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The Pythagorean theorem is the most famous theorem. It was extended extensively over the ages, for

instance as the Notrott-Ebisui’s �vefold theorem or as the four hinged squares theorem. Here, visuals

proofs are presented for these generalizations, including a proof of the cosine rule in the style of

Euclid’s windmill proof.
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The Pythagorean Theorem

The Pythagorean theorem, the unrivaled a² + b² = c², is named after the Greek mathematician Pythagoras

(c. 570–495 BCE). However, some scholars argue that Pythagoras may never have existed, or that the

theorem predates him. Evidence such as the 3,700-year-old 'Plimpton 322' clay tablet, discovered in Iraq

in 1921, contains numerical examples that align with the theorem. In 2017, Australian mathematicians

Daniel Mans�eld and Norman Wildberger revisited this ancient artifact, drawing the attention of the

international press to the theorem’s history (see [1]).

The theorem owes much of its fame to Euclid’s The Elements (circa 300 BCE), a text that was second only

to the Bible in historical popularity (see  [2]). Euclid’s ‘windmill proof’ (see Fig. 1), has been studied by

countless great minds, including Omar Khayyam (1048–1123; see Fig. 2a), Leonardo da Vinci (1452–1519;

see Fig. 2b), and even self-taught scholar Abraham Lincoln, who referenced Euclid in at least one of his

speeches. In 1968, E.S. Loomis compiled an impressive 370 proofs of the theorem (see [3]), highlighting its

broad appeal. And today, the Internet is over�owing with all kinds of proofs, including animated ones.

For visual representations, artists often favor proofs by rearrangement, where the square on the

hypothenuse is formed by the squares on the other sides, cut in pieces or with additional shapes (see Fig.
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2d), but copyright restrictions prevent showing them (see [4][5]).

Figure 1. Euclid’s ‘windmill’ proof: IHAC + JKBC = AGED + BGEF = ABFD, and details explaining why IHAC =

2.HAB = 2.CAD = AGED and JKBC = 2.KAB = 2.CFB = BGEF.

Figure 2. The Euclidean proof by Persian al-Tusi (see [6]), Leonardo (see [7]), Oliver Byrne (see [2]) and a proof

by rearrangement (the colors refer to Fig. 1a).

A proof by rearrangement for the Ebisui - Notrott theorem

There are numerous generalizations of the Pythagorean theorem, some of which involve replacing the

squares on the sides of the triangle with other geometric shapes, such as triangles, pentagons, or even

semicircles, not to mention attempts in three dimensions. A more recent contribution to this area

involves Austrian mathematician Gunter Weiss (born 1946), a former professor at the University of

Vienna and TU Dresden and a key �gure in the International Society for Geometry and Graphics (ISGG).
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Weiss became intrigued by the work of Hirotaka Ebisui, a Japanese amateur mathematician whom he met

at a conference in Osaka.

Ebisui, described by Weiss as an eccentric with no formal mathematical training, little pro�ciency in

English, and no connection to Japan’s professional mathematical community, found over 4,000 ‘new’

theorems. Recognizing the signi�cance of Ebisui’s work, Weiss brought attention to his �ndings. One of

Ebisui’s contributions is a generalization of the Pythagorean theorem that involves constructing squares

on the convex hull of the original squares. He stated that the sum of the areas of two of these new squares

is equal to �ve times the area of the third square. Furthermore, by connecting the vertices of these

squares with additional squares, he again derived the original Pythagorean theorem, and so on, in a

recursive manner. Ebisui referred to this result as the Pythagorean Fivefold Theorem.

Unbeknownst to Ebisui and Weiss at the time, J.C.G. Notrott, a Dutch mathematician, had previously

published an even more general result in a Dutch magazine (see [8] and [9]). This independent discovery

by Ebisui and Weiss, alongside Notrott’s earlier work, highlights the universal appeal and richness of this

generalization of the Pythagorean theorem.

Previously, a trigonometric proof (see  [10]) and a vector-based proof (see  [11]) were given for this result

while a proof with complex numbers can be found in [12]. Here, we present a visual proof of the Ebisui-

Notrott theorem using the method of rearrangement.

Referring to �gure 3, observe the following: the right-angled red triangle and the two enclosed triangles

(orange and purple) all have equal areas because they share a common base and an equal height. The

light-yellow square is the combined area of the dark-blue square and four light-blue squares. Similarly,

the dark-yellow square is the combined area of the light-blue square and four dark-blue squares. Adding

these, the sum of the two yellow squares equals �ve times the combined areas of the light-blue and dark-

blue squares. Since the sum of the areas of the blue squares equals the area magenta square, the proof is

complete.
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Figure 3. Visual proof for the �rst ring in the Ebisui - Notrott theorem: 5 times the magenta square equals the

sum of the yellow squares.

Connecting the vertices of these squares we note they can be regrouped around a (larger) right triangle

by translations, as the squares have parallel edges. Thus, the classical Pythagorean theorem can be

applied again, and so on.

Figure 4. Visual proof for the next second ring in the Ebisui - Notrott theorem: it again obeys the classical

Pythagorean theorem.
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A visual proof for the four (hinged) squares theorem

Another generalization of the Pythagorean theorem is the so-called ‘four (hinged) squares theorem’, yet

another generalization. Consider four squares, grouped around two triangles with a common vertex as in

�gure 5. The four squares theorem now states that the sum of the areas of the light green square ABFD

and the dark green square HJRS on the non-equal sides of two triangles with two equal sides and

supplementary enclosed angles is double the sum of the areas of the light blue square BCJK and the dark

blue square ACHI on the equal sides.

Figure 5. The 4 (hinged) squares theorem: the sum of the green squares is double the sum of

blue squares.

The trigonometric or vectorial proofs are neat (see [13]), but here we nevertheless propose a visual proof

as it illustrates the use of Euclid’s windmill theorem for an arbitrary triangle. First, we consider the case

the angle in C is acute (see Fig. 6a). As in Euclid’s proof, PNAH = 2.BAH = 2.DAC = GEDA while LKBM =

2.KAB = 2.CFB = GBFE. Thus, ‘Square ICAH’ – ICNP + ‘Square JKBC’ – JLMC = ‘Square ABFD’. However,

using two other ‘windmill constructions’, it is seen that ICNP = 2.ICB = 2.AJC = JCML and thus:

square ABFD = square ICAH + square JKBC – 2.ICNP = square ICAH + square JKBC – 2.JCML.
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Algebraically, this corresponds to DF² = AC² + BC² - 2.AC.BC.cosC, that is, the cosine rule. If the angle in C

is obtuse, rectangles ICNP and JLMC must be added to the squares, which, algebraically, corresponds to

cosC<0 in the law of cosines (see Fig. 6b). This visualization of the cosine rule is well-known (see, for

instance,  [14]). However, no reference could be found proving it using the here given generalization of

Euclid windmill’s proof, while there most probably is one, as Euclid’s proof was the most popular proof

for over thousands of years.
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Figure 6. Euclid windmill’s proof of the cosine rule, for a triangle with an acute angle C (left) and for a triangle

with an obtuse angle C (right); note both grey rectangles have the same area in each case.

Applying this on the four squares setting given above, ABFD = BCJK + ACHI – 2.CJLP for the acute

triangle ABC, and HJRS = BCJK + ACHI + 2.CBUQ, for the obtuse triangle HJC. Using another ‘windmill

construction’, CJLP = 2.CJA = 2.CBH = CBUQ. Thus, ABFD + HJRS = 2.BCJK + 2.ACHI (see Fig. 7).
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Figure 7. Visual proof of the four (hinged) squares theorem.

Note

The visualization of the cosine rule is well-known (see, for instance, [14]). However, no references could be

found proving it using the here given generalization of Euclid windmill’s proof (see �gure 8). Yet, there

most probably is one, as Euclid’s proof was the most popular proof for over thousands of years.

Figure 8. A comparison: a right (left), an acute (middle) and an obtuse (right) triangle. In each case, the sum of

the light blue and green rectangles equals that of the darker ones.
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It seems audacious to think this visualization is new, but some, and not the least, have been remarkably

bold too. According to the Encyclopædia Britannica (see [11]), the German mathematician Carl Friedrich

Gauss (1777–1855) proposed in 1821 to create Euclid's windmill theorem with pine trees on a large open

�eld as to demonstrate the presence of intelligent life on Earth. The Encyclopædia regretted the project

was never realized, “leaving undecided whether the inhabitants of Mars have no telescope, no geometry,

or no existence”.
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