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Domain generalization (DG) aims to learn models that can generalize well to unseen domains by

training only on a set of source domains. Sharpness-Aware Minimization (SAM) has been a popular

approach for this, aiming to �nd �at minima in the total loss landscape. However, we show that

minimizing the total loss sharpness does not guarantee sharpness across individual domains. In

particular, SAM can converge to fake �at minima, where the total loss may exhibit �at minima, but

sharp minima are present in individual domains. Moreover, the current perturbation update in

gradient ascent steps is ineffective in directly updating the sharpness of individual domains.

Motivated by these �ndings, we introduce a novel DG algorithm, Decreased-overhead Gradual

Sharpness-Aware Minimization (DGSAM), that applies gradual domain-wise perturbation to reduce

sharpness consistently across domains while maintaining computational ef�ciency. Our experiments

demonstrate that DGSAM outperforms state-of-the-art DG methods, achieving improved robustness

to domain shifts and better performance across various benchmarks, while reducing computational

overhead compared to SAM.
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1. Introduction

The remarkable empirical performance of deep neural networks is largely based on the strong

assumption of independent and identically distributed (i.i.d.) data[1]. However, this assumption is often
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unrealistic in many real-world applications, highlighting the need for models that are robust under

distribution shifts beyond the training data distribution. For example, in medical image classi�cation,

the test dataset may differ signi�cantly from training data due to factors such as imaging protocols and

device vendor[2]. In object detection for self-driving cars, real-world environments frequently vary from

training conditions due to weather and camera settings[3]. However, it is impractical to include every

possible scenario in the training data. These primary challenges, also known as domain shift, highlight

the importance of developing models that can generalize well to unseen domain shifts.

A common approach to address domain shift involves learning domain-invariant features by aligning the

distributions of source domains and minimizing their discrepancies[4][5]. Also, methods such as

adversarial training[6][7]  and data augmentation[8][9][10]  have been widely explored to ensure that the

learned representations are less sensitive to variations in data-speci�c variations. More recently, meta-

learning strategies[11][12]  have tacked domain generalization as a meta-learning problem, simulating

domain shifts during training to improve model robustness.

Another line of research focuses on seeking �at minima in the loss landscape, as �atter minima are

believed to improve generalization and robustness to distributional shifts[13][14][15][16][17]. A prominent

approach in this �eld is Sharpness-Aware Minimization (SAM)[18], aiming to improve generalization by

minimizing both empirical risk and sharpness of the loss surface. SAM perturbs the model parameters in

the direction of greatest sharpness to identify �atter regions in the loss landscape. This approach

promotes solutions that are less sensitive to variations in input distributions. The principle of SAM[19][20]

[21] have been widely applied in domain generalization, yielding meaningful performance improvements.

However, the relationship between �at minima and robustness to domain shifts remains relatively

understudied.

In this paper, we �nd that SAM-based algorithms for domain generalization may overlook the limitation

that minimizing the sharpness of source domains does not necessarily lead to reduced sharpness in

individual domains. This hinders SAM from learning domain-invariant features, which can eventually

lead to poor generalization on unseen domains. Our analysis provides theoretical support for this issue,

and we further validate it through empirical observation. Furthermore, we demonstrate that the current

parameter perturbation of SAM increases the total loss, but has a relatively limited impact on individual

domain losses. In addition to this, it is necessary to align the eigenvector of the Hessian and perturbation

directions, so we constructed the ideal perturbation using second order terms. However, this ideal
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strategy is intractable due to the computational cost. To address this, we introduce a new adaptive

perturbation strategy which has the same effect, gradual perturbation, which aims to �nd a perturbed

parameter that is sensitive to individual domains as well. We con�rm that gradual perturbation provides

an effective strategy for calculating the perturbed parameter for both source domains and unseen

domains.

Based on these observations, we propose a novel DG algorithm, Decreased-overhead Gradual Sharpness-

Aware Minimization (DGSAM), which gradually perturbs the parameters using the loss gradient of each

domain and �nally updates with aggregated gradients. DGSAM improves upon three key aspects of the

existing SAM-based approaches for domain generalization. First, it reduces the sharpness of individual

domains instead of the total loss sharpness, allowing the model to better learn domain-invariant

features. Second, while traditional SAM-based algorithms incur twice the computational overhead

compared to empirical risk minimization, DGSAM signi�cantly improves computational ef�ciency by

reusing gradients calculated during the adaptive gradual perturbation. Third, whereas previous methods

relied on proxy measures of curvature to achieve �atness, DGSAM directly controls the Hessian’s

eigenvalues, the most direct measure of curvature[22][23]. Our experimental results show that DGSAM

outperforms existing DG algorithms in the DomainBed[24]  protocol. Moreover, DGSAM consistently

shows high average accuracy and low standard deviation across various datasets, demonstrating its

robustness to domain shift s. Notably, DGSAM signi�cantly reduces the sharpness across individual

source domains compared to existing SAM-based algorithms, including SAM and SAGM[19].

2. Preliminaries and Related Work

2.1. Domain Generalization

Let    denote the collection of training samples from different domain sources where 

  represents the training samples from the  -th domain. We de�ne the total loss function over    as

follows:

where    is the loss function evaluated using the training samples of the  -th domain and    is the

parameter of a given model.

:= {Ds Di}S
i=1

Di i D

(θ) := (θ)LDs

1

| |Ds

∑
∈Di Ds

LDi
(1)

LDi
i θ
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Given a set of source domain samples  , the model parameters obtained by naively minimizing the

population risk over the source domains, i.e.,  , tend to struggle in generalizing to

unseen domain distributions as they are optimized exclusively on the source domains. Therefore, the

primary goal of domain generalization is to learn model parameters    that are robust to domain shifts

and generalize well to unseen domains when trained solely on source domains.

As the importance of Domain Generalization (DG) has grown, various datasets[25][26][27] and benchmark

sets[24][28] have been developed to evaluate DG methods. Research directions in Domain Generalization

(DG) include domain-adversarial learning[29][6][30][31][32], minimizing moments[33][4][34], and contrastive

loss[35][36]  for domain alignment to create domain-agnostic models. Other approaches focus on data

augmentation[37][38][39], domain disentanglement[40][41], meta learning[42][43][11], and ensemble

learning[13][44][45].

2.2. Sharpness-Aware Minimization

The relationship between the curvature of loss landscape and model generalization ability has been

extensively studied in the literature[46][47][48][17][18]. Motivated by this insight,[18]  proposed Sharpness-

Aware Minimization (SAM), an optimization framework that enhances generalization by simultaneously

minimizing an associated loss function    and penalizing sharpness. The objective of SAM is to

minimize a perturbed loss   as follows:

where    represents the radius of the perturbation  . In practice, the solution    of the inner

maximization is approximated using a �rst-order Taylor expansion and the dual norm formulation:

Then, the objective of SAM reduces to

Following the SAM, several studies have focused on �nding �at minima. ASAM[49]  de�ned adaptive

sharpness, which modi�es    adaptively, and GSAM[50]  introduced a surrogate gap    that

better agrees with sharpness as opposed to merely reducing the perturbed loss. GAM[51] introduced �rst-

order �atness, which represents the curvature of the loss landscape, to minimize the sensitivity of the

Ds

= (θ)θ∗
s argminθLDs

θ

L(θ)

(θ)L
p

(θ) = L(θ + ϵ)min
θ
L

p min
θ

max
∥ϵ ≤ρ∥2

ρ > 0 ϵ ϵ∗

= L(θ + ϵ) ≈ ∇L(θ) = ρ .ϵ∗ argmax∥ϵ ≤ρ∥2
argmax∥ϵ ≤ρ∥2

ϵ⊤ ∇L(θ)

∥∇L(θ)∥2

L(θ + ).min
θ

ϵ∗

ρ (θ) − L(θ)L
p
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landscape more explicitly. Additionally, Lookahead optimizer and Lookbehind-SAM[52][53] modi�ed the

two-step structure to perform multiple steps per iteration.

While SAM and its variants[18][50][19]  have demonstrated signi�cant improvements in generalization, a

major drawback is their computational overhead. Speci�cally, these methods require performing

backpropagation twice in each iteration: �rst to calculate the perturbation direction and then to update

the model parameters, leading to a computational cost that is double that of ERM. ESAM and

LookSAM[54][55]  were introduced to mitigate computational overhead while preserving SAM’s

performance.

In domain generalization,[19][20][13][56] have utilized sharpness-aware learning to �nd �atter minima by

reducing the sharpness of the total loss across source domains. Some approaches that integrate domain

information into SAM, such as[21] and[57], either focus on the loss variance or apply SAGM on a domain-

by-domain basis.
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3. Motivation

Figure 1. Toy example: two con�icting loss functions construct two different type of �at minima. An

interactive visualization of toy example is available at https://dgsam-toy-example.netlify.app/.

Recent studies[14][15]  have demonstrated that domain distribution shifts can be viewed as parameter

perturbations. Speci�cally, for two given domain samples  ,   and a model parameter  , there exists a

parameter perturbation    such that  . This �nding indicates that minimizing the

Di Dj θ

v (θ) = (θ + v)LDi
LDj
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perturbed loss is closely connected to robustness to domain shifts, providing theoretical justi�cation for

the use of SAM in DG.

Inspired by this theoretical support along with the strong generalization ability of SAM, the concept of

SAM has been widely employed in DG[19][56][57][20]. Recall    is the set of    source domain training

samples. Then, SAM for DG considers the following optimization problem:

where  , de�ned in Eq. (2.1), is the total loss function over  . Let

denote the zeroth-order sharpness of the total loss. Then, the objective of SAM for DG can be rewritten as

In other words, a straightforward implementation of SAM for DG aims to minimize the total loss and its

zeroth-order sharpness.

Figure 2. Comparison of loss landscapes of converged minima using SAM and DGSAM across different

domains on the PACS dataset. We set the grid with two random direction. DGSAM performs better than

SAM in reducing individual sharpness in all three individual domains, and total sharpness.

Ds S

(θ + ϵ)min
θ

max
∥ϵ ≤ρ∥2

LDs
(3.1)

(⋅)LDs Ds

(θ) = (θ + ϵ) − (θ)SDs max
∥ϵ ≤ρ∥2

LDs LDs

(θ) + (θ).min
θ
SDs LDs
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To generalize to unseen domains using only source domains, DG requires the model to avoid over�tting

to the idiosyncratic features of each source domain. Instead, it should focus on generalizing to the shared

features between unseen and source domains. Therefore, achieving �at minima at the individual domain

level is essential. The rationale for applying SAM and its variants in DG is based on the idea that

decreasing the sharpness of the total loss will potentially reduce the sharpness for each individual

domain loss, eventually leading to robust performance on unseen domains associated with each source

domain. However, Proposition 3.1 reveals that the sharpness of the total loss does not necessarily reduce

the average sharpness across individual domains.

Proposition 3.1. Consider the total loss function  , where    is the individual loss

function. Let    represent the zeroth-order sharpness of the total loss function, and let    denote the

zeroth-order sharpness of the  -th loss function  . Then, for two different local minima   and  ,

We refer the supplement for the proof of Proposition 3.1. Proposition 3.1 implies that a careless adoption

of SAM in DG may fail to achieve �at minima at the individual domain level.

To illustrate this phenomenon, we present a toy example that considers a 2-dimensional minimization

problem involving two loss functions. Note that each loss function corresponds to the loss function from

different domain. The two loss functions share the same loss landscape (see Figure  1(c)), but one is

obtained by shifting the other along one axis. Figure  1(a) and   1(b) show the two loss functions from

different angles. Both loss functions have relatively �at minima in the region R1 shaded in green, while

the region R2 shaded in yellow indicates sharp minima. However, when considering the sum of the two

loss functions, both regions show �at minima as shown in Figure 1(d). The reason is that in the region

R2, the two sharp valleys can create a �at region when combined as illustrated in Figure 3. Thus, the

region R1 where two domain losses have �at minima, represents the ideal solution. In contrast, although

the region R2 appears �at in the total loss, it should be avoided because both individual domain losses

exhibit sharp region there, making it fake �at minima.

(θ) = (θ)LDs
1
S
∑

S
i=1 LDi

LDi

(θ)SDs (θ)Si

i LDi
θ1 θ2

( ) < ( )⟹ ( ) < ( ).SDs θ1 SDs θ2
1

S
∑
i=1

S

Si θ1
1

S
∑
i=1

S

Si θ2
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Figure 3. The sum of two sharp losses can result in a �at total loss.

This example shows that minimizing the total loss sharpness does not ensure �at minima for individual

losses. In fact, it may lead to sharp minima at the individual domain level. When solved with SAM and

SGD, both methods converge to the fake �at minima in the region R2.

Beyond this simple toy example, such an issue is consistently observed in practical DG tasks. Figure 2,

shows the visualization for loss landscape of converged minima using SAM and DGSAM on ResNet-50.

SAM achieves �at minima in the total loss but fails to �nd �at minima at the individual domain level.

These �ndings suggest the need for a new SAM approach for DG that accounts for the sharpness of each

individual loss instead of minimizing total loss sharpness.

4. Methodology

4.1. Failure of Total Gradient Perturbation in Increasing Domain-wise Loss

At each iteration  , SAM performs gradient ascent to �nd the direction that maximizes the loss where the

model is most sensitive by perturbating the parameters as follows:

We note that   is calculated based on the gradient of the total loss  . However, the perturbation

using   may not yield the optimal perturbed parameter for minimizing individual domain losses, as the

total loss gradient does not align with the gradients of individual domain losses,    for 

, as discussed in Section 3.

t

= + = θ + ρ .θ
~

t θt ϵ∗
Ds

∇ ( )LDs θt

∥∇ ( )∥LDs θt

(4.1)

ϵ∗
Ds

∇ ( )LDs θt

ϵ∗
Ds

∇ ( )LDi
θt

i = 1, 2, … , S
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Figure 4. (a) Perturb by total gradient. (b) Perturb by individual gradient.Loss increment across domains by

perturbation at each ascent step.

Figure  4 illustrates the effect of different perturbation directions on domain-wise loss variations.

Starting from the initial parameter  , we iteratively apply perturbations    to obtain the perturbed

parameter    for the ResNet-50[58]  model on the DomainNet[27]  dataset. In Figure  4(a),

the perturbation direction is given by the total gradient as  . On the other hand, in

Figure  4(b), perturbations are applied sequentially using individual domain gradients as 

.

Figure 4(a) shows that perturbing along the total gradient direction results in an imbalanced increase in

domain losses, with some domains exhibiting substantial growth while others change minimally. In

contrast, Figure 4(b) demonstrates that sequential perturbations based on individual domain gradients

produce a more uniform increase in losses across domains. This observation highlights that sequentially

perturbing along domain-speci�c gradients better aligns with the goal of reducing individual sharpness,

which is crucial for improving robustness to domain shifts.

4.2. Decreased-overhead Gradual SAM

Based on these observations, we propose a novel domain generalization algorithm, Decreased-overhead

Gradual Sharpness-Aware Minimization (DGSAM). In the gradient ascent step to �nd the optimal perturbed

parameter, DGSAM uses a gradual strategy: perturbations are applied iteratively   times, each using the

optimal perturbation calculated for an individual domain (see lines 7-9 in Algorithm  1). During this

process, the gradients for each individual domain loss are stored and later reused during the descent step

to improve computational ef�ciency. However, the gradient for the initial perturbation is computed based

on the current parameter    rather than the perturbed parameter. Therefore, an extra perturbation is

θ0 ϵt

= +θ
~

i θ0 ∑
i
j=1 ϵj

= ρϵi

∇ ( )L
Ds θ

~
i−1

∥∇ ( )∥L
Ds θ

~
i−1

= ρϵi

∇ ( )L
D

it
θ
~

i−1

∥∇ ( )∥L
D

it
θ
~

i−1

S

θt
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needed on the main used for the �rst calculation to compute the correct domain loss gradient (see lines

10-11 in Algorithm 1).

Figure 5. A visualization of DGSAM algorithm.

As a result, DGSAM obtains a perturbed parameter which takes into account the sharpness of each

individual domain and collects the gradients for all   domains through   computations. Then, the

model is updated using the average of these individual domain gradients (see line 14 in Algorithm  1).

Figure  5 provides a visualization of our algorithm. When the losses of the two domains overlap, the

perturbation direction of SAM is biased toward  . In contrast, the parameters  ,   updated by DGSAM

move in a direction that increases loss in both domains, and the subsequent descent to obtain 

  reduces sharpness across both domains. This mechanism offers an intuitive explanation for the

phenomena observed in Figure 4. In addition, DGSAM requires   computations per iteration, which

is signi�cantly lower than the   computations needed by SAM.

S S + 1

D1 θ
~

1 θ
~

2

θt+1

S + 1

2S
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4.3. Sharpness-Awareness of DGSAM for Individual Domains

Recently work[59][50] has shown that SAM’s nested approximations can be problematic, highlighting the

need for more direct control over eigenvalues. [60] demonstrated that aligning the perturbation direction

with an eigenvector can control the corresponding eigenvalue. However, relying solely on the top

eigenvectors falls short in multi-domain scenarios with con�icting gradients. Therefore, it is preferable

to identify eigenvectors associated with large eigenvalues and determine a common direction among

them across all domains. Moreover, [61] showed that controlling the overall eigenvalue spectrum yields a

tighter generalization bound than focusing solely on the top eigenvalue.

In this regard, we provide a detailed analysis to show how the gradual perturbation strategy of DGSAM

effectively controls the sharpness of individual domains. In the  -th perturbation step, the gradient   is

given by:

where   is the minibatch from  th chosen domain. Since any Hessian matrix is diagonalizable, we have 

 where   is the set of eigenpairs of  . Then, the   can

be approximated as

j gj

gj = ∇ ( ) = ∇ ( + ρ )LBlj
θ
~

j−1 LBlj
θ
~

0 ∑
k=1

j−1
gk

∥ ∥gk

= ∇ ( ) + ρ ( ) + O( )LBlj
θ
~

0 ∇2
LBlj

θ
~

0 ∑
k=1

j−1
gk

∥ ∥gk

ρ2

Blj j

( ) =∇2LBlj
θ
~

0 ∑n λnvnv⊤
n = {( )}Ej λnvn ( )∇2LBlj

θt gj
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In this approximation, the �rst term represents the standard ascent direction for the  -th domain, while

the second term is a weighted sum of eigenvectors. The weights re�ect both the corresponding

eigenvalues and the similarity between the ascent directions from different domains. Thus, the gradual

perturbation strategy of DGSAM effectively leverages eigenvector information across all domains,

ensuring that the sharpness of individual domain losses is balanced and robustly controlled.

In Figure  10 of the supplement, which compares the magnitudes of the �rst and second terms, we

observe that the second term is of signi�cant magnitude relative to the �rst term, indicating that

incorporating the eigenvalue-weighted eigenvector component substantially alters the vanilla ascent

direction. Moreover, in the toy example discussed in Section 3, DGSAM converges to a �at region across

all individual domains, thereby avoiding the fake �at minima.

≈ ∇ ( ) + ρ λ( ) v.gj LBlj
θ
~

0 ∑(λ,v)∈Ej
∑

j−1
k=1

v⊤gk

∥v∥∥ ∥gk

(4.2)

j
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Algorithm

PACS VLCS Of�ceHome TerraInc DomainNet Avg

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

IRM†[5] 83.5 1.0 8.4 78.6 0.6 12.4 64.3 2.3 9.1 47.6 1.4 7.9 33.9 2.9 15.2 61.6 10.6

ARM†[43] 85.1 0.6 8.0 77.6 0.7 13.1
64.8

0.4
10.2 45.5 1.3 7.4 35.5 0.5 16.7 61.7 11.1

VREx†[62] 84.9 1.1 7.6 78.3 0.8 12.4
66.4

0.6
9.9

46.4

2.4
6.9 33.6 3.0 15.0 61.9 10.4

CDANN†[63] 82.6 0.9 9.2 77.5 1.0 12.1 65.7 1.4 10.6 45.8 2.7 5.9 38.3 0.5 17.3 62.0 11.0

DANN†[7] 83.7 1.1 9.2 78.6 0.6 12.6 65.9 0.7 9.8 46.7 1.6 7.9 38.3 0.4 17.0 62.6 11.3

RSC†[64] 85.2 1.0 7.6 77.1 0.7 13.0 65.5 1.0 10.0 46.6 1.0 7.0 38.9 0.7 17.3 62.7 11.0

MTL†[65] 84.6 1.0 8.0 77.2 0.8 12.5
66.4

0.5
10.0 45.6 2.4 7.3 40.6 0.3 18.4 62.9 11.2

MLDG†[42] 84.9 1.1 7.9 77.2 0.8 12.2
66.8

0.8
9.9 47.8 1.7 7.6 41.2 1.7 18.4 63.6 11.2

ERM† 85.5 0.6 7.0 77.3 1.1 12.5 67.0 0.4 10.5 47.0 1.0 7.6 42.3 0.4 19.1 63.8 11.4

SagNet†[66] 86.3 0.5 6.9 77.8 0.7 12.5 68.1 0.3 9.5
48.6

0.3
7.1 40.3 0.3 17.9 64.2 10.8

CORAL†[67]
86.2

0.6
7.5 78.8 0.7 12.0 68.7 0.4 9.6 47.7 0.4 7.0 41.5 0.3 18.3 64.6 10.9

SWAD[13] 88.1 0.4 5.9 79.1 0.4 12.8 70.6 0.3 9.2
50.0

0.3
7.9

46.5

0.2
19.9 66.9 11.2

GAM‡[51] 86.1 1.3 7.4 78.5 1.2 12.5
68.2

0.8
12.8 45.2 1.7 9.1 43.8 0.3 20.0 64.4 12.4

SAM†[18] 85.8 1.3 6.9 79.4 0.6 12.5 69.6 0.3 9.5 43.3 0.3 7.5
44.3

0.2
19.4 64.5 11.2

Lookbehind-

SAM[53]

86.0

0.4
7.2 78.9 0.8 12.4 69.2 0.6 11.2 44.5 1.0 8.2

44.2

0.3
19.6 64.7 11.8

± ± ± ± ±

± ±
±

± ±

± ±
± ±

±

± ± ± ± ±

± ± ± ± ±

± ± ± ± ±

± ±
±

± ±

± ±
±

± ±

± ± ± ± ±

± ± ±
±

±

±
± ± ± ±

± ± ±
± ±

± ±
±

± ±

± ± ± ±
±

±
± ± ±

±
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Algorithm

PACS VLCS Of�ceHome TerraInc DomainNet Avg

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

GSAM†[50] 85.9 0.3 7.4 79.1 0.3 12.3 69.3 0.1 9.9 47.0 0.1 8.8
44.6

0.3
19.8 65.2 11.6

FAD[56]
88.2

0.6
6.3 78.9 0.9 12.1 69.2 0.7 13.4 45.7 1.6 9.6

44.4

0.3
19.5 65.3 12.2

DISAM[21] 87.1 0.5 5.6 79.9 0.2 12.3 70.3 0.2 10.3 46.6 1.4 6.9 45.4 0.3 19.5 65.9 10.9

SAGM[19] 86.6 0.3 7.2
80.0

0.4
12.3 70.1 0.3 9.4

48.8

0.3
7.5 45.0 0.2 19.8 66.1 11.2

DGSAM
88.5

0.4
5.2 81.4 0.5 11.5

70.8

0.3
8.5 49.9 0.7 6.9 45.5 0.3 19.4 67.2 10.3

DGSAM + SWAD 88.7 0.4 5.4 80.9 0.5 11.6 71.4 0.4 8.7 51.1 0.8 6.8 47.1 0.3 19.6 67.8 10.4

Table 1. We compared the performance of DGSAM with 20 baseline algorithms on DomainBed's �ve datasets.

The speci�c experimental results for each dataset are attached in the supplement. The table presents two

types of standard deviation (SD) values. One represents the trial-based SD, calculated across each trial and

denoted by the   symbol adjacent to the mean. The other corresponds to the test domain-speci�c SD, derived

across different test domains and reported separately. Higher Mean means better, and lower SD means better.

The best performance except DGSAM + SWAD is highlighted in bold and the second best in underlined. The

outcomes of the experiments were marked as   if sourced from[19],   if sourced from[56], and if unlabeled, the

data were sourced from individual papers.

5. Numerical Experiments

5.1. Experimental Settings

Evaluation protocols, Baselines and Datasets For all main experiments, we adhere to the DomainBed

protocol[24], including model initialization, hyperparameter tuning, and validation methods, to ensure a

fair comparison. We evaluate our algorithm across �ve benchmark datasets widely used in the literature

on domain generalization[21][19][13], including PACS[25], VLCS[26], Of�ceHome[68], TerraIncognita[69], and

DomainNet[27].

± ± ± ±
±

±
± ± ±

±

± ± ± ± ±

±
±

±
±

±

±
±

±
± ±

± ± ± ± ±

±

† ‡
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We employed leave-one-out cross-validation, a method proposed by[24]. This involves training on all

source domains except one target domain and then selecting a model based on its performance on the

validation set of the source domains to evaluate accuracy on the target domain. In addition to the original

DomainBed protocol, which only reports the average of the performance over each test domain, we also

report the standard deviation of the performance varying test domain. This standard deviation serves as

a metric of how robust the performance is to the choice of test domain and is used to evaluate the

domain-agnostic robustness of our algorithm. To ensure the reliability of our results, we repeated each

experiment three times, and the standard errors of these results are included in the supplement.

Implementation Details We used a ResNet-50[58] backbone pretrained on ImageNet, and Adam[70] as the

base optimizer. We used the hyperparameter space, the total number of iterations, and checkpoint

frequency based on[19]. The speci�c hyperparameter space and optimal settings for replication are

described in the supplement.

5.2. Main Experimental Results

DGSAM outpeforms all baselines on three datasets - PACS, VLCS, and Of�ceHome - and achieves

comparable performance with SWAD on the remaining two datasets. It is worth noting that a direct

comparison between DGSAM (a single optimizer) and SWAD (an ensemble from single trajectory

method) is not entirely fair. However, we include SWAD as a SOTA baseline for completeness.

Nevertheless, DGSAM not only outperforms SWAD in several cases but also achieves at least comparable

results. Furthermore, DGSAM operates on a distinct mechanism from SWAD, making their combination

complementary. This synergy enhances performance on DG task.

5.2.1. Variance of Domain-wise Performance

A comprehensive assessment of domain generalization should take into account both the average

performance across domains and the variance in performance. When a speci�c domain is held out for the

test domain, its performance is highly dependent on its similarity to the source domains. An ideal robust

domain generalization method should exhibit consistent performance across a variety of distribution

shifts, ensuring uniform per-domain results regardless of the train-test domain combinations.

Relying solely on the average performance across domains, widely used in DG tasks[24][19][13], can be

misleading. A high average may be driven by exceptional performance on test domains that exhibit

strong similarity to the source domains, thereby masking poor generalization capability on more
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dissimilar domains. This can result in an overestimation of the model’s true domain generalization

capability.

Therefore, we include the variance (or standard deviation) of domain-wise performance along with the

average as a key evaluation metric for domain generalization. This provides a more comprehensive and

nuanced understanding of a model’s robustness to diverse and potentially unforeseen distributional

shifts.

Figure 6. Comparison of accuracy of ERM, SAGM and DGSAM on PACS dataset.

In Figure 6, we compare the per-domain performance of ERM, SAGM, and our proposed method on the

PACS dataset. Note that SAGM is the existing SOTA approach that applies SAM to domain generalization.

While SAGM achieves a higher average accuracy than ERM, its performance gains are marginal (or even

worse) in domains C and S, where ERM performs particularly poorly. In contrast, DGSAM slightly reduces

performance on the already high-performing domain P, but signi�cantly improves performance on the

other domains. Consequently, DGSAM attains not only a higher accuracy but also a lower variance across

domains. This �nding emphasizes the importance of including the variance of domain-wise

performance as a key evaluation metric and demonstrates that DGSAM learns a more domain-agnostic

representation, enhancing its robustness to diverse distributional shifts.

5.2.2. Computational Cost

Our proposed method not only outperforms other algorithms, but also effectively reduces the excessive

computational cost commonly associated with SAM variants. Suppose that there are   source domains

and the cost of processing a mini-batch from a single domain with ERM is  . Then, the total cost per

S

c
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iteration for ERM is  . In contrast, SAM requires two backpropagation passes for the entire batch of 

 domains, resulting in a cost of approximately  . DGSAM, on the other hand, computes gradients 

 times per iteration, yielding a total cost of   (see Figure 7).

Figure 7. Computational cost of SAM and DGSAM.

To validate this analysis, we measured the computational costs of ERM, SAM, and DGSAM on the PACS

dataset, as illustrated in Figure 8. In this experiment, with   source domains, we found that  .

SAM exhibited a cost of 0.217, nearly double that of ERM. In contrast, DGSAM achieved a cost of 0.169,

which is slightly higher than the theoretical cost of  . This small discrepancy arises

from extra operations such as gradient summation. These results demonstrate that our algorithm

effectively reduces the computational overhead compared to SAM. A comprehensive ef�ciency

comparison on all �ve DomainBed datasets is provided in the supplement.

Figure 8. Comparison of empirical computational cost measured by training time per iteration.

S × c

S 2S × c

S + 1 (S + 1) × c

S = 3 c ≈ 0.37

(S + 1) × c ≈ 0.147
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5.3. Sharpness Analysis

To evaluate whether DGSAM �nds �atter minima in individual domains, we compare the sharpness of

solutions obtained by DGSAM and SAM. Table 2 shows the zeroth-order sharpness for each domain on

the DomainNet dataset. DGSAM consistently achieves lower sharpness in both the source domain losses

and the total loss compared to SAM, indicating that it is more effective at �nding �atter minima by

leveraging domain alignment and direct eigenvalue control. Moreover, DGSAM exhibits signi�cantly

lower sharpness in unseen domains, suggesting that reducing sharpness across source domains

enhances robustness against domain shifts.

Individual domains

Mean (Std) Total Unseen

Clipart Painting Quickdraw Real Sketch

SAM 1.63 6.22 7.86 4.89 3.38 4.79 (2.17) 19.68 70.59

DGSAM 1.17 2.78 4.74 4.39 1.80 2.98 (1.40) 6.41 42.46

Table 2. The zeroth order sharpness result at converged minima
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Figure 9. Hessian Spectrum Density at Converged Minima. (a) Eigenvalue distribution per domain for (a) SAM

and (b) DGSAM.

We further demonstrate the effectiveness of our approach by estimating the Hessian spectrum density of

the converged minima using stochastic Lanczos quadrature[23]. As shown in Figure 9, DGSAM not only

suppresses high eigenvalues but also those near zero, indicating an overall control of the eigenvalue

spectrum—consistent with our design goals.

Figure 2 visualizes the loss landscape around the solutions for SAM and DGSAM across different domains

on the PACS dataset. The loss values are evaluated using random directional perturbations. While the

total loss landscape for DGSAM and SAM remains similar, DGSAM �nds signi�cantly �atter minima at

the individual domain level, whereas SAM converges to fake �at minima.
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6. Conclusion and Discussion

In this work, we identi�ed a key limitation of existing SAM-based algorithms: while they reduce the

overall loss sharpness, they fail to address the sharpness of individual domains, leading to suboptimal

generalization in domain generalization tasks. To overcome this challenge, we introduced Decreased-

overhead Gradual Sharpness-Aware Minimization (DGSAM), which sequentially applies perturbations to

each domain and aggregates the corresponding gradients. This approach not only facilitates domain

alignment but also enables more direct control over large eigenvalues. By reusing gradients computed

during the gradual perturbation, DGSAM achieves signi�cantly reduced computational overhead.

Extensive experiments demonstrate that DGSAM consistently outperforms current DG methods across

various benchmarks while also achieving substantially lower sharpness in individual domains.

While our work offers a promising approach to applying SAM in domain generalization, further

investigation is needed to fully establish DGSAM’s optimality. For instance, identifying the truly optimal

�at minima remains challenging when all local minima are fake �at. Developing an optimizer that

consistently converges to the optimal solution would be a valuable extension.

Appendix A. Proof of Proposition 3.1

Proof of Proposition  3.1. Suppose that a local minima    is given and    is suf�ciently small. Then, the

second-order Taylor expansion for   and   gives:

and

where   and   are the Hessian matrices for   and  , respectively, evaluated at  .

Then, using   and  , we have

which yields the zeroth-order sharpness for  :

θ ρ

LDs LDi

(θ + ϵ) = (θ) + ∇ (θ ϵ + H(θ)ϵ + O(∥ϵ )LDs LDs LDs )⊤ 1

2
ϵ⊤ ∥3

(θ + ϵ) = (θ) + ∇ (θ ϵ + (θ)ϵ + O(∥ϵ ), i = 1, … , SLDi
LDi

LDi
)⊤ 1

2
ϵ⊤Hi ∥3

H Hi LDs LDi
θ

∇ (θ) = 0LDs H(θ) = (θ)1
S
∑

S
i=1 Hi

(θ + ϵ) − (θ) = ( (θ)) ϵ + O(∥ϵ )LDs LDs

1

2
ϵ⊤ 1

S
∑
i=1

S

Hi ∥3

LDs

(θ) = ( (θ + ϵ) − (θ)) = ( (θ)) + O(∥ρ )SDs max
∥ϵ ≤ρ∥2

LDs LDs

1

2S
ρ2σmax ∑

i=1

S

Hi ∥3
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where   denotes the largest eigenvalue of the matrix  .

To show that the statement does not hold in general, it suf�ces to provide a counterexample. First, we

consider the case where   for all   Then, the zeroth-order sharpness of the  -

th individual loss function is given by

This leads to the following expression of the average sharpness over all individual loss functions:

Next, consider two different local minima   and  . For suf�ciently small  , we can write:

Similarly, for suf�ciently small  , we have the following relationship between the average sharpnesses at 

 and  :

Consequently, we conclude that Eq. (A.1) does not imply Eq. (A.3) since the largest eigenvalue of a sum of

matrices,  , is not generally equal to the sum of the largest eigenvalues of the

individual matrices,  .

Secondly, let us consider the case where  , but there exists at least two elements such that 

. For simplicity, let  . Without loss of generality, assume    and 

. Then, the sharpness for   is given by

Now, consider two local minima   and   satisfying the following inequality:

A counterexample can be constructed such that for some   and  ,

(A)σmax A

∥∇ (θ)∥ = 0LDi
i = 1, 2, … , S. i

(θ) = ( (θ)) + O(∥ρ ).Si
1

2
ρ2σmax Hi ∥3

(θ) = ( (θ)) + O(∥ρ ).
1

S
∑
i=1

S

Si
1

2S
ρ2∑

i=1

S

σmax Hi ∥3

θ1 θ2 ρ

( )SDs θ1

( ( ))σmax ∑
i=1

S

Hi θ1

< ( )SDs θ2

⇔

< ( ( )) .σmax ∑
i=1

S

Hi θ2

(A.1)

(A.2)

ρ

θ1 θ2

( )
1

S
∑
i=1

S

Si θ1

( ( ))∑
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S

σmax Hi θ1

< ( )
1
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∑
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(A.3)

(A.4)

( (θ))σmax ∑
S
i=1 Hi

( (θ))∑
S
i=1 σmax Hi

∇ (θ) = 0LDs

∇ (θ) ≠ 0LDi
S = 2 ∇ (θ) > 0LD1

∇ (θ) = −∇ (θ)LD2 LD1 (θ)LD1
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and

In this example, we �nd that  . However, such a choice of gradients does

not affect the Hessian matrices, and thus the inequality for the sharpness of the total loss remains

unchanged. Therefore, the sharpness for the total loss does not generally follow the same ordering as the

average sharpness of the individual losses.

Appendix B. Comparison of two term in Eq. 4.2

Figure  10 shows that the second term tends to be slightly smaller than the �rst term, but the two are

comparable in magnitude. This indicates that both terms contribute to the gradual perturbation.

Figure 10. Comparison of magnitude of two term in Eq. 4.2 on the PACS

∇ ( ) = G = −∇ ( ),LD1 θ1 LD2 θ1

∇ ( ) = cG = −∇ ( ).LD1 θ2 LD2 θ2

( ) > ( )1
S
∑

S
i=1 Si θ1

1
S
∑

S
i=1 Si θ2

□
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Appendix C. Sensitivity Analysis

To analyze the sensitivity of DGSAM to  , we evaluated the performance of SAM and DGSAM across

different    values    on the PACS and TERRAINCOGNITA datasets. As

shown in Figure  11, DGSAM consistently outperformed SAM and demonstrated superior performance

over a wider range of   values.

Figure 11. Sensitivity analysis

Appendix D. Details of Experiments

D.1. Implementation Details

We searched hyperparameters in the following ranges: the learning rate was chosen from 

, the dropout rate from  , the weight decay from 

, and    from  . Each experiment was repeated three times, using 20

randomly initialized models sampled from this space, following the DomainBed protocol[24]. The optimal

hyperparameters selected based on DomainBed criteria for each dataset are provided in Table 3 to ensure

replicability. All our experiments were conducted on an NVIDIA A100 GPU, using Python 3.11.5, PyTorch

2.0.0, Torchvision 0.15.1, and CUDA 11.7.

ρ

ρ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}

ρ

{ , 2 × , 3 × , 5 × }10−5 10−5 10−5 10−5 {0.0, 0.2, 0.5}

{ , }10−4 10−6 ρ {0.03, 0.05, 0.1}
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Dataset Learning Rate Dropout Rate Weight Decay

PACS 0.5 0.03

VLCS 0.5 0.03

Of�ceHome 0.5 0.1

TerraIncognita 0.2 0.05

DomainNet 0.5 0.1

Table 3. Optimal hyperparameter settings for each dataset

D.2. Full Results

Here are the detailed results of the main experiment in Section  5.2 for each dataset. The outcomes are

marked with    if sourced from  [19],    if sourced from  [56], and are unlabeled if sourced from individual

papers. We note that all results were conducted in the same experimental settings as described in their

respective papers. The value shown next to the performance for each test domain represents the

standard error across three trials.

ρ

3 × 10−5 10−4

10−5 10−4

10−5 10−6

10−5 10−6

2 × 10−5 10−4

† ‡
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Algorithm A C P S Avg SD (s/iter)

CDANN†[63] 84.6 1.8 75.5 0.9 96.8 0.3 73.5 0.6 82.6 9.2 0.11

IRM†[5] 84.8 1.3 76.4 1.1 96.7 0.6 76.1 1.0 83.5 8.4 0.12

DANN†[7] 86.4 0.8 77.4 0.8 97.3 0.4 73.5 2.3 83.7 9.2 0.11

MTL†[65] 87.5 0.8 77.1 0.5 96.4 0.8 77.3 1.8 84.6 8.0 0.12

VREx†[62] 86.0 1.6 79.1 0.6 96.9 0.5 77.7 1.7 84.9 7.6 0.11

MLDG†[42] 85.5 1.4 80.1 1.7 97.4 0.3 76.6 1.1 84.9 7.9 0.13

ARM†[43] 86.8 0.6 76.8 0.5 97.4 0.3 79.3 1.2 85.1 8.0 0.11

RSC†[64] 85.4 0.8 79.7 1.8 97.6 0.3 78.2 1.2 85.2 7.6 0.14

ERM† 84.7 0.4 80.8 0.6 97.2 0.3 79.3 1.0 85.5 7.0 0.11

CORAL†[67] 88.3 0.2 80.0 0.5 97.5 0.3 78.8 1.3 86.2 7.5 0.12

SagNet†[66] 87.4 1.0 80.7 0.6 97.1 0.1 80.0 0.4 86.3 6.9 0.32

SWAD[13] 89.3 0.2 83.4 0.6 97.3 0.3 82.5 0.5 88.1 5.9 0.11

SAM†[18] 85.6 2.1 80.9 1.2 97.0 0.4 79.6 1.6 85.8 6.9 0.22

GSAM†[50] 86.9 0.1 80.4 0.2 97.5 0.0 78.7 0.8 85.9 7.4 0.22

Lookbehind-SAM[53] 86.8 0.2 80.2 0.3 97.4 0.8 79.7 0.2 86.0 7.2 0.50

GAM‡[51] 85.9 0.9 81.3 1.6 98.2 0.4 79.0 2.1 86.1 7.4 0.43

SAGM[19] 87.4 0.2 80.2 0.3 98.0 0.2 80.8 0.6 86.6 7.2 0.22

DISAM[21] 87.1 0.4 81.9 0.5 96.2 0.3 83.1 0.7 87.1 5.6 0.33

FAD[56] 88.5 0.5 83.0 0.8 98.4 0.2 82.8 0.9 88.2 6.3 0.38

DGSAM (Ours) 88.9 0.2 84.8 0.7 96.9 0.2 83.5 0.3 88.5 5.2 0.17

DGSAM + SWAD 89.1 0.5 84.6 0.4 97.3 0.1 83.6 0.4 88.7 5.4 0.17

Table 4. The performance of DGSAM with 20 baseline algorithms on PACS.
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Algorithm C L S V Avg SD (s/iter)

RSC†[64] 97.9 0.1 62.5 0.7 72.3 1.2 75.6 0.8 77.1 13.0 0.13

MLDG†[42] 97.4 0.2 65.2 0.7 71.0 1.4 75.3 1.0 77.2 12.2 0.12

MTL†[65] 97.8 0.4 64.3 0.3 71.5 0.7 75.3 1.7 77.2 12.5 0.12

ERM† 98.0 0.3 64.7 1.2 71.4 1.2 75.2 1.6 77.3 12.5 0.11

CDANN†[63] 97.1 0.3 65.1 1.2 70.7 0.8 77.1 1.5 77.5 12.1 0.11

ARM†[43] 98.7 0.2 63.6 0.7 71.3 1.2 76.7 0.6 77.6 13.1 0.11

SagNet†[66] 97.9 0.4 64.5 0.5 71.4 1.3 77.5 0.5 77.8 12.5 0.32

VREx†[62] 98.4 0.3 64.4 1.4 74.1 0.4 76.2 1.3 78.3 12.4 0.11

DANN†[7] 99.0 0.3 65.1 1.4 73.1 0.3 77.2 0.6 78.6 12.6 0.11

IRM†[5] 98.6 0.1 64.9 0.9 73.4 0.6 77.3 0.9 78.6 12.4 0.12

CORAL†[67] 98.3 0.1 66.1 1.2 73.4 0.3 77.5 1.2 78.8 12.0 0.12

SWAD[13] 98.8 0.1 63.3 0.3 75.3 0.5 79.2 0.6 79.1 12.8 0.11

GAM‡[51] 98.8 0.6 65.1 1.2 72.9 1.0 77.2 1.9 78.5 12.5 0.43

Lookbehind-SAM[53] 98.7 0.6 65.1 1.1 73.1 0.4 78.7 0.9 78.9 12.4 0.50

FAD[56] 99.1 0.5 66.8 0.9 73.6 1.0 76.1 1.3 78.9 12.1 0.38

GSAM†[50] 98.7 0.3 64.9 0.2 74.3 0.0 78.5 0.8 79.1 12.3 0.22

SAM†[18] 99.1 0.2 65.0 1.0 73.7 1.0 79.8 0.1 79.4 12.5 0.22

DISAM[21] 99.3 0.0 66.3 0.5 81.0 0.1 73.2 0.1 79.9 12.3 0.33

SAGM[19] 99.0 0.2 65.2 0.4 75.1 0.3 80.7 0.8 80.0 12.3 0.22

DGSAM + SWAD 99.3 0.7 67.2 0.3 77.7 0.6 79.2 0.5 80.9 11.6 0.17

DGSAM (Ours) 99.0 0.5 67.0 0.5 77.9 0.5 81.8 0.4 81.4 11.5 0.17

Table 5. The performance of DGSAM with 20 baseline algorithms on VLCS
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Algorithm A C P R Avg SD (s/iter)

IRM†[5] 58.9 2.3 52.2 1.6 72.1 2.9 74.0 2.5 64.3 9.1 0.12

ARM†[43] 58.9 0.8 51.0 0.5 74.1 0.1 75.2 0.3 64.8 10.2 0.11

RSC†[64] 60.7 1.4 51.4 0.3 74.8 1.1 75.1 1.3 65.5 10.0 0.14

CDANN†[63] 61.5 1.4 50.4 2.4 74.4 0.9 76.6 0.8 65.7 10.6 0.11

DANN†[7] 59.9 1.3 53.0 0.3 73.6 0.7 76.9 0.5 65.9 9.8 0.11

MTL†[65] 61.5 0.7 52.4 0.6 74.9 0.4 76.8 0.4 66.4 10.0 0.12

VREx†[62] 60.7 0.9 53.0 0.9 75.3 0.1 76.6 0.5 66.4 9.9 0.11

ERM† 61.3 0.7 52.4 0.3 75.8 0.1 76.6 0.3 66.5 10.2 0.11

MLDG†[42] 61.5 0.9 53.2 0.6 75.0 1.2 77.5 0.4 66.8 9.9 0.13

ERM† 63.1 0.3 51.9 0.4 77.2 0.5 78.1 0.2 67.6 10.8 0.11

SagNet†[66] 63.4 0.2 54.8 0.4 75.8 0.4 78.3 0.3 68.1 9.5 0.32

CORAL†[67] 65.3 0.4 54.4 0.5 76.5 0.1 78.4 0.5 68.7 9.6 0.12

SWAD[13] 66.1 0.4 57.7 0.4 78.4 0.1 80.2 0.2 70.6 9.2 0.11

GAM‡[51] 63.0 1.2 49.8 0.5 77.6 0.6 82.4 1.0 68.2 12.8 0.43

FAD[56] 63.5 1.0 50.3 0.8 78.0 0.4 85.0 0.6 69.2 13.4 0.40

Lookbehind-SAM[53] 64.7 0.3 53.1 0.8 77.4 0.5 81.7 0.7 69.2 11.2 0.50

GSAM†[50] 64.9 0.1 55.2 0.2 77.8 0.0 79.2 0.0 69.3 9.9 0.22

SAM†[18] 64.5 0.3 56.5 0.2 77.4 0.1 79.8 0.4 69.6 9.5 0.22

SAGM[19] 65.4 0.4 57.0 0.3 78.0 0.3 80.0 0.2 70.1 9.4 0.22

DISAM[21] 65.8 0.2 55.6 0.2 79.2 0.2 80.6 0.1 70.3 10.3 0.33

DGSAM (Ours) 65.6 0.4 59.7 0.2 78.0 0.2 80.1 0.4 70.8 8.5 0.17

DGSAM + SWAD 66.2 0.6 59.9 0.1 78.1 0.4 81.2 0.5 71.4 8.7 0.17

Table 6. The performance of DGSAM with 20 baseline algorithms on Of�ceHome
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Algorithm L100 L38 L43 L46 Avg SD (s/iter)

ARM†[43] 49.3 0.7 38.3 2.4 55.8 0.8 38.7 1.3 45.5 7.4 0.11

MTL†[65] 49.3 1.2 39.6 6.3 55.6 1.1 37.8 0.8 45.6 7.3 0.12

CDANN†[63] 47.0 1.9 41.3 4.8 54.9 1.7 39.8 2.3 45.8 5.9 0.11

ERM† 49.8 4.4 42.1 1.4 56.9 1.8 35.7 3.9 46.1 8.0 0.11

VREx†[62] 48.2 4.3 41.7 1.3 56.8 0.8 38.7 3.1 46.4 6.9 0.11

RSC†[64] 50.2 2.2 39.2 1.4 56.3 1.4 40.8 0.6 46.6 7.0 0.13

DANN†[7] 51.1 3.5 40.6 0.6 57.4 0.5 37.7 1.8 46.7 7.9 0.11

IRM†[5] 54.6 1.3 39.8 1.9 56.2 1.8 39.6 0.8 47.6 7.9 0.12

CORAL†[67] 51.6 2.4 42.2 1.0 57.0 1.0 39.8 2.9 47.7 7.0 0.12

MLDG†[42] 54.2 3.0 44.3 1.1 55.6 0.3 36.9 2.2 47.8 7.6 0.13

ERM† 54.3 0.4 42.5 0.7 55.6 0.3 38.8 2.5 47.8 7.3 0.11

SagNet†[66] 53.0 2.9 43.0 2.5 57.9 0.6 40.4 1.3 48.6 7.1 0.32

SWAD[13] 55.4 0.0 44.9 1.1 59.7 0.4 39.9 0.2 50.0 7.9 0.11

SAM†[18] 46.3 1.0 38.4 2.4 54.0 1.0 34.5 0.8 43.3 7.5 0.22

Lookbehind-SAM[53] 44.6 0.8 41.1 1.4 57.4 1.2 34.9 0.6 44.5 8.2 0.50

GAM‡[51] 42.2 2.6 42.9 1.7 60.2 1.8 35.5 0.7 45.2 9.1 0.43

FAD[56] 44.3 2.2 43.5 1.7 60.9 2.0 34.1 0.5 45.7 9.6 0.38

DISAM[21] 46.2 2.9 41.6 0.1 58.0 0.5 40.5 2.2 46.6 6.9 0.33

GSAM†[50] 50.8 0.1 39.3 0.2 59.6 0.0 38.2 0.8 47.0 8.8 0.22

SAGM[19] 54.8 1.3 41.4 0.8 57.7 0.6 41.3 0.4 48.8 7.5 0.22

DGSAM (Ours) 53.8 0.6 45.0 0.7 59.1 0.4 41.8 1.0 49.9 6.9 0.17

DGSAM + SWAD 55.6 1.2 45.9 0.5 59.6 0.5 43.1 0.9 51.1 6.8 0.17

Table 7. The performance of DGSAM with 20 baseline algorithms on TerraIncognita
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Algorithm C I P Q R S Avg SD (s/iter)

VREx† [62] 47.3 3.5 16.0 1.5 35.8 4.6 10.9 0.3 49.6 4.9 42.0 3.0 33.6 15.0 0.18

IRM† [5] 48.5 2.8 15.0 1.5 38.3 4.3 10.9 0.5 48.2 5.2 42.3 3.1 33.9 15.2 0.19

ARM† [43] 49.7 0.3 16.3 0.5 40.9 1.1 9.4 0.1 53.4 0.4 43.5 0.4 35.5 16.7 0.18

CDANN†[63] 54.6 0.4 17.3 0.1 43.7 0.9 12.1 0.7 56.2 0.4 45.9 0.5 38.3 17.3 0.18

DANN† [7] 53.1 0.2 18.3 0.1 44.2 0.7 11.8 0.1 55.5 0.4 46.8 0.6 38.3 17.0 0.18

RSC† [64] 55.0 1.2 18.3 0.5 44.4 0.6 12.2 0.2 55.7 0.7 47.8 0.9 38.9 17.3 0.20

SagNet† [66] 57.7 0.3 19.0 0.2 45.3 0.3 12.7 0.5 58.1 0.5 48.8 0.2 40.3 17.9 0.53

MTL† [65] 57.9 0.5 18.5 0.4 46.0 0.1 12.5 0.1 59.5 0.3 49.2 0.1 40.6 18.4 0.20

ERM† 58.1 0.3 18.8 0.3 46.7 0.3 12.2 0.4 59.6 0.1 49.8 0.4 40.9 18.6 0.18

MLDG† [42] 59.1 0.2 19.1 0.3 45.8 0.7 13.4 0.3 59.6 0.2 50.2 0.4 41.2 18.4 0.34

CORAL†[67] 59.2 0.1 19.7 0.2 46.6 0.3 13.4 0.4 59.8 0.2 50.1 0.6 41.5 18.3 0.20

ERM† 62.8 0.4 20.2 0.3 50.3 0.3 13.7 0.5 63.7 0.2 52.1 0.5 43.8 19.7 0.18

SWAD† [13] 66.0 0.1 22.4 0.3 53.5 0.1 16.1 0.2 65.8 0.4 55.5 0.3 46.5 19.9 0.18

GAM‡ [51] 63.0 0.5 20.2 0.2 50.3 0.1 13.2 0.3 64.5 0.2 51.6 0.5 43.8 20.0 0.71

Lookbehind-SAM [53] 64.3 0.3 20.8 0.1 50.4 0.1 15.0 0.4 63.1 0.3 51.4 0.3 44.1 19.4 0.71

SAM† [18] 64.5 0.3 20.7 0.2 50.2 0.1 15.1 0.3 62.6 0.2 52.7 0.3 44.3 19.4 0.34

FAD [56] 64.1 0.3 21.9 0.2 50.6 0.3 14.2 0.4 63.6 0.1 52.2 0.2 44.4 19.5 0.56

GSAM† [50] 64.2 0.3 20.8 0.2 50.9 0.0 14.4 0.8 63.5 0.2 53.9 0.2 44.6 19.8 0.36

SAGM [19] 64.9 0.2 21.1 0.3 51.5 0.2 14.8 0.2 64.1 0.2 53.6 0.2 45.0 19.8 0.34

DISAM [21] 65.9 0.2 20.7 0.2 51.7 0.3 16.6 0.3 62.8 0.5 54.8 0.4 45.4 19.5 0.53

DGSAM (Ours) 63.6 0.4 22.2 0.1 51.9 0.3 15.8 0.2 64.7 0.3 54.7 0.4 45.5 19.4 0.26

DGSAM + SWAD 67.2 0.2 23.2 0.3 53.4 0.3 17.3 0.4 65.4 0.2 55.8 0.3 47.1 19.6 0.26

Table 8. The performance of DGSAM with 20 baseline algorithms on DomainNet
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