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In recent decades, the cultivation of maize (Zea mays L.) has witnessed

remarkable growth in Bangladesh, particularly in the northern regions. Maize,

as a high-yielding grain crop with diverse applications, plays a pivotal role in

the country's agricultural landscape. Traditional methods of yield prediction

involve time-consuming and subjective on-site �eld visits, resulting in

signi�cant errors and delayed information dissemination to government

authorities and decision-makers. This study explores the potential of remote

sensing technology to predict maize yields before harvest, thereby enhancing

agricultural decision-making processes. The research utilizes 16-day (~30 m)

Landsat 8 and 10-day (~10 m) Sentinel 2A imagery from two years, November

2018 to February 2019 and November 2019 to February 2020, to forecast maize

yields in the Kaharole upazila of the Dinajpur district, Bangladesh. Four cloud-

free images, representing the maximum normalized difference vegetation

index (NDVI) for each maize growing season, are selected from the Landsat 8

and Sentinel 2A data. Regression models are established to relate NDVI values

to the maize yields across 20 individual farmers' �elds. The results reveal that

the prediction models based on mean NDVI values for the combined growing

seasons outperform those based on single growing seasons, and the �ner

spatial resolution of Sentinel 2A contributes to its superior performance in

comparison to Landsat 8, offering valuable insights for improved agricultural

management and food security.
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Introduction

Timely and accurate prediction of crop yields is

necessary for effective agricultural land management,

decision-making, and sustainability of agricultural food

production (Masson et al., 2018). Remote sensing

technology plays a vital role in the agriculture sector by

providing timely and accurate information (Atzberger,

2013). Maize (Zea mays L.), also known as corn, is the

world’s fourth major staple food crop after rice, wheat,

and potato. Maize is initially grown for grain and

secondly for fodder and raw material for industrial

purposes. Maize is one of the important coarse cereal

crops grown in distinct agronomical conditions of

Bangladesh. Maize cultivation has mainly increased

rapidly in the northern part of Bangladesh. It has the

highest potential for per day carbohydrate productivity.
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During the last decades, maize cultivation in

Bangladesh has shown an increasing trend. During

2011-12, the total maize cultivation area and yield were

1,97,000 ha (0.2 million) and 12,98,109 (1.3 million)

metric tons, respectively, while in 2019-20, these �gures

rose to 4,71,900 ha (0.47 million) and 4,015,306 (4.02

million) metric tons, respectively (BBS, 2020). These

indicate that the future prospects of maize production

in Bangladesh are quite bright. However, maize growth

monitoring and its yield estimation have become major

issues of consideration.

The process of collecting crop data in the �eld using

traditional methods is characterized by inef�ciency,

high expenses, signi�cant time requirements, and the

potential for inaccuracies (Reynolds et al., 2000).

Furthermore, the utilization of conventional

approaches for yield calculations has become

increasingly disadvantageous for planners due to the

excessive time required. In recent years, numerous

empirical models have been devised to forecast crop

production prior to harvest. However, a signi�cant

portion of these models has shown to be impractical,

particularly those that rely on the collection of �eld

data. Satellite-based remote sensing is widely

recognized as a highly effective technology for

acquiring crucial data pertaining to crop distribution

and the prevailing growing conditions across extensive

regions. Consequently, it may be effectively employed

for the purpose of monitoring maize growth and

forecasting crop yields. The integration of data obtained

from the Landsat 8 and Sentinel 2 remote sensing

satellites offers a signi�cant temporal resolution (3-5

days) (Li et al., 2017), which is of utmost importance for

various applications that necessitate a dense time series

of satellite data. The study conducted by Segarra et al.

(2020) provides a conclusion that highlights the diverse

range of valuable applications of Sentinel-2 in the

agricultural sector. However, the researchers also

acknowledge that there is still potential for further

enhancements in this regard. Despite the increased

frequency of observations offered by the integration of

Landsat 8 and Sentinel 2, it is important to note that

disparities in the availability of cloud-free data will

persist. Numerous investigations have been conducted

to examine the association between the normalized

difference vegetation index (NDVI) and crop yield (Liu

et al., 2002). In recent research, the utilization of

Landsat and Sentinel 2 data has been employed to

effectively address the task of crop production

forecasting at a moderate geographic resolution. As an

illustration, Lambert et al. (2018) employed Sentinel 2

data and a peak LAI (Leaf area index) methodology to

forecast the agricultural outputs of cotton, maize,

millet, and sorghum in Mali. The coef�cient of

determination (R2) exhibited a range of 0.48 to 0.80

when applied to different crops within the training

dataset. In their study, Lai et al. (2018) utilized time-

integrated Landsat NDVI data to estimate wheat yield in

Australia. The researchers employed an asymmetric

bell-shaped growth model in order to accurately

describe the relationship between the Normalized

Difference Vegetation Index (NDVI) and time. Shakun et

al. (2019) applied the combination of Landsat 8 and

Sentinel 2 high frequency of observations (3–5 days) at

moderate spatial resolution (10–30 m), which is

important for crop yield studies, which were executed

for the model with near-infrared (NIR) and red spectral

bands and derived AUC, constant, quadratic, and linear

coef�cients of the quadratic model. The best model

yielded a root mean square error (RMSE) of 0.201 t/ha

(5.4%) and a coef�cient of determination R2 = 0.73 on

cross-validation. Rahman et al. (2020) used the Simple

Linear Machine Learning (ML) algorithm; the extracted

Landsat-derived average green normalized difference

vegetation index (GNDVI) values for each of the blocks

were converted to Sentinel GNDVI and found strong

correlations (R2 = 0.92 to 0.99) in the Bundaberg

growing region of Australia. Lima et al. (2019) observed

that both satellites showed the same performance in

terms of accuracy for Sentinel-2 and Landsat 8,

respectively. However, Landsat 8 mapped 36.9% more

area of selective logging compared to Sentinel-2 data for

mapping small-scale logging in the Brazilian Amazon.

In some research, to predict grain yield 2–3 months

before the harvest, more advanced regression models

for yield prediction apply time series of NDVI, which

allow one to obtain better forecasting (Panek et al.,

2021). In Bangladesh, Bala & Islam (2009) expanded

potato yield estimation models by using NDVI, LAI (leaf

area index), and fraction of photosynthetically active

radiation (fPAR) vegetation indices for the Munshiganj

District of Bangladesh by applying Moderate Resolution

Imaging Spectroradiometer (MODIS) (with the lowest

resolution greater than 250m) 8-day composite surface

re�ectance data and noticed that an average error of

estimation is about 15% for the study location. Islam et

al. (2011) used the Normalized Differentiate Vegetation

Index (NDVI) indicator developed from time series

MODIS satellite images; the phenological growth of

wheat was monitored during the Rabi season of 2007-

2008 for the greater Dinajpur area of Bangladesh. A

strong correlation between the wheat production and

the satellite-represented wheat area was found

(R2=0.71), which represents the effectiveness of the

remote sensing tools for crop monitoring and
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production estimation. Rahman et al. (2012) applied

NOAA-AVHRR data for the prediction of potato yield in

Bangladesh. However, a high-resolution (~ 30 m)

satellite image from Landsat has been cost-free

available since 1984. The availability of Landsat 8

images contributes an ample opportunity for long-term

frequent environmental monitoring (Mandanici et al.,

2016). Newton et al. (2018) improved a potato yield

prediction model by applying 16-day high-resolution (~

30 m) Landsat surface re�ectance data to identify the

maximum normalized difference vegetation index

(NDVI) value of a potato growing season in the

Munshiganj District of Bangladesh. The maximum

coef�cient of determination (R2) of the yield

forecasting equation was found to be 0.81 between the

mean NDVI and potato yield, and the result revealed

that the difference between predicted and actual �eld

yield is about 10.4%. However, very few studies have

been conducted on the relationship between high-

resolution (~ 30 m) Landsat 8 and Sentinel 2A (~ 10 m)

satellite data and maize yield in Bangladesh. Even

though this study made an attempt to construct a maize

yield prediction model based on NDVI at Kaharole

Upazila in the Dinajpur District of Bangladesh,

respectively, using high-resolution Landsat 8

Operational Land Imager (OLI) and Sentinel 2A Multi-

Spectral Instrument (MSI) surface re�ectance data. The

combined use of high-resolution Landsat 8 and

Sentinel 2A images has been applied in this study to

improve the yield assessment model for the maize crop

at Kaharole Upazila of the Dinajpur district in

Bangladesh.

Materials and Methods

Study Area

The research was carried out in Kaharole upazila,

located in the Dinajpur district of Bangladesh. This

region is particularly known for its high maize

cultivation, especially during the Rabi season.

According to the Bangladesh Bureau of Statistics (BBS,

2020), the northern region of Bangladesh accounted for

26.36% of the total maize-cultivated area, while the

remaining 14.15% was distributed throughout the rest

of the country. The Kaharole upazila is situated within

the geographical coordinates of 25° 44′ to 25° 53′ N

latitude and 88° 30′ to 89° 43′ E longitude, as depicted in

Figure 1. The Kaharole upazila encompasses an area of

205.54 square kilometers, with cultivable land

accounting for around 59% of this total area. The

climatic conditions in this region are characterized by

high temperatures and humidity throughout the period

from April to October, commonly referred to as

summer, and by cooler temperatures and lower

humidity from November to March, known as winter.

The Kaharole upazila experiences an average yearly

rainfall of 1965 mm and 2417 mm, respectively. It is

worth noting that approximately 90% of this rainfall is

concentrated between the months of May and October.

In the Kaharole upazila, the typical temperature range

throughout the winter season is from 23.6 to 16.8°C for

the maximum value and from 24 to 16.8°C for the

minimum value. During the summer season, the

average maximum and minimum temperatures exhibit

a range of 33.2 to 26.0 and 29.8 to 25.6°C, respectively.

The Kaharole upazila experiences a range of humidity

levels throughout the year, with an average monthly

minimum of 68% and an average monthly maximum of

86%. The highest humidity levels are typically recorded

during the summer season, while the lowest humidity

levels are observed during the dry season. The

agricultural pattern observed in this region is

characterized by the presence of two distinct growing

seasons, namely Rabi and Kharif. The primary growing

season in this upazila is known as Rabi, characterized

by the cultivation of maize and wheat. It typically

commences in late October or early November and

concludes in April. In contrast, the Kharif season is

characterized by the predominant cultivation of rice

and jute, commencing in May and concluding in

September. Potato, pepper, onion, legumes, sugarcane,

and oilseed are among the additional food crops planted

in both regions. The prevailing soil conditions in this

area consist of non-calcareous brown �oodplain soils

and grey �oodplain soils.

Figure 1. Map of the study location: Kaharole upazila

map, Dinajpur.

Yield data collection from farmers’ �elds

Twenty farmers’ maize �elds were selected for the

three maize growing seasons 2018-2019, 2019-2020, and
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2020-2021, respectively, with the agreement of the

farmers at Kaharole upazila of Dinajpur district (Figure

2). A total of 20 different farmers’ maize �eld data were

collected from Kaharole upazila for each season. Crop

information data such as �eld GPS locations, planting

and harvesting times, and yield were collected from

those selected upazila farmers’ �elds.

Figure 2. Location of selected 20 maize �elds (red

triangles) over Kaharole, Dinajpur.

Landsat-8/OLI and Sentinel-2A /MSI Datasets

Landsat 8 images (OLI) were obtained from the United

States Geological Survey (USGS) Earth Explorer website

(http://earthexplorer.usgs.gov/). Landsat 8 (OLI) is a

sun-synchronous satellite staying at an altitude of 705

km above the Earth with a 16-day repeat cycle. Landsat

8 has two types of sensors, especially the Operational

Land Imager (OLI) and Thermal Infrared Sensor (TIRS).

The OLI sensor is equipped with nine spectral bands,

including a pan band, and TIRS produces two spectral

bands. Sentinel-2A images (MSI) were obtained from

the European Space Agency (ESA) Copernicus portal

(https://scihub.copernicus.eu). Sentinel-2A carries a

multispectral instrument (MSI). Images furnished by

Sentinel-2A are publicly available for free and have 13

spectral bands with a spatial resolution ranging from 10

m to 60 m (depending on the band) and a current

temporal resolution of about 10 days (depending on the

latitude). We downloaded a total of 6 images which were

maximum cloud-free, viz., 3 images were collected from

Landsat 8 OLI and the rest of 3 images were collected

from Sentinel 2A MSI satellite data for Kaharole upazila

from Dinajpur district in the consecutive years 2018-19,

2019-20, and 2020-21, respectively. A total of 6 images

(three from Landsat 8 and three from Sentinel-2A) were

suitable and used in the subsequent analyses. The

single date of image acquisition based on maximum

greenness was used for each growing period, i.e., 2018-

2021, for maize cultivation. The maize sowing date was

considered to be the last week of November and the

�rst week of December for Kaharole upazila for each

growing season 2018-19, 2019-20, and 2020-21,

respectively, for the entire study site based on the

information taken from the location visits. Every single

image was calculated from the starting day of the

plantation. The dates of image acquisition of Landsat

8/OLI and Sentinel 2A/MSI for the maize growing

seasons 2018-19, 2019-20, and 2020-21, respectively, for

Kaharole, Dinajpur, used for this study are presented in

Table 1.

qeios.com doi.org/10.32388/COEBSC.2 4

http://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://www.qeios.com/
https://doi.org/10.32388/COEBSC.2


Satellite Images Landsat 8 Sentinel 2A

Growing Season 2018-19 2019-20 2020-21 2018-19 2019-20 2020-21

IAD 10/03/2019 12/03/2020 15/03/2021 16/03/2019 20/03/2020 05/03/2021

DAP 95 97 103 101 105 93

Table 1. Model development using Landsat 8 and Sentinel 2A satellite images at Kaharole upazila, Dinajpur

IAD=Image acquisition date; DAP= Days after plantation

Satellite Image Pre-Processing

For Landsat data, raw digital numbers (DN) were

adjusted to top-of-atmosphere (TOA) re�ectance values

following reference (Simonetti et al., 2015). Two

techniques were used to preprocess the satellite images:

(1) radiometric calibration and (2) atmospheric

correction. Remote sensing data adopted from satellite

sensors are in�uenced by several factors, such as

atmospheric scattering and absorption, sensor-target-

illumination geometry, sensor calibration, and also by

the data processing procedures (Teillet, 1986). For that,

radiometric calibration is needed. Radiometric

calibration means a set of correction techniques that

are associated with correction for the sensitivity of the

satellite sensor, topography and sun angle, atmospheric

scattering, and absorption (Kim et al., 1990). The

radiometric calibration was done by transforming the

digital numbers (DNs) to surface re�ectance by radiance

conversion. The open source-based Quantum

Geographic Information System (QGIS) software,

version 2.18.13, allows a plugin, and the plugin provides

a tool for atmospheric correction, which is known as

dark object subtraction (DOS-1) level 1. In this study,

this tool was used on the radiometrically calibrated

images to minimize the atmospheric scattering effect.

DOS-1 searches each pixel of a band to �nd the darkest

value. The scattering is eliminated by subtracting this

value from every pixel in the band.

Two approaches were followed to download and

process Sentinel-2A imagery. The �rst was a simpli�ed

process for farmers and advisors to monitor the crop

status during the season. For this purpose, we used the

free and open source QGIS 2.18.13 version software

together with the Semi-automatic Classi�cation Plugin

(SCP) (Congedo, 2016). The advantage of using the SCP

is that the user can preview and download per date and

per tile single bands and correct the Sentinel-2 images

in the same interface. Afterward, the vegetation indices

can be computed, stored, and compared with other

dates within the same QGIS environment. The only

limitation is that in the conversion of top-of-

atmosphere (TOA) re�ectance values into bottom-of-

atmosphere (BOA), the image-based Dark Object

Subtraction (DOS-1) technique is applied. This process

is less accurate than the physically-based correction

that could be applied to Sentinel-2 images using the

attached metadata (Congedo, 2016). The second was a

more accurate, though complex, criterion. It should be

recommended to extract vigour indices to be correlated

with yield data and to be compared with subsequent

seasons. The images were pre-processed with the

open-source ESA Sentinel Application Platform (SNAP),

which covers the Sentinel-2 Toolbox. In addition, the

third-party plugin Sen2Cor was applied

(http://step.esa.int/main/third-party-plugins-

2/sen2cor). Sen2Cor is a processor for Sentinel-2 Level-

2A product generation and formatting; it operates the

physical atmospheric, terrain, and cirrus correction of

TOA Level-1C Sentinel-2 products and creates, among

other products, BOA re�ectance corrected bands. Its

output product format is equivalent to the Level 1C User

Product: JPEG 2000 images with bands with three

different resolutions, 60, 20, and 10 m.

Normalized Difference Vegetation Index (NDVI)

Prediction and estimation of yield are closely associated

with the capability of identifying crop species and

certain agronomic parameters, such as maturity,

density, vigour, and disease, which can be used as yield

indicators. Remote sensing can arrange these types of

information to a great extent. There are distinct types

of vegetation indices (VIs) generated from different

spectral re�ectance that are specially used to get these

types of information. The NDVI is generally applied

extensively around the world to monitor vegetation

quality, growth, and distribution over a large area.
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Differences in the phenological growth stages of

different plants are re�ected in the temporal NDVI

pro�les, since NDVI can measure growth conditions

(greenness of vegetation) (Belgiu & Csillik, 2018;

Croitoru et al., 2012). It is a dimensionless index, which

is derived from the ratio between the surface

re�ectance of the NIR and RED bands of the spectrum

as follows (Equation 1) (Rouse et al., 1974).

  Where RED (Visible red) and NIR (Near infrared) are

re�ectance measurements for RED and NIR bands,

respectively. Here, for Landsat 8/OLI, band 4 and band 5

represent RED and NIR bands, and for Sentinel 2A/MSI,

band 4 and band 8 represent Red and NIR bands

(Tucker, 1979). Factors like strong re�ectance in NIR

and strong absorption in Visible Red of speci�c

vegetation distinguish the vegetation from bare soil.

NDVI for a given pixel can always output a number that

ranges from -1 to +1; however, for natural surfaces,

NDVI values are within the 0 to +1 range. Negative

values of NDVI, i.e., values approaching -1, correspond

to water. An NDVI close to 0 corresponds to no

vegetation, while values lying between -0.1 to 0.1

generally correspond to barren areas of rock, sand, or

snow.

Maize yield estimation by satellite-based remote

sensing technique

The red band and NIR of the calibrated images were

selected from each dataset and exported into QGIS

2.18.13. A simple raster calculation was done by QGIS

2.18.13 using Equation 1 to �nd the NDVI images.

Finally, the NDVI images were masked using the

shape�le from different locations like Kaharole upazila

of Dinajpur district. The �eld points of the location

were imported, and the mean NDVI values for each

point were extracted from the satellite image

considering a 3 × 3 matrix surrounded by each point on

the image.

The relationship between NDVI and the maize growing

period was established by plotting the respective values

in terms of single days from the start date of maize

plantation to the harvesting period. The day of the

maximum NDVI was selected from their relationship

with crop yield. To establish this relationship, NDVI

data from the growing seasons 2018-2020 were used.

Then, a total of four satellite images, viz., each image

collected from Landsat 8 as well as Sentinel 2A from

Kaharole upazila, Dinajpur, depending on the date of

the maximum NDVI, were selected from two growing

seasons, namely 2018-2019 and 2019-2020, to build a

relationship between the NDVI values and �eld-level

maize yield. This relationship, based on each farmer’s

�eld point NDVI values, was validated using the satellite

image of the 2020-2021 growing season. NDVI values

less than 0.25 and more than 0.95 were removed from

the listed �elds to reduce the in�uence of the

re�ectance of other objects like bare soil, settlements,

water bodies, non-agricultural crops, and

infrastructure.

Yield prediction model

The �nal step is to determine the relationship between

NDVI and maize yield from farmers’ �elds and BBS-

selected �elds with the equation below:

  Where y and x are maize yield data collected from

farmers’ �elds and NDVI, respectively. The relationship

between NDVI and crops like maize yield has been

observed through the linear regression model, where

the response variable is denoted by maize yields and

the explanatory variables by NDVIs. Several studies

applied a linear regression model to describe the

relationship between NDVI and crop (wheat) yield in

distinct locations (Ren et al., 2008). To develop the

maize yield estimation model for both �elds, the data of

maize yield and Landsat 8 (OLI) and Sentinel 2A (MSI)

images were used for 2018-2021.

Results and Discussion

Maize yield from farmers’ �elds and

corresponding NDVI values for different

locations

Maize yield data and NDVI values from different

satellite images like Landsat 8 and Sentinel 2A for

corresponding farmers’ �elds have been collected from

Kaharole upazila during the maize growing seasons

2018-19 and 2019-20, respectively. Twenty farmers' �eld

yield data collected from Kaharole upazila and their

corresponding NDVI values for two satellite images

have been presented in Tables 2 and 3 for consecutive

maize growing seasons 2018-19 and 2019-20,

respectively.

NDVI = NIR−RED

NIR+RED
(1)

y = f(x) (2)
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Farmer’s Field Longitude Latitude
NDVI values

Yields (t/h)
Landsat 8 OLI Sentinel 2A MSI

1 88.665283 25.757000 0.55 0.77 11.35

2 88.664166 25.746660 0.70 0.82 12.72

3 88.663333 25.746100 0.67 0.80 11.42

4 88.665833 25.746383 0.69 0.84 12.35

5 88.664783 25.744716 0.71 0.85 12.12

6 88.670109 25.750864 0.63 0.78 10.95

7 88.601321 25.772369 0.66 0.82 11.25

8 88.600303 25.771734 0.57 0.78 10.85

9 88.599752 25.763595 0.58 0.77 10.65

10 88.607792 25.755088 0.68 0.76 10.94

11 88.612763 25.754269 0.58 0.80 11.27

12 88.599452 25.757273 0.60 0.83 12.27

13 88.600953 25.777712 0.59 0.72 9.45

14 88.582059 25.780769 0.63 0.75 10.68

15 88.587503 25.783616 0.55 0.75 10.52

16 88.582345 25.779255 0.65 0.81 11.69

17 88.584909 25.779358 0.61 0.72 10.8

18 88.565401 25.770503 0.28 0.33 6.80

19 88.620312 25.794201 0.35 0.60 8.61

20 88.646041 25.792031 0.56 0.69 9.25

Table 2. NDVI values of satellite images and yields of corresponding farmers’ �elds at Kaharole, Dinajpur during the

season of 2018-19

Table 2 shows that NDVI values are 0.71 and 0.85, which

were the highest for Landsat 8 and Sentinel 2A, and the

yield was 12.12 t/ha for farmer’s �eld 5, but the yield is a

maximum of 12.72 t/ha for �eld 2; and NDVI values are

0.28 and 0.33, which were the lowest, and the yield was

6.8 t/ha for farmer’s �eld 18 at Kaharole upazila during

2018-19.
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Farmer’s Field Longitude Latitude
NDVI values

Yields (t/h)
Landsat 8 OLI Sentinel 2A MSI

1 88.665283 25.757000 0.69 0.84 11.50

2 88.664166 25.746660 0.79 0.90 12.74

3 88.663333 25.746100 0.74 0.83 11.45

4 88.665833 25.746383 0.80 0.86 12.48

5 88.664783 25.744716 0.79 0.86 12.50

6 88.670109 25.750864 0.68 0.81 11.20

7 88.601321 25.772369 0.69 0.84 11.50

8 88.600303 25.771734 0.38 0.76 10.65

9 88.599752 25.763595 0.71 0.78 10.87

10 88.607792 25.755088 0.79 0.89 11.62

11 88.612763 25.754269 0.63 0.81 11.42

12 88.599452 25.757273 0.74 0.86 12.63

13 88.600953 25.777712 0.61 0.83 11.45

14 88.582059 25.780769 0.70 0.84 11.30

15 88.587503 25.783616 0.52 0.77 10.24

16 88.582345 25.779255 0.71 0.82 11.45

17 88.584909 25.779358 0.72 0.82 10.15

18 88.565401 25.770503 0.30 0.48 7.60

19 88.620312 25.794201 0.32 0.65 8.71

20 88.646041 25.792031 0.68 0.76 10.62

Table 3. NDVI values of satellite images and yields of corresponding Farmer’s �elds at Kaharole, Dinajpur during the

season of 2019-20

Maximum NDVI for Kaharole were 0.80 and 0.90 for

farmer’s �elds 4 and 2, and minimum NDVI were 0.30

and 0.48 for Landsat 8 and Sentinel 2A for farmer’s �eld

18, but the highest and lowest yields were 12.74 t/ha and

7.6 t/ha for farmer’s �elds 2 and 18, respectively, during

2019-20 in Table 3.

Regression analysis of the NDVI values over the

�eld locations

A total of four satellite images (2 images each for

Landsat 8 and Sentinel 2A) from two growing seasons

during 2018-2019 and 2019-2020 were selected. Based

on available images, those showing the maximum NDVI

in each growing season were found on the 95th and

97th days after plantation for Kaharole upazila from

Landsat 8 images, as well as on the 101st and 105th days

after plantation for Kaharole upazila from Sentinel 2A

images for the 2018-2019 and 2019-2020 growing

seasons, respectively. The spatial distribution of the

NDVI varies from year to year. Spatial distribution of

the NDVI over the selected location for selected distinct

satellite images against different growing seasons is

presented in Figure 3.

For Landsat 8 data, NDVI distribution was maximum

during 2019-2020 and minimum during the season

2019-20 at Kaharole upazila in Figure 3. On the other
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hand, for Sentinel 2A data, NDVI distribution was

maximum during the season 2019-2020 and minimum

during the season 2019-20 at Kaharole upazila in Figure

3. From Figure 3, we can see that the NDVI distribution

from different locations of Sentinel 2A data is better

than Landsat 8 data during the maize growing seasons

2018-2019 and 2019-2020, respectively.

Figure 3. Spatial distribution of the NDVI for different

satellite images during the growing seasons 2018-19

and 2019-20. a. 95th day after plantation during 2018-

19; b. 97th day after plantation during 2019-20 for

Landsat 8; c. 101st day after plantation during 2018-19;

d. 105th day after plantation during 2019-20 for

Sentinel 2A at Kaharole upazila.

For two satellites, viz., Landsat 8 and Sentinel 2A, the

NDVI values and their corresponding yields for twenty

farmers’ maize �elds from different locations, i.e.,

Kaharole upazila during the individual maize growing

seasons 2018-2019 and 2019-2020, respectively, are

shown in Table 2 and Table 3. From Tables 2 and 3, we

have calculated the mean NDVI and mean yield for two

satellite data, like Landsat 8 and Sentinel 2A, for

Kaharole upazila during the combined seasons 2018-

2019 and 2019-2020, respectively, which are represented

below in Table 4. Mean NDVI and mean yield are

calculated for two satellite images for the combined two

seasons because maize yield in each season, i.e., 2018-19

and 2019-20, is mostly the same for Kaharole upazila.

The mean NDVI and mean yield of the combined maize

season performed better than the NDVI and its

corresponding yield of individual maize seasons for

each satellite image at Kaharole upazila because,

according to best model criteria, viz. Multiple

determination of coef�cient (R2), Mean Absolute

Percentage Error (MAPE), and Root Mean Square Error

(RMSE), it �tted best for the mean NDVI and mean yield

of the combined maize season rather than a single

maize growing season like 2018-19 and 2019-20 (Figure

3). The mean NDVI is the largest, which is 0.75 for

farmers’ �elds 2, 4, and 5, as well as the smallest, which

is 0.29 for farmers’ �eld 18 for Landsat 8, and for

Sentinel 2A, the largest and lowest are 0.86 and 0.41 for

farmers’ �elds 2, 5, and 18 for Kaharole upazila for the

combined year, respectively. The highest and lowest

mean yields of the two satellite data are 12.73 (t/ha) and

7.2 (t/ha) for Kaharole upazila for the combined year,

respectively, in Table 4.
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Farmer’s Field
Mean NDVI

Mean Yield (t/ha)
Landsat 8 OLI Sentinel 2A MSI

1 0.62 0.81 11.43

2 0.75 0.86 12.73

3 0.71 0.82 11.44

4 0.75 0.85 12.42

5 0.75 0.86 12.31

6 0.66 0.80 11.08

7 0.68 0.83 11.38

8 0.48 0.77 10.75

9 0.65 0.78 10.76

10 0.74 0.83 11.28

11 0.61 0.81 11.35

12 0.67 0.85 12.45

13 0.6 0.78 10.45

14 0.67 0.80 10.99

15 0.54 0.76 10.38

16 0.68 0.82 11.57

17 0.67 0.77 10.48

18 0.29 0.41 7.20

19 0.34 0.63 8.66

20 0.62 0.73 9.94

Table 4. Mean NDVI values for two satellite images and corresponding mean yields of Farmer’s Maize Fields at Kaharole,

Dinajpur during the combined seasons of 2018-19 and 2019-2020
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Maize yield and NDVI relationship using

regression model

Regression analysis of maize yield against the single

season basis NDVI and combined season basis mean

NDVI for Kaharole was performed for two satellite

images, such as Landsat 8 and Sentinel 2A, and is

graphically presented in Figure 4.

Figure 4. Yield prediction model established from

regression analysis between yield data collected from

20 farmers’ maize �elds for different images; [a. yield

vs NDVI, 2018-19 b. yield vs NDVI, 2019-20 c. yield vs

NDVI (mean), combined 2018-19 and 2019-20 for

Landsat 8.]; [d. yield vs NDVI, 2018-19 e. yield vs NDVI,

2019-20 f. yield vs NDVI (mean), combined 2018-19 and

2019-20 for Sentinel 2A] at Kaharole upazila.

The yield vs. NDVI relationship for Landsat 8 and

Sentinel 2A satellite images, as shown in Figure 4,

revealed that the multiple determination coef�cients,

which are highest, and other accuracy assessments like

the minimum values of Mean Absolute Percentage Error

(MAPE) and Root Mean Square Error (RMSE) of mean

NDVI for the combined maize growing season, i.e.,

2018-2019 and 2019-2020, are better �tted than the

single maize growing season, i.e., 2018-2019 and 2019-

2020, respectively, for Kaharole upazila, Dinajpur. The

parameters of the regression analysis estimated from

the yield vs. NDVI relationship for the combined season,

together with the values of R2, MAPE, and RMSE, are

presented in Table 5. The relationship between mean

NDVI for the combined two maize growing seasons and

yield is provided almost as well compared to the single

season basis NDVI vs. yield relationship for the two

satellite images.
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Location Satellite Data
Regression parameter for mean value Best Model Criteria

β0 β1 SE(β1) P-Value MAPE RMSE R2

Kaharole
Landsat 8 5.291 9.073 1.126 0.0000 0.046 0.589 0.782

Sentinel 2A 1.528 12.10 0.961 0.0000 0.031 0.403 0.898

Table 5. Regression parameters and R2 for combined season at farmers’ maize �elds

Here, the regression coef�cients of all the �tted models

of the two satellite images show a highly signi�cant

effect for Kaharole upazila in Table 5. From Table 5, we

have also seen that the multiple determination

coef�cient (R2), along with other parameters, is better

for the Sentinel 2A satellite image than for the Landsat

8 satellite image for Kaharole upazila, Dinajpur.

Development and validation of the yield

prediction model

The yield prediction model based on the regression

analysis was developed based on the yield data collected

from the 2018–2019 and 2019–2020 maize growing

seasons. To evaluate the performance of the model,

validation is essential. Based on the deviation from the

estimated and model prediction, model performance

can be determined. Hence, the model has been further

validated using yield data from the 2020-2021 maize

growing season. After the 103rd and 93rd days after

plantation, an NDVI image was selected for the two

satellite images, viz., Landsat 8 and Sentinel 2A, from

the 2020 to 2021 growing season at Kaharole upazila,

Dinajpur, as shown in Figure 5.

Figure 5. Spatial distribution of the NDVI over the

different locations for Landsat 8 and Sentinel 2A

satellite images during the growing season of 2020-

2021. (a+b): 103rd and 93rd days after plantation for

Kaharole upazila, Dinajpur, for different satellite

images.

The NDVI value was extracted from each of the 20

farmers’ �elds, each for two satellite images from

Kaharole upazila of Dinajpur during the maize growing

season 2020-2021, which is presented in Table 6. As the

coef�cient of determination (R2) was found to be high

from the relationship between the mean value of NDVI

and yield of the combined season, the validation was

done using the general mean value equation (NDVI and

yield relationship of the combined season) for two

satellite images at the maize location, such as Kaharole

upazila, Dinajpur. The general mean value equation,

which was elaborately de�ned in Table 5, has been used

separately to develop two regression models for

validation along with two satellite images for Kaharole

upazila. The general regression equation from the mean

NDVI (combined maize growing season) is presented in

equation 3.
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The actual yield (t/ha) of maize and the predicted yield

(t/ha) using equation 3 for two different satellite images

for Kaharole upazila during the 2020-2021 maize

growing season were also presented in Table 6.

Yield = + ×β0 β1 NDVImean(Combined maize growing season) (3)
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Farmer’s Field Actual Yield(t/ha)
NDVI Values Predicted Yield (t/ha) Error of Yield (%)

Landsat 8 Sentinel 2A Landsat 8 Sentinel 2A Landsat 8 Sentinel 2A

1 11.25 0.53 0.73 10.1 10.36 10.22 7.91

2 11.65 0.57 0.74 10.46 10.48 10.21 10.04

3 11.95 0.61 0.77 10.82 10.85 9.46 9.20

4 12.55 0.67 0.78 11.37 10.97 9.40 12.59

5 11.53 0.53 0.71 10.09 10.12 12.49 12.23

6 10.67 0.44 0.66 9.28 9.51 13.02 10.87

7 12.37 0.61 0.77 10.83 10.85 12.44 12.28

8 12.2 0.6 0.77 10.73 10.85 12.04 11.06

9 12.15 0.61 0.77 10.83 10.85 10.86 10.69

10 10.89 0.52 0.75 10.01 10.6 8.08 2.66

11 12.35 0.58 0.76 10.55 10.72 14.57 13.19

12 10.35 0.48 0.69 9.64 9.88 6.85 4.54

13 10.87 0.5 0.71 9.83 10.12 9.56 6.89

14 11.42 0.58 0.76 10.55 10.72 7.61 6.12

15 11.1 0.44 0.67 9.28 9.64 16.39 13.15

16 11.25 0.54 0.72 10.19 10.24 9.42 8.97

17 10.34 0.41 0.65 9.01 9.39 12.86 9.18

18 9.1 0.39 0.62 8.82 9.03 3.07 0.77

19 9.5 0.43 0.64 9.19 9.27 3.26 2.42

20 11.04 0.54 0.72 10.19 10.24 7.69 7.25

Table 6. Estimated yield and predicted yield from selected Farmer’s Maize Fields at Kaharole, Dinajpur during the season

of 2020-2021

The highest and lowest observed yields of maize were

12.55 (t/ha) and 9.1 (t/ha), respectively, as well as the

maximum and minimum NDVI values, which were 0.67

and 0.39 for Landsat 8; 0.78 and 0.62 for Sentinel 2A for

farmers’ �elds 4 and 18, respectively, at Kaharole

upazila, Dinajpur, during the maize growing season

2020-2021 (Table 6). The largest and smallest predicted

yields of maize for Landsat 8 were 11.37 (t/ha) and 8.82

(t/ha), as well as for Sentinel 2A, these were 10.97 (t/ha)

and 9.03 (t/ha) for farmers’ �elds 4 and 18, respectively,

at Kaharole upazila, Dinajpur, during the maize growing

season 2020-2021 (Table 6). The maximum and

minimum yield gaps (%) for Landsat 8 were 16.39 and

3.07 for farmers’ �elds 15 and 18, respectively, and also

for Sentinel 2A were 13.19 and 0.77 for farmers’ �elds 11

and 18, respectively, at Kaharole upazila, Dinajpur,

during the maize growing season 2020-2021 (Table 6).

From Table 6, we showed that the predicted yields of

maize for the two satellite data were less than the actual

yields of maize (underestimated) in each farmer’s �eld

for Kaharole upazila, Dinajpur district. Depending on

the values in Table 6, validation of maize yield for two

satellite images, viz., Landsat 8 and Sentinel 2A, at

Kaharole upazila was presented in Table 7 during the

maize season 2020-2021.
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Location Actual Yield (Mean)
Predicted Yield (Mean) Mean Error of Yield (%)

Landsat 8 Sentinel 2A Landsat 8 Sentinel 2A

Kaharole, Dinajpur 11.23 10.09 10.23 10.15 8.82

Table 7. Validation of maize yield at Kaharole Upazila during the season 2020-2021

The estimated farmers’ �eld yield (mean) was 11.23

(t/ha), and the predicted yields (mean) for Landsat 8 and

Sentinel 2A were 10.09 (t/ha) and 10.23 (t/ha),

respectively, at Kaharole upazila, Dinajpur, during the

maize growing season 2020-2021. The percentage of

mean yield error was 10.15 for Landsat 8 and 8.82 for

Sentinel 2A. The error of mean yield (%) of Sentinel 2A

performed better than that of Landsat 8 at Kaharole

upazila, Dinajpur, during the maize growing season

2020-2021 (Table 7).

Conclusions

The study has investigated the prediction capacity of

remote sensing NDVI data for maize yield in the

selected location, viz., Kaharole upazila, Dinajpur, of

Bangladesh, which is known as a maize-dominating

district. The study has also investigated the relationship

between NDVI and yield for the study region. Here, two

satellite images, Landsat 8 (OLI) and Sentinel 2A (MSI),

which are high spatial resolution data, were used in this

study. We downloaded a total of 6 images, which were

the maximum cloud-free data collected from Landsat 8

OLI and Sentinel 2A MSI satellite data for Kaharole

upazila from Dinajpur district in the consecutive years

2018-19, 2019-20, and 2020-21, respectively. The single

date of cloud-free image acquisition based on

maximum NDVI was used for each cropping period, i.e.,

2018-2019 and 2019-2020, respectively, for maize

cultivation to develop the yield prediction model. These

equations were validated by using data from the 2020-

2021 maize growing seasons.

Mean NDVI and mean yield of the combined maize

season performed better than NDVI and its

corresponding yield of a single maize season for each

satellite image and for Kaharole upazila. The yield

prediction equations were found based on mean values

of NDVI for the combined growing season against the

yield of maize. The yield against NDVI relationship for

both satellite images showed that the multiple

determination coef�cient (R2) along with Mean

Absolute Percentage Error (MAPE) and Root Mean

Square Error (RMSE) of mean NDVI for the combined

maize growing season almost performed better than

the single maize growing season for the location

Kaharole, Dinajpur. We have also shown that the

regression model is �tted very well based on a higher

value of R2 for Sentinel satellite 2A data than for

Landsat 8 satellite data at Kaharole upazila, Dinajpur

district. The estimated farmers’ maize �eld yield

(mean) was 11.23 (t/ha), and the predicted yield (mean)

for Landsat 8 and Sentinel 2A were 10.09 (t/ha) and

10.23 (t/ha), respectively. The absolute mean error of

prediction was found to be about 10.15% for Landsat 8

and 8.82% for Sentinel 2A compared to the actual yield

at Kaharole upazila, Dinajpur district during the maize

growing season 2020-2021. We observed that the

predicted yield (mean) of Sentinel 2A is 1.33% closer to

the actual yield than Landsat 8 at Kaharole upazila in

Dinajpur district. We revealed that in this research, the

yield prediction model for Sentinel 2A images

performed better than Landsat 8 because of the high

spatial resolution (~10m). It was found that NDVI data

extracted from Sentinel 2A high-resolution satellite

images can be successfully used to predict the maize

yield over Kaharole upazila with appreciable accuracy.

So, the high-resolution Sentinel 2A images can be an

effective means for early prediction of maize yield.
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