrogen atom in a spherical box with the nucleus clamped at the origin.

In section 2, we discuss the model and some of its mathematical properties. In section 3, we investigate

exact polynomial solutions to the radial part of the Schrödinger equation. In section 4, we obtain accurate

eigenvalues by means of the Rayleigh-Ritz method (RRM)[6][7]. Finally, in section 5, we summarize the

main results of the paper and draw conclusions.
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2. The model

In this section, we present the model and discuss some of the properties of the time-independent

Schrödinger equation. We are interested in the eigenvalue equation    for the Hamiltonian

operator

where   is the electron mass and   is the strength of the Coulomb potential (with units of energy

length). For simplicity, we assume that the nucleus is clamped at the origin. The solutions   in

spherical coordinates  ,  ,  ,  ,  , satisfy the

boundary condition    because of the impenetrable wall of a spherical box of radius  .

Therefore,  .

In order to discuss some useful analytical properties of the solutions to the eigenvalue equation, it is

convenient to carry out the scaling transformation  ,  ,  ,

where    is a real positive constant with units of length. In this way, we derive a useful dimensionless

eigenvalue equation  , where[8]

The boundary condition becomes  , where  , and the unit of energy is 

. If   denotes an eigenvalue, then equation (2) tells us that

The scaling transformation of the Hamiltonian operator proves useful for the derivation of many

properties of quantum-mechanical systems as discussed elsewhere[8]. In what follows, we add another

example.

If we choose   then

and  . Therefore,
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and the problem reduces to a particle within a spherical box of radius  . In this case, the unit of

energy is  .

Alternatively, we may also choose   that leads to

and the unit of energy  .

Throughout this paper, we will omit the tilde over the dimensionless quantities and will write, for

example, the Hamiltonian operator (4) as

Before proceeding with our discussion of the model (7), we want to point out that expressions like “we

choose units such that  ” are meaningless if we do not clearly indicate the units of length and

energy actually used. Note that the two dimensionless Hamiltonians    shown in equations (4) and (6)

formally correspond to setting   though the units of length and energy in one case are different

from those in the other.

If we substitute the two values of   shown above into equation (3) and equate the results, we can easily

derive the relationships

that clearly show the connection between   and   in the two alternative approaches to the problem.

The Schrödinger equation for any of the Hamiltonian operators shown above is separable in spherical

coordinates as  , where    and    are the angular and

magnetic quantum numbers, respectively, and   are the well-known spherical harmonics. The energy

eigenvalues depend only on the radial quantum number   and on   so that we write them as 

  from now on. For convenience, we do not resort to the principal quantum number 

 that is mostly useful in the case of the free hydrogen atom. It follows from the

Hamiltonian operator (6) that
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from which we conclude that    if  . This obvious inequality will be useful later

on.

Since    is positive and    is negative, then for each eigenvalue    there is a value 

 such that  . We will discuss these critical values of   in section 4.

3. Exact polynomial solutions

The radial part of the Schrödinger equation for the Hamiltonian operator (7) is

with the boundary condition  . This eigenvalue equation admits some exact polynomial

solutions because it is conditionally solvable (see, for example, [9][10] and references therein). In order to

derive them, we propose a solution of the form

It is not dif�cult to verify that the expansion coef�cients   satisfy the three-term recurrence relation

where we have set   in order to remove one of the terms.

In order to obtain exact polynomial solutions, we require that   and  ,  .

These conditions are satis�ed if   from which we obtain

Therefore

The expression for    in equation (13) does not give us the spectrum of the problem. Note that 

 when   while the Hamiltonian (7) tells us that we should obtain the spectrum of the particle
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in a box of radius    when  . Besides, the polynomial solutions only provide negative

eigenvalues while all the eigenvalues are positive for suf�ciently small values of   as argued in section 2.

Any smart reader may think that it is not necessary to stress such an obvious fact, but unfortunately,

many researchers have misinterpreted the polynomial solutions of several conditionally-solvable models

as discussed elsewhere[11][12].

Since    the only remaining condition is    from which we obtain    roots  , 

, that we arbitrarily arrange so that  . Thus, the energies of the polynomial

solutions should be more properly written as

In the expressions above    is the degree of the polynomial factor in the exact solution, and    is the

number of real zeros of the polynomial in the interval  . For this reason,   (and not  ) is related

to the radial quantum number  . This fact was overlooked by many researchers as discussed in the

papers just mentioned[11][12]. Of particular interest are the roots

as shown below.

4. Accurate numerical results

One can obtain accurate numerical results in several ways, as shown in suitable reviews on the subject[1]

[2][3][4]. Here, we resort to the RRM[6][7]  that provides increasingly accurate upper bounds to the exact

eigenvalues[13][14].

For simplicity, we resort to the non-orthogonal basis set

The RRM secular equations are well-known[6][7][14][15] and will not be discussed here.

Table 1 shows some eigenvalues for the case  . We appreciate that there are several cases in which 

  with  . Consequently, we expect that such eigenvalues    and    should

cross at some nonzero value of   because   as argued in section 2.
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Figure  1 shows the lowest eigenvalues with  . We appreciate the crossings at 

 between   and   and also between   and  . This fact suggests that the values   of

the model parameter given by the exact polynomial solutions are special. It is worth noting that the

former accidental degeneracy appeared in an earlier paper[16]  (see also Table  4 on page 140 in

reference[2]) but nobody paid attention to it as far as we know. The blue points in Figure 1 are values of

exact energies given by equation (15) when  . Since the polynomial factors of such solutions do not

exhibit nodes, they correspond to the ground state, as the �gure already shows.

Figure 1. Lowest eigenvalues with   (blue solid lines),   (red solid lines),   (blue

dashed lines),   (red dashed lines)

Table 2 shows several RRM eigenvalues calculated at  ,  . It is worth noting that the RRM

yields the exact eigenvalue   at  . From these results, we draw the following

Conjecture 1. Pairs of eigenvalues  ,   cross at 

At present, we are unable to prove this conjecture, but all our numerical results con�rm it.

The RRM enables us to obtain the critical values of   introduced in section 2. We simply set   in the

secular equation[6][7][14][15] and solve for  . Table 3 shows some critical values of   for  . The

roots   decrease as   increases and appear to approach   when  . This fact, which is shown in

Figure 2, suggests the following

Conjecture 2. 
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At present, we are unable to prove this conjecture that our numerical results con�rm.

Figure 2. 

5. Conclusions

In this paper, we have shown several aspects of the well-known hydrogen atom inside a box with an

impenetrable spherical wall that have passed unnoticed, as far as we know. In the �rst place, a suitable

scaling of the Hamiltonian operator is extremely useful for the derivation of several general properties of

the eigenvalues. In the second place, the radial part of the Schrödinger equation is conditionally solvable.

In the third place, there are most interesting seemingly accidental degeneracies that take place at

particular values of the box radius, some of which can be determined from the conditionally-solvable

condition. In the fourth place, some of the roots stemming from the conditionally-solvable condition

appear to converge towards the critical values of the model parameter. At present, we cannot prove the

two latter results rigorously and have, therefore, presented them as conjectures. In this analysis, the RRM

proved to be most useful.

log( − )β
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Tables

(0,0)

(0,1)

(1,0)

(0,2)

(1,1)

(2,0)

(0,3)

(1,2)

(2,1)

(3,0)

(0,4)

(1,3)

(2,2)

(3,1)

(4,0)

(0,5)

(1,4)

(2,3)

(3,2)

(4,1)

(5,0)

(0,6)

(1,5)

(n, l) EPB
nl

4.934802200

10.09536427

19.73920880

16.60873095

29.83975797

44.41321980

24.41559682

41.35961555

59.44993458

78.95683520

33.47715596

54.25817941

75.92743708

98.92890559

123.3700550

43.76561012

68.50242574

93.81791915

120.3514532

148.2772060

177.6528792

55.25985415

84.06545236
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(2,4)

(3,3)

(4,2)

(5,1)

Table 1. Some eigenvalues for 

l

0

2

1

3

2
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Table 2. Some level crossings at 

(n, l) EPB
nl

113.0957572

143.2044787

174.6400399

207.4949921

β = 0

n = 0 n = 1 n = 2 n = 3

= 2β0

−0.5 13.31003662 37.25660174 71.26437398

13.31003662 37.25660174 71.26437398 115.2540228

= 6β1

−2 15.17434035 42.95936431 81.04494034

15.17434035 42.95936431 81.04494034 129.2643219

= 12β2

−4.5 15.84159512 47.2388141 89.18513747

15.84159512 47.2388141 89.18513747 141.4317571

βl
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l

0

1

2

3

Table 3. Some critical values of 
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