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Abstract

Cancer is a disease that is considered as a silent killer. Early therapeutic interventions can lead to cure from the

disease. The causal reasons for cancer are many. At the molecular level, metabolic reprogramming is a process for

self-renewal and survival by the cancer cells. Dietary constituents is an important factor that leads into metabolic

transitions and induce cellular reprogramming. The process is initiated by inducing changes in metabolism leading to

supply of nutrients and energy to the tumour cells, and this is linked to the induction of EMT and VM. Thermodynamic

changes that gets distinguished in proliferating and non-proliferating cells might also be a possible reason for cellular

reprogramming. The entire process of metabolic reprogramming is linked to diet driven changes and bioenergetics. The

work here elucidates in brief dependency of metabolic reprogramming on different factors, or stages and highlights

possibilities for therapeutic interventions as part of cancer therapeutics.
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Introduction
 

The silent killer by name cancer if detected at an early stage can lead to cure by therapeutic intervention with maximum

possibility. Though model-based year wise predictions of cancer trends cannot be a possible eye opener as the

incidences vary from year to year for manifold reasons, there might be 1.9 million new cancer cases as diagnosed along

with 609, 360 deaths in 2022 at USA.[1] Globally in 2020, there was 10 million death due to cancer.[2]  The year 2020

reported 18.1 million cancer cases worldwide with 9.3 million in men and 8.1 million in women.[3] The incidences of cancer

cases worldwide rose to 21 % with 16 % deaths from 2010-19 and cancer incidences at India has increased at an annual
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average annual rate of 1.1-2 % in 2010-19.[4]

India occupies third position worldwide in cancer incidences,[5] and there are reports of the rise in breast cancer in men at

India.[6][7] India has reported an estimate of around 40 lakh cancer cases and 22.54 lakh deaths from 2018-2020.[8] The

increase in burden of cancer has been linked to socio-demographic index and food intake apart from the other factors.[9]

Cancer is a disease that can affect any body part, and a recognized phenomenon of cancer is the very fast creation of

abnormal cells growing beyond their usual boundaries, which can lead to metastasis. Early detection and screening can

help to reduce the mortality due to cancer.[10] Diet can be an important component to reduce the cancer aggressiveness

and progression,[6][11] but it of high importance that diet as therapeutic intervention must progress along with the mode of

primary treatment. Diet make cells to undergo metabolic programming in normal cells as well as reprogramming in cancer

cells, wherein the latter is a hallmark of malignancy.[12]  Dietary restriction also leads to metabolic reprogramming and can

be thought of as a therapeutic approach as the process extends lifespan of an organism and the process is linked to

energy intake restriction without essential nutrient deficiency.[13]

The tumour microenvironment (TME) involves interaction of metabolic reprogramming with tumour cells and nontumour

cells, suggesting therapeutic strategies to target metabolic interventions.[12] With the growing incidences of cancer, it is

necessary to look into the metabolic reprogramming occurring in cancer cells and the possible dietary interventions along

with the first line therapy as medical care for cancer patients.[14] Additionally, targeted therapy adapted in cancer cure can

either target tumour cells to be killed, or can help tumour cells to grow in TME. Thus, targeted therapeutics can either act

as cytostatic, and or as precision medicine as they acts on specific molecular targets.[15] Such therapeutics might be

influenced by food intake and diet, followed by metabolic reprogramming that also leads to cellular reprogramming. This

review summarizes the influence of diet in metabolic reprogramming and possible targets as therapeutic intervention in

cancer cure.  The entire process of metabolic reprogramming is dependent upon many factors and processes, or

pathways, referred to as ‘stages’ in the present manuscript which is affected by dietary components. Dietary food intake

components can be from plant, animal and microbial sources, and is referred to as ‘dietary factors’ as food component

representative form any food source in this review. Detailed discussion on the subtopics is beyond the scope of this

review, and the current review in a concise way is highlighting the stages, and usage of dietary components that can

influence metabolic reprogramming and cell fate decisions.

 

Metabolic reprogramming
 

Metabolic reprogramming leads to the development and progression of cancer.[16] The TME rich with a heterogenous

environment associated with ‘Warburg effect’ shows fast response of tumour cells to hypoxia and hypo-nutrient conditions.

The TME is characterized with reduced pH, lessened oxygen apart from various metabolic changes, which combinatory

leads to changes in immune cells in the microenvironment, increase in various tumour-related immune cells, decrease in

inhibitory cell, and release of various toxic metabolites.[17] Intermediates from biochemical pathways also leads

to metabolic reprogramming (Figure 1). These leads to changes in tumour cell bioenergetics, and the process named as

‘metabolic reprogramming’ is a necessity for malignancy and tumour progression. Additional metabolic reprogramming of
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cancer stem cells (CSC) makes CSC to show metastatic potential leading to resistance against cancer therapeutics.[18][19]

 

Figure 1. Intermediates from the biochemical pathways and metabolic reprogramming, regulated

by dietary factors.

 

It is not only metabolic changes, but also the epigenetic changes that helps in metabolic adaptation of the cancer cells in

TME. Additionally, nontumour cells in TME also undergo metabolic reprogramming.[12]

 

The altered metabolic pathway sustains pool of nutrient and energy for the cancer cells to grow. Furthermore, metabolic

pathway activity in such cancerous cellular environment are influenced by transcriptional programs involving oncogenes

and tumour suppressor genes.[20]

 

Stages
 

Metabolic reprogramming induces cellular reprogramming and initiation of cancer in pathological conditions. The process

involves phenomenal changes referred to herein as ‘stages’, or ‘steps’. Detailed discussion on the steps is beyond the

scope of this review, and a concise view of the stages is discussed below.

 

Factors involved in metabolic reprogramming
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Advances in biological research have proved that many of the signaling pathways changed by gene mutations regulates

cancer cell metabolism, and can lead to conditions, like aerobic glycolysis or ‘Warburg effect’. Reports evidence

aberrations in the proto-oncogenes, Myc or Ras leading to glycolytic phenotype by HIF 1α – mediated metabolic

reprogramming.[21] Key regulators of the processes are three transcription factors, namely HIF-1, c-Myc and p53. As an

example, risk of malignant tumour occurrence increase due to changes in enzyme activity of α-ketoglutarate-dependent

dioxygenase resulting from the increased levels of 2-hydroxyglutarate due to mutations in gene encoding isocitrate

dehydrogenase.[22] Additionally, metabolic reprogramming of breast cancer cells and fibroblast activation occurs due to

the transcription factor POU1F1 by regulating gene encoding lactate dehydrogenase A.[23]

 

An example of complexity arising due to transcription factor defect is MODY resulting due to alterations in HNF1α. MODY1

results due to alterations in HNF4α, whereas MODY4 is due to mutations in PDX1 and insulin synthesis

defect.[23][24] Apart from the internal factors, there are also external factors, like cytokine IL-4/IL-4R signaling leads to

elevated uptake of glucose and glutamine via their transporters to stimulate breast cancer cell growth. Furthermore,

alteration of functions of metabolic nodes due to IL-6, TNF α, IL-17, IL-1β are seen in patients tumourogenic for breast,

pancreatic and colon.[25] The IL-6 in TME also activates JAK-STAT3 pathway for immune, epithelial and endothelial

cells.[26][27][28] Besides this, cytokines and chemokines can also mediate metabolic interactions between host and tumour

cells in TME.  There can be the hormone receptors also which acts as transcription factors, like androgen and estrogen

receptors in breast cancer. Metabolite cross-feeding also leads to tumourigenesis.[29][30]

 

The T-cell activation induces transcription factors, HIF 1α and Myc, and absence of Myc stops activated glycolysis and

glutaminolysis in T cells. HIF 1 α plays role in  regulation of immune cell effector functions, and also plays important role in

maturation of dendritic cells and T cell activation.[21]

 

However, Myc based metabolism was seen to be linked to the polyamine biosynthesis via glutaminolysis, suggesting a

myc dependent metabolic transcriptome drives metabolic reprogramming in activated, primary T lymphocytes.[31] [Wang

et al., 2011]. HIF induction leads to expression of Carbonic anhydrase IX (CA IX), monocarboxylate transporter 4 and

programmed death ligand 1, wherein CA IX is needed for tumour progression under conditions of hypoxia.[21] Metabolic

reprogramming in cancer is helped by another transcription factor, Nrf 2 (Nuclear factor erythroid-2–related factor-2) .[32]

 

Thus, disturbances in the metabolic activities due to environment, mutation and metabolic insults affects transcription at

the level of epigenetic and transcriptional activities leading to significant effect on oncogenesis.[33]

 

The long non-coding RNAs also modulate metabolic reprogramming and cancer progression.[34] Researchers also have

observed the role of ubiquitination and deubiquitination in tumour cell metabolic reprogramming, especially dysregulation

of these process leads to cancer.[35] Hindrances to mitochondrial apoptosis is additional player in the cancer initiation and

progression.[36] Metabolites by themselves can prove to be oncogenic by interfering with cell signaling as well as inhibiting

cell differentiation.[37]
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Metabolic reprogramming and cytoskeletal changes
 

Metabolic reprogramming is a part of the physiological cell proliferation and tumourigenesis.[38] Cellular growth and

proliferation is also linked to changes in cytoskeletal dynamics of a cell. Cytoskeleton also plays important role in tumour

cell aggressiveness and EMT.[39] Mitochondrial Hsp 90 is one of the important mediator of tumour cell motility when

nutrients are limited in human glioblastoma, prostate, lung, breast, melanoma and fibroblast cell lines, which in turn also

acts as the upstream regulator tumour cell bioenergetics. In a nutshell, cytoskeletal dynamics, including release of cell

motility factor, FAK is controlled by metabolic forces.[40]

 

Cell Fate decisions
 

Cell fate decisions are inter-twinned with metabolic shifts and is essential for the development of

pluripotency.[41] Metabolic reprogramming also plays important role in cell fate transitions and is essential for cell

differentiation at embryonic stage, as well as in tumour development and progression. It is not only the metabolic

networks, but also mitochondrial distribution acts to regulate the divisional balance between stem cells in asymmetric and

symmetric divisions, and finally affecting tissue homeostasis.[42]  

 

Alterations in metabolic activities can affect post-translational modifications, by affecting gene expression for cell

differentiation. This helps in regulating not only the cell fate decisions, but also epigenetic modifications.[43]

 

Dietary factors regulates cellular proliferations and cell fate decisions by metabolic shifts, by affecting functions of cell

cycle quiescence factors (Figures 2 and 3). These processes lead toward EMT and EMT-MET.
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Figure 2. Illustrative mechanism for dietary factors to regulate cell fate decisions

 

Figure 3. Dietary factors regulates proliferation of cells
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Networking between cell organelles, like lysosome also plays critical role in metabolic transitions and fate decisions of

stem cells for defining cell identity.[44] In brief, controlling factors for cell fate decisions are: metabolic activities, reactive

oxygen species, intracellular pH and cell morphology.[45]

 

Metabolic reprogramming and Epithelial Mesenchymal Transition 
 

The phenomenon of epithelial mesenchymal transition refers to loss of epithelial cellular characteristics and gain of

mesenchymal traits in epithelial cells.[46] On the other side, metabolic reprogramming is also linked to acquirement of

EMT traits. The regulatory process of EMT involves specific transcription factors, microRNAs, epigenetic modifications as

well as long non-coding RNAs (lncRNAs) and metabolic reprogramming coordinates the transitory process.[47] The

process is linked to the generation and expression of cancer stem cell features, and change in metabolic ways enable

survival of tumour cells in changed environmental conditions.[48]

 

Glycolytic enzymes in metabolic reprogramming plays role in EMT induction making use of glycolytic flux. The process of

EMT advancement is linked to abnormal lipid metabolism and amino acid metabolism in cancerous

cells.[49][50][51][52] Furthermore, EMT is also regulated by produces from the metabolic pathways by transcription factors in

the EMT process as well as epigenetic regulators,[46] like some products from the glycolytic pathway can induce EMT as

well as some products from the same glycolytic pathway can inhibit EMT.[47] The process of EMT in metastasis can also

involve entry of CTCs in peripheral blood, wherein CTCs can show presence of hybrid epithelial-mesenchymal markers.

Additionally, EMT can also lead to the formation of CSCs,[53]  which can switch between glycolysis and oxidative

phosphorylation.[54]  Furthermore, CSCs proliferates and grows towards formation of multiple cell lineages leading to

tumour heterogeneity (Figure 2) to express their differentiation potential.[55] On the other side, EMT generated CSCs can

switch to MET, and the process is useful in initiation of pluripotency.[56][57] Reprogramming is affected by EMT and

metabolic regulatory processes, through different factors like histone modification, DNA methylation. Importance of

metabolism in deciding cell fate is evidenced from the studies of substrate utilization.[58][59] Many signaling networks, like

Notch, TGF-β, BMP plays role in regulatory part in the process.[46][60] The transcription factor TWIST, part of basic helix-

loop-helix (bHLH) transcription factors involved in EMT apart from playing role in formation of cancer stem cells, functions

in lipid metabolism in adipose tissue, also plays role in inflammation and insulin resistance.[61] Metabolic reprogramming

has been reported to be involved with type 2 diabetes and breast cancer.[62] Another transcription factor involved in EMT,

ZEB1 is important in adipogenesis.[63] However, ZEB 1/2 though is influenced by TCA cycle end products, also influences

glycolysis and can also divert glycosphingolipid metabolism.[64][65] On the other side, miR-200 can inhibit EMT by

targeting ZEB 1/ 2.[66]  Additionally, TP53 can downregulate ZEB 1/ 2 expression by targeting miR 192 and 200.[67] The

miR200 member(s) can also inhibit signaling networks, like Wnt and Notch pathways.[68][69] Apart from this, lncRNAs also

play role in activation, or inhibition of EMT, and research works are expanding knowledge on their role in metabolism,

cancer cell metabolism associated with EMT.[70][71] However, EMT can be suppressed also by the OVOL 1 / 2
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transcription factors, and OVOL2 and ZEB 1 can mutually repress each other.[72][73]  Nevertheless, though little is known

about the role of transcription factors to suppress MET, FOXA1 can reduce lipid accumulation in human hepatocytes, and

interactions between FOXA1 activity and ZEB 1 and SNAIL (Snail belongs to zinc finger protein, SNAI1) can be another

way to study cancer cell metabolism.[47][74] 

 

Vascular Mimicry
 

Vascular mimicry involves formation of blood vessel like structures by aggressive tumours and is connected to the process

of EMT.[75][76][77] One of the reason for perturbed vascular functions is due to the disturbed arterial blood flow, induction

of metabolic reprogramming through HIF-1α resulting in activation of endothelial cells, vascular inflammation and

atherosclerosis. HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular

endothelium.[78] 

 

An interaction between EC, VSMC and immune cell regulates response between pathological and physiological

states.[79] Furthermore, nitric oxide is a critical modulator of VEC, and metabolic reprogramming leads toward migration of

VEC in anoxic environment.[76] Factors like LPS, IL-1, TNF-α activates VEC leading to changed VEC metabolic activities

with enhanced glycolysis, upregulated FAS.[80]  The cumulative effect of activities leads to increased proliferation,

migration and VEC dysfunction and vascular diseases.[76][81] 

 

Dietary components in metabolic reprogramming
 

The tumour cell in cancer changes their metabolic pathway as they enter metabolic reprogramming which is one of the

characteristic feature in cancer.[82] The purpose is to provide tumour cells with essential energy, signaling intermediate

and precursors to support biosynthesis, growth, proliferation and metastasis.[83]

 

Diet and food intake influences microbial composition and healthy metabolic activity of the consumer. Plant based food is

understood to help in maintaining a healthy gut microbiota. Food intake is also understood in terms of food ingredients

and food supplementation that includes microbial sources also.[84]  Food intake not only includes components from plant

based sources, but also microbial and animal sources (Figure 4). Gut microbiota shows ecosystem shifts, and is related to

metabolic transitions.[85]
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Figure 4. Schematic illustration of therapeutic importance of dietary factors in metabolic reprogramming

 

Diet and nutrition are also one of the major essential requirement to control cancer cell metabolism.[86] Gut microbiome

undergoes shifts in changes with regard to the diet consumption and lifestyle and can result in change in gut microflora

composition. Gut microbiome due to diet changes can effect tumour development, progression and therapy.[87][88] Cell

motility in malignant cancers is effected by EMT signalling. Dietary components, like luteolin and quercetin can reduce

EMT signalling and inhibit metastasis in cervical cancer.[89] Gut microbiota is influenced by dietary components. A high

fiber diet can lead to the generation of short chain fatty acids that offers manifold health benefits.[90]  However, fatty acids,

like palmitic acid and a high fat diet also leads to cancer and EMT by activating TGF- β and β-catenin.[91][92]. Reports

evidence the ability of dietary energy balance to modulate EMT and cancer progression.[93] 

 

Resveratrol found in grapes, peanuts, cranberries, etc. was seen to inhibit EMT factors and TNF-β induced factors for

tumour progression.[94][95][96] Similarly, silibinin, a flavonolignan found in milk thistle (Silybum marianum) was reported to

modulate levels of EMT markers and stop EMT, and remove colorectal CSCs by blocking the Wnt/ β-catenin signaling

pathway.[97][98] The nucleus sourced β-catenin is a transcriptional activator of EMT target genes and stem cell

markers.[99] Zerumbone, from zingiberaceae family was reported to upregulate miR-200c and inhibit cancer progression,

EMT and CSC functions.[99][100][101]

Fucoxanthin, belonging to marine carotenoids and abundant in macro- and microalgae was also reported to induce

apoptosis and inhibit EMT and CSC invasion.[102][103] The EMT related markers are also regulated by scutellarein, derived

from apigenin and found in Scoparia dulcis, Artemisia douglasiana, as well as by tetramethylether found in Acacia

carneorum, Acacia fasciculifera, and Pongamia pinnata,[104][105] and by cyclopamine, a steroidal alkaloid isolated from

the corn lily (Veratrum californicum).[106][107][108]

The TGF β signaling is also linked to cancer metabolism and EMT.[109] Nanoparticle coated α-mangostin (α-Mangostin, a

natural xanthonoid found in bark and dried sap of Garcinia mangostana L.) could inhibit colorectal cancer growth and EMT

by downregulating GSK3β/β-catenin /CDK6 signaling pathway. [110][111][112] Curcumin obtained from turmeric and
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analogues of curcumin modulated signaling network, miRNAs and EMT and anticancerous effect on colorectal cancer

stem cells.[113][114] Additionally, triptolide suppressed EMT by downregulating EMT transcription factors.[115] Low folate

metabolic stress in colon by reprogramming Hh pathway transdifferentiated human colon adenocarcinoma cells to EMT

with deep tissue invasion.[116] Baicalin, a natural flavonoid observed in Scuttelaria  spp. could inhibit EMT by stopping the

TGFβ/Smad pathway.[117][118][119] Thus natural plant derived chemicals can not only modulate different stages of cancer

progression but also can inhibit EMT.

 

Phenomenal relatedness of the processes in metabolic reprogramming
 

Though it is not common in all cancer types, but in majority of the tumorous condition, EMT drives development of

cancer.[120][121] Epithelial mesenchymal transition is also a part of developmental process and irrespective of development

or disease, EMT involves complex networking of pathways and different factors.[122][123] The process of EMT initiation and

advancement is dependent upon many signaling molecules, like EGF, FGF, HGF, TGF β , BMP, SHH, Notch and Wnt

signaling pathway, etc., as well as β -catenin–dependent canonical and β -catenin–independent noncanonical WNT

signaling pathways.[124][125][126] A few of these signaling networks are in turn being modulated by dietary, or food

components. The transcription factor family, SNAIL can not only change epithelial cell polarity, but also inhibit apoptosis

and cell cycle, as well as induce formation of CSCs.  However, TGF β in turn induces SNAIL expression not only in

cellular developments, but also in organ developments. The TGF β again can be inhibited by Baicalin.119The transcription

factor, Twist also drives development of CSC phenotypes, and due to the levels of expression of Twist in specific

precursor cell types, is useful as a cancer biomarker.[47] However, triplotide can down regulate SNAIL, Twist and Slug

(Slug: Zinc finger transcription factor).[115] 

 

Targeted therapeutic interventions
 

Therapeutic intervention is a necessity for cure from cancer. Understanding of the therapeutic intervention needs study in

the appropriate cell lines followed by studies in model systems with final clinical trial studies. Of the all the types of cancer,

there are numerous reports about studies in breast cancer. This is not only with regard to the growing importance of

breast cancer of all the types of cancer, but also there are advantages about the availability of negative and positive

breast cell lines for experimentation. Different therapeutic approaches can be adapted for cancer cure, wherein targeted

therapy can be practised along with the standard therapeutic approaches.[15] Targeted therapy can act on specific

molecular targets, and exemplarily targets can be the cell cycle molecules, like cyclins.[127][128] The other targets that can

be used are: IGF-1R, Pin-1, Nicastrin, SHIP 2, Syndecan 1 and pro-inflammatory cytokines.[129] The metabolic pathway

products can be also used for targeted therapy.[130] Chemical cell death kinase inhibitors and miRNA can be also used in

targeted therapy.[131][132][133] Recent reports evidence the usage of miRNA for metabolic reprogramming of chimeric

antigen receptor T-cells.[134] 
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Mitochondria plays important role in tumour metabolism. Another important target for therapeutic purposes can be Parkin,

an E3 ubiquitin ligase, regulator of mitochondrial integrity, which not only plays role in early onset of Parkinson’s disease

but also in cancer.[135] 

Metabolic remodeling is a necessity for the cells to support energy for cytoskeletal remodeling needed for cellular

responses, cell migration, EMT and changes in cell morphology. The process is linked to the rearrangement of actin

bundles and binding of glycolytic enzymes to actin fibres.[136] 

Actin interacts with three of the glycolytic enzymes, PFK-1, aldolase, GAPDH, wherein binding of PFK-1 to actin is by

electrostatic forces.[137][138] and binding is dependent upon ADP concentrations over ATP concentration but independent

of its substrate, F-6-P (fructose-6-phosphate). In turn, aldolase binds preferentially to F-actin, whereas GAPDH binds

directly to F-actin.[136] Cell migration and proliferation needs energy, nutrients and metabolic activities and metabolic

activities in proliferating cells differ from that in the non-proliferating activities.[38][136] Intracellular transport in cancer

metabolism is also linked to the cytoskeletal dynamics and functioning.[139] Furthermore, use of VM inhibitors along the

standard anti-angiogenesis treatment and drugs targeting hypoxia signaling might be of help in angiogenesis

treatment.[77] 

 

Thermodynamic constraints

 

Thermodynamic constraints and consequences of it has been well studied in microorganisms. Understandings from those

studies can help to understand more the metabolic constraints in mammalian cells. Metabolic reprogramming may lead to

the development of thermodynamic constraints[140], which might be beneficial for the proliferating cells and can be

hypothesized to distinguish between proliferating and non-proliferating cells and this might lead them to be far away from

equilibrium.[141] This needs to be investigated upon the mammalian cell line experimentations. There are enumerable

studies in this regard to understand physiology of microorganisms and their survival in a niche. Studies in metabolic

networks can be related to the maximum entropy production.[142] This understanding might be possible for reinforcement

of the knowledge from microbial syntrophy studies, wherein this refers to a process of metabolic interaction between

microbial partners in an environmental condition.[143] Metabolic interactions can also modulate metabolic rates.[144] 

 

Conclusion and future directions
 

Somatic cells can be reprogrammed to iPSCs by use of defined transcription factors, and the process is called as somatic

cell reprogramming.[145] The process can be hypothesized to be regulated by dietary factors, or diet inducible factors.

Inspite of the fact, that the MET is an essential requirement for reprogramming, the sequential process of EMT-MET at the

initiation stage of reprogramming can increase reprogramming efficiency.[46][57] The reports from Liu et al. 2013 revealed

that temporary EMT can generate iPSCs with an efficiency of 600% at basal level. The regulatory process of EMT also

involves functioning of noncoding RNAs like miRNA.[133] However, it is not known whether functioning of those miRNAs

are in turn being influenced by diet/dietary factors. Reprogramming can provide new lights onto therapeutical approaches
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in cancer.[57] It is the metabolic shift that regulates EMT in metastasis apart from the pathway metabolites that controls

epigenetically.[58][146] The phenomenon of drug treatment resistance has been also linked to EMT.[147][148] Thus, EMT by

itself can be an addressing factor to study and cure drug resistance.[47] Vascular mimicry has been also linked to

EMT.[75] This leads to the question, if vascular mimicry can also be regulated by metabolic reprogramming, which needs

to be studied. There are numerous reports about the usage of plant and microbial products with antimicrobial properties

that can be possibly used for therapeutic purposes, and it might be possible to use many of them for metabolic

reprogramming.[149][150] Metabolites can transcriptionally regulate genes, and metabolic reprogramming can lead

predictive for cancer detection, and might be therapeutic as part of cancer precision medicine.[30][151] Cytokines and TNF-

α can play role in cancer pathogenesis as well as cancer predictive (Figure 4).[152][153][154][155] Dietary phytochemicals are

evidenced to regulate EMT.[156] Additionally, derived cytokines can play role in abnormal glucose and lipid

metabolism.[157][158] Furthermore, Kreb’s cycle intermediate, citrate plays role in both immunity and inflammation.[159] In

recent reports, the therapeutical side of metabolic reprogramming also evidences use of fibroblasts in the

microenvironment of pacemaker cardiomyocytes at the sinoatrial node to drive metabolic reprogramming.[160] Cells in

higher eukaryotes can either proliferate or show senescence. Both of these states are being regulated by extrinsic and

intrinsic stimuli and environmental factors.[161][162] Dietary factors provides growth factors and other necessities for

influencing the states and can be hypothesized to regulate cellular proliferation or senescence mechanisms (Figures 2

and 3). Proliferation, including in nerve cells leads to the generation of transit amplifying cells

(TAC).[163][164][165] Senescence can be triggered by stress, and stress induced by serum deprivation can lead to

quiescent stage (G0 phase of cell cycle).[166][167][168] Both senescence and proliferation are important in tissue

regeneration which can be modulated by dietary factors.[169][170]

 

Lastly to state, it is the diet that makes cells to undergo metabolic reprogramming.[171] This is also because dietary

phytochemicals targets signaling pathways of cancer stem cells, which prospects the development of phytomedicines and

pharmaceutical development for cancer therapeutics.[95][172][173]

 

Though there are significant advances achieved in the studies of EMT and metabolic reprogramming, however the

unanswered questions need to be looked in:

1. Can diet/dietary factors be the driving force to initiate EMT and metabolic reprogramming?

2. Will dosage or quantum of diet in terms of energy and diet/dietary component initiate EMT and metabolic

reprogramming?

3. Can the transcription factors and other factors including noncoding RNAs involved in EMT, EMT-MET, metabolic

reprogramming and cell fate decisions be decided by specific dietary components qualitatively and quantitatively?

4. Can the gut microflora also influence cell fate decisions?

5. In the situation where somatic reprogramming be linked to EMT, can conditional reprogramming be linked to influences

from dietary factors as well as EMT and EMT-MET?

 

A defined answer to the questions can help in therapeutic interventions in cancer and can be of help in situations where
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resistances to therapies arise. Understanding of the metabolic decisions will be a major hallmark to understand

development and disease biology.
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Appendix-I
 

Abbreviations Expanded form

TME Tumour Microenvironment

Myc/c-Myc Myelocytomatosis/c- Myelocytomatosis

Ras Rat sarcoma virus

HIF-1 Hypoxia inducible factor-1

p53 protein 53

POU1F1 pituitary-specific POU-homeo domain transcription factor

HNF Hepatocyte Nuclear Factor

MODY Maturity-onset diabetes of the young

TNFα Tumour necrosis factor-α

JAK-STAT
Janus kinase/Signal transducers and activators of
transcription

EMT Epithelial Mesenchymal Transition

MET Mesenchymal Epithelial Transition

CTC Circulating Tumour Cells

CSC Cancer Stem Cells

TGF β Transforming Growth Factor β

BMP Bone morphogenetic proteins

ZEB Zinc Finger E-box-binding homeobox 1

TCA cycle Tricarboxalic acid cycle/ Kreb’s cycle 

miRNA/miR microRNA

OVOL Ovo like protein

FOXA1 Forkhead box protein A1

EC Endothelial cells

VSMC Vascular smooth muscle cell

VEC Vascular Endothelial Cell Function

List of Abbreviations Used And their Expanded Form
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LPS Lipopolysaccharide

IL Interleukin

FAS Fatty acid synthase

Hh Hedgehog

Smad Suppressor of Mothers against Decapentaplegic

EGF Epidermal Growth Factor

FGF Fibroblast Growth Factor

HGF Hepatocyte Growth Factor

SHH Sonic Hedgehog

IGF-1R insulin-like growth factor 1 receptor

Pin-1 Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1

SHIP 2 SH2-domain-containing inositol phosphatase 2

PFK-1 Phosphofructokinase-1

GAPDH Glyceraldehyde-3-phospahte dehydrogenase

ADP Adenosine diphosphate

ATP Adenosine triphosphate

VM Vascular Mimicry
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