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Abstract 

In recent decades, the cultivation of maize (Zea mays L.) has witnessed remarkable growth in Bangladesh, particularly 

in the northern regions. Maize, as a high-yielding grain crop with diverse applications, plays a pivotal role in the 

country's agricultural landscape. Traditional methods of yield prediction involve time-consuming and subjective on-

site field visits, resulting in significant errors and delayed information dissemination to government authorities and 

decision-makers. This study explores the potential of remote sensing technology to predict maize yields before harvest, 

thereby enhancing agricultural decision-making processes. The research utilizes 16-day (~30 m) Landsat 8 and 10-

day (~10 m) Sentinel 2A imagery of two years November 2018 to February 2019 and November 2019 to February 

2020 to forecast maize yields in the Kaharole upazila of the Dinajpur district, Bangladesh. Four cloud-free images, 

representing the maximum normalized difference vegetation index (NDVI) for each maize growing season, are 

selected from the Landsat 8 and Sentinel 2A data. Regression models are established to relate NDVI values to the 

maize yields across 20 individual farmers' fields. The results reveal that the prediction models based on mean NDVI 

values for the combined growing seasons outperform those based on single growing seasons and the finer spatial 

resolution of Sentinel 2A contributes to its superior performance in comparison to Landsat 8, offering valuable insights 

for improved agricultural management and food security. 
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Introduction 

Timely and accurate prediction of crop yields is necessary for effective agricultural land management, decision making 

and sustainability of agricultural food production (Masson et al., 2018). Remote sensing technology plays a vital role 

in the agriculture sector by providing timely and accurate information (Atzberger, 2013). Maize (Zea mays L.) is also 

known as corn, is the world’s fourth major staple food crop after Rice, Wheat and Potato. Maize is initially grown for 

grain and secondly for fodder and raw material for industrial purpose. Maize is one of the important coarse cereal 

crops grown in distinct agronomical conditions of Bangladesh. Maize cultivation mainly increased rapidly in northern 
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part of Bangladesh. It has the highest potential of per day carbohydrate productivity. During the last decades, maize 

cultivation in Bangladesh showed an increasing trend. During the 2011-12, total maize cultivation area and yield were 

1, 97,000 ha (0.2 million) and 12, 98,109 (1.3 million) metric tons, respectively, while in 2019-20, these figures rose 

to 4,71,900 ha (0.47 million) and 4,015,306 (4.02 million) metric tons, respectively (BBS, 2020). These indicate that 

the future prospect of maize production in Bangladesh is quite bright. However, maize growth monitoring and its yield 

estimation has become a major issue of consideration. 

The process of collecting crop data in the field using traditional methods is characterized by inefficiency, high 

expenses, significant time requirements, and the potential for inaccuracies (Reynolds et al., 2000). Furthermore, the 

utilization of conventional approaches for yield calculations has become increasingly disadvantageous for planners 

due to the excessive time required. In recent years, numerous empirical models have been devised to forecast crop 

production prior to harvest. However, a significant portion of these models have shown to be impractical, particularly 

those that rely on the collection of field data. Satellite-based remote sensing is widely recognized as a highly effective 

technology for acquiring crucial data pertaining to crop distribution and the prevailing growing conditions across 

extensive regions. Consequently, it may be effectively employed for the purpose of monitoring maize growth and 

forecasting crop yields. The integration of data obtained from the Landsat 8 and Sentinel 2 remote sensing satellites 

offers a significant temporal resolution (3-5 days) (Li et al., 2017), which is of utmost importance for various 

applications that necessitate a dense time series of satellite data. The study conducted by Segarra et al. (2020) provides 

a conclusion that highlights the diverse range of valuable applications of Sentinel-2 in the agricultural sector. However, 

the researchers also acknowledge that there is still potential for further enhancements in this regard. Despite the 

increased frequency of observations offered by the integration of Landsat 8 and Sentinel 2, it is important to note that 

disparities in the availability of cloud-free data will persist. Numerous investigations have been conducted to examine 

the association between the normalized difference vegetation index (NDVI) and crop yield (Liu et al., 2002). In recent 

research, the utilization of Landsat and Sentinel 2 data has been employed to effectively address the task of crop 

production forecasting at a moderate geographic resolution. As an illustration, Lambert et al. (2018) employed Sentinel 

2 data and a peak LAI (Leaf area index) methodology to forecast the agricultural outputs of cotton, maize, millet, and 

sorghum in Mali. The coefficient of determination (R2) exhibited a range of 0.48 to 0.80 when applied to different 

crops within the training dataset. In their study, Lai et al. (2018) utilized time-integrated Landsat NDVI data to estimate 

wheat yield in Australia. The researchers employed an asymmetric bell-shaped growth model in order to accurately 

describe the relationship between Normalized Difference Vegetation Index (NDVI) and time. Shakun et al. (2019) 

applied the combination of Landsat 8 and Sentinel 2 high frequency of observations (3–5 days) at moderate spatial 

resolution (10–30 m), which is important for crop yield studies which were executed for the model with near infrared 

(NIR) and red spectral bands and derived AUC, constant, quadratic and linear coefficients of the quadratic model. The 

best model yielded a root mean square error (RMSE) of 0.201 t/ha (5.4%) and coefficient of determination R2 = 0.73 

on cross-validation. Rahman et al. (2020) used the Simple Linear Machine Learning (ML) algorithm, the extracted 

Landsat derived the average green normalized difference vegetation index (GNDVI) values for each of the blocks 

were converted to Sentinel GNDVI and found strong correlations (R2 = 0.92 to 0.99) in Bundaberg growing region of 

Australia. Lima et al. (2019) observed that the both satellites showed the same performance in terms of accuracy for 
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Sentinel-2 and Landsat 8, respectively. However, Landsat 8 mapped 36.9% more area of selective logging compared 

to Sentinel-2 data for mapping small-scale logging in the Brazilian Amazon. In some research, to predict grain yield 

2–3 months before the harvest. More advanced regression models for yield predict apply time series of NDVI which 

allow one to obtain better forecasting (Panek et al., 2021). In Bangladesh, Bala & Islam (2009) expanded potato yield 

estimations models by using NDVI, LAI (leaf area index), and fraction of photosynthetically active radiation (fPAR) 

vegetation indices for Munshiganj District of Bangladesh by applying Moderate Resolution Imaging 

Spectroradiometer (MODIS) (with lowest resolution greater than 250m) 8-day composite surface reflectance data and 

noticed that an average error of estimation is about 15% for the study location. Islam et al. (2011) used the Normalized 

Differentiate Vegetation Index (NDVI) indicator developed from time series MODIS satellite images; the 

phonological growth of wheat has been monitored during the Rabi season of 2007-2008 for the greater Dinajpur area 

of Bangladesh. A strong correlation between the wheat production and satellite represented wheat area was found 

(R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production 

estimation. Rahman et al. (2012) applied NOAA-AVHRR data for prediction of potato yield in Bangladesh. However, 

a high resolution (~ 30 m) satellite image from Landsat is cost free available since 1984. The availability of Landsat 

8 images contributes an ample opportunity for long-term frequent environmental monitoring (Mandanici et al., 2016). 

Newton et al. (2018) improved a potato yield prediction model by applying 16-day high resolution (~ 30 m) Landsat 

surface reflectance data to identify the maximum normalized difference vegetation index (NDVI) value of a potato 

growing season in Munshiganj District of Bangladesh. The maximum coefficient of determination (R2) of yield 

forecasting equation was found to be 0.81 between the mean NDVI and potato yield and and the result revealed that 

the difference between predicted and actual filed yield is about 10.4%. However, very few studies have been conducted 

on the relationship between high resolution (~ 30 m) Landsat 8 and Sentinel 2A (~ 10 m) satellite data and maize yield 

in Bangladesh. Even though, this study made an attempt to construct a maize yield prediction model based on NDVI 

at Kaharole Upazila in Dinajpur District of Bangladesh respectively using high-resolution Landsat 8 Operational Land 

Imager (OLI) and Sentinel 2A Multi-Spectral Instrument (MSI) surface reflectance data. The combined use of high-

resolution Landsat 8 and Sentinel 2A images have been applied in this study to improve yield assessment model for 

the maize crop at Kaharole Upazila of Dinajpur district in Bangladesh. 

Materials and Methods 

Study Area 

The research was carried out in Kaharole upazila, located in the Dinajpur district of Bangladesh. This region is 

particularly known for its high maize cultivation, especially during the Rabi season. According to the Bangladesh 

Bureau of Statistics (BBS, 2020), the northern region of Bangladesh accounted for 26.36% of the total maize cultivated 

area, while the remaining 14.15% was distributed throughout the rest of the country. The Kaharole upazila is situated 

within the geographical coordinates of 25° 44′ to 25° 53′ N latitude and 88° 30′ to 89° 43′ E longitude, as depicted in 

Figure 1. The Kaharole upazila encompasses an area of 205.54 square kilometers, with cultivable land accounting for 

around 59% of this total area. The climatic conditions in this region are characterized by high temperatures and 

humidity throughout the period from April to October, commonly referred to as summer, and by cooler temperatures 

and lower humidity from November to March, known as winter. The Kaharole upazila experiences an average yearly 
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rainfall of 1965 mm and 2417 mm, respectively. It is worth noting that approximately 90% of this rainfall is 

concentrated between the months of May and October. In the Kaharole upazila, the typical temperature range 

throughout the winter season is from 23.6 to 16.8°C for the greatest value and from 24 to 16.8°C for the minimum 

value. During the summer season, the average maximum and lowest temperatures exhibit a range of 33.2 to 26.0 and 

29.8 to 25.6°C respectively. The Kaharole upazila experiences a range of humidity levels throughout the year, with 

an average monthly minimum of 68% and an average monthly maximum of 86%. The highest humidity levels are 

typically recorded during the summer season, while the lowest humidity levels are observed during the dry season. 

The agricultural pattern observed in this region is characterized by the presence of two distinct growing seasons, 

namely Rabi and Kharif. The primary growing season in this upazila is known as Rabi, characterized by the cultivation 

of maize and wheat. It typically commences in late October or early November and concludes in April. In contrast, 

the Kharif season is characterized by the predominant cultivation of rice and jute, commencing in May and concluding 

in September. Potato, pepper, onion, legumes, sugarcane, and oilseed are among the additional food crops planted in 

both regions. The prevailing soil conditions in this area consist of non-calcareous brown floodplain soils and grey 

floodplain soils.  

 
Figure 1: Map of the study location: Kaharole upazila map, Dinajpur. 

Yield data collection from farmer’s fields 

Twenty farmer’s maize fields were selected for the three maize growing seasons 2018-2019, 2019-2020 and 2020-

2021 respectively with agreement of the farmers at Kaharole upazila of Dinajpur districts (Figure 2). A total of 20 

farmer’s different maize field data were collected from Kaharole upazila for each season. Crop information data such 

as field GPS locations, planting and harvesting time and yield were collected from those selected upazilas farmers’ 

fields. 
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Figure 2: Location of selected 20 maize fields (red triangles) over Kaharole, Dinajpur 

Landsat-8/OLI and Sentinel-2A /MSI Datasets 

Landsat 8 images (OLI) were obtained from the United States Geological Survey (USGS) Earth Explorer website 

(http:// earthexplorer.usgs.gov/). Landsat 8 (OLI) is a sun-synchronous satellite staying at an altitude of 705 km above 

the earth with a 16-day repeat cycle. Landsat 8 has two types of sensors, especially the Operational Land Imager (OLI) 

and Thermal Infrared Sensor (TIRS). The OLI sensor equips nine spectral bands, including a pan band, and TIRS 

produces two spectral bands. Sentinel-2A images (MSI) were obtained from the European Space Agency (ESA) 

Copernicus portal (https://scihub.copernicus.eu). Sentinel-2A carries a multispectral instrument (MSI). Images 

furnished by Sentinel-2A are publically available for free and have 13 spectral bands with a spatial resolution ranging 

from 10 m to 60 m (depending on the band) and a current temporal resolution of about 10 days (depending on the 

latitude). We downloaded total 6 images which was maximum cloud free viz.,3 images were collected from Landsat 

8 OLI and rest of 3 images were collected from Sentinel 2A MSI satellite data for Kaharole upazila from Dinajpur 

district in the consecutive years 2018-19, 2019-20 and 2020-21 respectively. A total of 6 images (three from Landsat 

8 and three from Sentinel-2A) were suitable and used in the consequent analyses. The single date of image acquisition 

based on maximum greenness was used for each growing period i.e., 2018-2021 for maize cultivation. The maize 

sowing date was considered to be last week of November and first week of December for Kaharole upazila for each 

growing season 2018-19, 2019-20 and 2020-21 respectively for the entire study site based on the information taken 

from the location visits. Every single image was calculated from the starting day of the plantation. The dates of image 

acquisition of Landsat 8/OLI and Sentinel 2A/MSI for the maize growing season 2018-19, 2019-20 and 2020-21, 

respectively, for Kaharole, Dinajpur used for this study are presented in Table 1.  

 

Table 1: Model development using Landsat 8 and Sentinel 2A satellite image at Kaharole upazila,  

https://scihub.copernicus.eu/
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              Dinajpur 

Satelite 

Images 

Landsat 8  Sentinel 2A  

Growing 

Season 

2018-19 2019-20 2020-21 2018-19 2019-20 2020-21 

IAD 10/03/2019 12/03/2020 15/03/2021 16/03/2019 20/03/2020 05/03/2021 

DAP 95 97 103 101 105 93 

IAD=Image acquisition date; DAP= Days after plantation 

 

Satellite Image Pre-Processing 

For Landsat data, raw digital numbers (DN) were adjusted to top-of-atmosphere (TOA) reflectance values following 

reference (Simonetti et al., 2015). Two techniques were used to preprocess the satellite images: (1) radiometric 

calibration and (2) atmospheric correction. Remote sensing data adopted from satellite sensors are influenced by 

several factors, such as atmospheric scattering and absorption, sensor-target-illumination geometry, sensor calibration, 

and also by the data processing procedures (Teillet, 1986). For that, radiometric calibration is needed. Radiometric 

calibration means a set of correction techniques that are associated to correction for the sensitivity of satellite sensor, 

topography and sun angle, atmospheric scattering, and absorption (Kim et al., 1990). The radiometric calibration was 

done by transforming the digital numbers (DNs) to surface reflectance by radiance conversion. Open source-based 

Quantum Geographic Information System (QGIS) software 2.18.13 version allows a plugin, and the plugin gives a 

tool for atmospheric correction, which is known as dark object subtraction (DOS-1) level 1. In this study, this tool 

was used in the radiometrically calibrated images to minimize atmospheric scattering effect. DOS-1 searches each 

pixel of a band to find the darkest value. The scattering is eliminated by subtracting this value from every pixel in the 

band. 

Two approaches were followed to download and process Sentinel-2A imagery. The first was a simplified process for 

farmers and advisors to monitor the crop status during the season. For this purpose, we used the free and open source 

QGIS 2.18.13 version software together with the Semi-automatic Classification Plugin (SCP) (Congedo, 2016). The 

advantage of using the SCP is that the user can preview and download per date and per tile single bands and correct 

the Sentinel-2 images in the same interface. Afterward, the vegetation indices can be computed, stored and compared 

with other dates within the same QGIS environment. The only limitation is that in the conversion of top-of-atmosphere 

(TOA) reflectance values into bottom-of-atmosphere (BOA) the image-based Dark Object Subtraction (DOS-1) 

technique is applied. This process is less accurate than the physically-based correction that could be applied to 

Sentinel-2 images using the attached metadata (Congedo, 2016). The second was a more accurate though complex 

criterion. It should be recommended to extract vigour indices to be correlated with yield data and to be compared with 

subsequent seasons. The images were pre-processed with the open-source ESA Sentinel Application Platform 

(SNAP), which covers the Sentinel-2 Toolbox. In addition, the third-party plugin Sen2Cor was applied 

(http://step.esa.int/main/third-party-plugins-2/sen2cor). Sen2Cor is a processor for Sentinel-2 Level-2A product 

generation and formatting; it operates the physical atmospheric, terrain and cirrus correction of TOA Level-1C 
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Sentinel-2 products and creates, among other products, BOA reflectance corrected bands. Its output product format is 

equivalent to the Level 1C User Product: JPEG 2000 images with bands with three different resolutions, 60, 20 and 

10 m. 

Normalized Difference Vegetation Index (NDVI) 

Prediction and estimation of yield are closely associated with the capability of identifying crop species and certain 

agronomic parameters, such as maturity, density, vigour and disease, which can be used as yield indicators. Remote 

sensing can arrange these types of information to a great extent. There are distinct types of vegetation indices (VIs) 

generated from different spectral reflectance that are specially used to get these types of information. The NDVI is 

generally applied extensively around the world to monitor the vegetation quality, growth, and distribution over a large 

area. Differences in the phenological growth stages of different plants are reflected in the temporal NDVI profiles, 

since NDVI can measure growth conditions (greenness of vegetation) (Belgiu & Csillik, 2018; Croitoru et al., 2012). 

It is a dimensionless index, which is performed from the ratio between the surface reflectance of the NIR and RED 

bands of the spectrum as follows (Equation 1) (Rouse et al., 1974). 

𝑁𝐷𝑉𝐼 = !"#$#%&
!"#'#%&

                                   (1) 

Where RED (Visible red) and NIR (Near infrared) are reflectance measurements for RED and NIR bands, respectively. 

Here for Landsat 8/OLI, band 4 and band 5 represented RED and NIR bands and for Sentinel 2A/MSI, band 4 and 

band 8 represented Red and NIR bands (Tucker, 1979). The factors like strong reflectance in NIR and strong 

absorption in Visible Red of specific vegetation distinguish the vegetation from bare soil. NDVI for a given pixel can 

always output in a number that ranges from - 1 to +1; however, for natural surfaces NDVI values are within the 0 to 

+1 range. Negative values of NDVI i.e. values approaching -1 correspond to water.  An NDVI close to 0 corresponds 

to no vegetation, while Values lies between -0.1 to 0.1 generally corresponded to barren areas of rock, sand or snow.  

Maize yield estimation by satellite-based remote sensing technique 

The red band and NIR of the calibrated images were selected from each dataset and exported into QGIS 2.18.13. A 

simple raster calculation was done by QGIS 2.18.13 using Equation 1 to find the NDVI images. Finally, the NDVI 

images were masked using the shape file from different locations like Kaharole upazil of Dinajpur district. The field 

points of the location were imported, and the mean NDVI values for each point were extracted from the satellite image 

considering a 3 × 3 matrix surrounded by each point on the image.  

The relationship between NDVI and maize growing period was established by plotting the respective values in terms 

of single days from the start date of maize plantation to harvesting period. The day of the maximum NDVI was selected 

from their relationship with crop yield. To establish this relationship, NDVI data from growing season 2018-2020 

were used. Then, a total of four satellite images viz., each image was collected from Landsat 8 as well as Sentinel 2A 

from Kaharole upazila, Dinajpur depending on the date of the maximum NDVI were selected from two growing 

seasons, namely 2018-2019 and 2019-2020 to build a relationship between the NDVI values and field level maize 

yield. This relationship based on the each farmer’s field point NDVI values were validated using the satellite image 
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of the 2020-2021 growing season. NDVI values less than 0.25 and more than 0.95 were removed from the listed fields 

to reduce the influence of reflectance of other objects like bare soil, settlements, water bodies, non-agricultural crops, 

and infrastructure. 

Yield prediction model 

The final step is to determine the relationship between NDVI and maize yield form farmers’ field and BBS selected 

field with the equation below: 

𝑦 = 𝑓(𝑥)                         (2) 

Where y and x are maize yield data collected from farmers’ field and NDVI, respectively. The relationship between 

NDVI and crop like maize yield have been observed through the linear regression model, where the response variable 

denoted by maize yields and the explanatory variables by NDVIs. Several studies applied a linear regression model to 

describe the relationship between NDVI and crop (wheat) yield in distinct locations (Ren et al., 2008). To develop the 

maize yield estimation model for both fields, the data of maize yield and Landsat 8 (OLI) and Sentinel 2A (MSI) 

images were used for 2018-2021. 

 

Results and Discussion 

Maize yield from farmers’ field and corresponding NDVI values for different locations 

Maize yield data and NDVI values from different satellite images like Landsat 8 and Sentinel 2A for corresponding 
farmers’ fields have been collected from Kaharole upazila during the maize growing season 2018-19 and 2019-20 
respectively. 20 farmers' field yield data collected from Kaharole upazila and their corresponding NDVI values for 
two satellite images have been presented in a Table 2 and 3 for consecutive maize growing seasons 2018-19 and 2019-
20 respectively. 
 
Table 2: NDVI values of satellite images and yields of corresponding Farmer’s fields at Kaharole, Dinajpur 
during the season of 2018-19  

Farmer’s 
Field 

Longitude Latitude NDVI values Yields (t/h) 
Landsat 8 OLI Sentinel 2A MSI 

1 88.665283 25.757000 0.55 0.77 11.35 
2 88.664166 25.746660 0.70 0.82 12.72 
3 88.663333 25.746100 0.67 0.80 11.42 
4 88.665833 25.746383 0.69 0.84 12.35 
5 88.664783 25.744716 0.71 0.85 12.12 
6 88.670109 25.750864 0.63 0.78 10.95 
7 88.601321 25.772369 0.66 0.82 11.25 
8 88.600303 25.771734 0.57 0.78 10.85 
9 88.599752 25.763595 0.58 0.77 10.65 
10 88.607792 25.755088 0.68 0.76 10.94 
11 88.612763 25.754269 0.58 0.80 11.27 
12 88.599452 25.757273 0.60 0.83 12.27 
13 88.600953 25.777712 0.59 0.72 9.45 
14 88.582059 25.780769 0.63 0.75 10.68 
15 88.587503 25.783616 0.55 0.75 10.52 
16 88.582345 25.779255 0.65 0.81 11.69 
17 88.584909 25.779358 0.61 0.72 10.8 
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18 88.565401 25.770503 0.28 0.33 6.80 
19 88.620312 25.794201 0.35 0.60 8.61 
20 88.646041 25.792031 0.56 0.69 9.25 

 
Table 2 shows that NDVI values are 0.71 and 0.85 which were the highest for Landsat 8 and Sentinel 2A and yield 
was 12.12 t/ha for farmer’s field 5 but yield is maximum 12.72 t/ha for field 2; and NDVI values are 0.28 and 0.33 
that were the lowest and yield was 6.8 t/ha for farmer’s field 18 at Kaharole upazila during 2018-19. 

Table 3: NDVI values of satellite images and yields of corresponding Farmer’s fields at Kaharole, Dinajpur 
during the season of 2019-20  

Farmer’s 
Field 

Longitude Latitude NDVI values Yields (t/h) 
Landsat 8 OLI Sentinel 2A MSI 

1 88.665283 25.757000 0.69 0.84 11.50 
2 88.664166 25.746660 0.79 0.90 12.74 
3 88.663333 25.746100 0.74 0.83 11.45 
4 88.665833 25.746383 0.80 0.86 12.48 
5 88.664783 25.744716 0.79 0.86 12.50 
6 88.670109 25.750864 0.68 0.81 11.20 
7 88.601321 25.772369 0.69 0.84 11.50 
8 88.600303 25.771734 0.38 0.76 10.65 
9 88.599752 25.763595 0.71 0.78 10.87 
10 88.607792 25.755088 0.79 0.89 11.62 
11 88.612763 25.754269 0.63 0.81 11.42 
12 88.599452 25.757273 0.74 0.86 12.63 
13 88.600953 25.777712 0.61 0.83 11.45 
14 88.582059 25.780769 0.70 0.84 11.30 
15 88.587503 25.783616 0.52 0.77 10.24 
16 88.582345 25.779255 0.71 0.82 11.45 
17 88.584909 25.779358 0.72 0.82 10.15 
18 88.565401 25.770503 0.30 0.48 7.60 
19 88.620312 25.794201 0.32 0.65 8.71 
20 88.646041 25.792031 0.68 0.76 10.62 

Maximum NDVI for Kaharole were 0.80 and 0.90 for farmer’s field 4 and 2 and minimum NDVI were 0.30 and 0.48 
for Landsat 8 and Sentinel 2A for farmer’s field 18, but the highest and lowest yield were 12.74 t/ha and 7.6 t/ha  for 
farmer’s field 2 and 18, respectively during 2019-20 in Table 3. 

Regression analysis of the NDVI values over the field locations 

A total of four satellite images (2 images each for Landsat 8 and Sentinel 2A) from two growing seasons during the 

2018-2019 and 2019-2020 were selected. Based on available images, those sowing the maximum NDVI in each 

growing season were found 95th, 97th days after plantation for Kaharole upazila from Landsat 8 images as well as 

101th, and 105th days after plantation for Kaharole upazila form Sentinel 2A images for 2018-2019 and 2019-2020 

growing seasons, respectively. The spatial distribution of the NDVI varies from year to year. Spatial distribution of 

the NDVI over the selected location for selected distinct satellite images against different growing seasons were 

presented in Figure 3. 

For Landsat 8 data, NDVI distribution was the maximum during 2019-2020 and distribution was minimum during the 

season 2019-20 at Kaharole upazila in Figure 3. On the other hand, for Sentinel 2A data, NDVI distribution was the 

maximum during the season 2019-2020 and minimum during the season 2019-20 at Kaharole upazila in Figure 3. 
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From Figure 3, we can see that the NDVI distribution from different locations of Sentinel 2A data is better than 

Landsat 8 data during the maize growing season 2018-2019 and 2019-2020, respectively.  

 

 

a 
c 

b  
d 

Figure 3: Spatial distribution of the NDVI for different satellite images during growing season 2018-19 and 

2019-20. a. 95th days after plantation during 2018-19; b. 97th days after plantation during 2019-20 for Landsat 

8; c. 101th days after plantation during 2018-19; d. 105th days after plantation during 2019-20 for Sentinel 2A 

at Kaharole upazila.  

For two satellites viz., Landsat 8 and Sentinel 2A are showed the NDVI values and their corresponding yields for 
twenty farmers’ maize field from different locations i.e., Kaharole upazila during individual maize growing season 
2018-2019 and 2019-2020, respectively are shown in Table 2 and Table 3. From Table 2 and 3, we have calculated 
mean NDVI and mean yield for two satellite data like Landsat 8 and Sentinel 2A for Kaharole upazila during the 
combined season 2018-2019 and 2019-2020 respectively, which are represented below in Table 4. Mean NDVI and 
mean yield are calculated for two satellite images for combined two season because maize yield in each season i.e., 
2018-19 and 2019-20 is mostly same for  Kaharole upazila. Mean NDVI and mean yield of combined maize season 
is performed better than NDVI and its corresponding yield of individual maize season for each satellite image at 
Kaharole upazila because according to best model criteria viz. Multiple determination of coefficient (R2), Mean 
Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) fitted best for mean NDVI and mean yield 
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of combined maize season rather than single maize growing season like 2018-19 and 2019-20 (Figure 3). Mean NDVI 
is the largest which is 0.75 for farmers’ field 2, 4 and 5 as well as the smallest is 0.29 for farmers’ field 18 for Landsat 
8 and for Sentinel 2A , the largest and lowest are 0.86 and 0.41 for farmers’ field 2, 5 and 18 for Kaharole upazila for 
combined year respectively. The highest and lowest mean yield of two satellite data are 12.73 (t/ha) and 7.2 (ha/t) for 
Kaharole upazila for combined year respectively in Table 4.  
 
Table 4: Mean NDVI values for two satellite images and corresponding mean yields of Farmer’s Maize Fields 
at Kaharole, Dinajpur during the combined season of 2018-19 and 2019-2020 

 

Maize yield and NDVI relationship using regression model 

Regression analysis of maize yield against the single season basis NDVI and combined season basis mean NDVI for 

Kaharole was performed for two satellite images, like Landsat 8 and Sentinel 2A, and are graphically presented in 

Figure 4. 

 

Farmer’s  
Field 

Mean NDVI Mean Yield (t/ha) 
Landsat 8 OLI Sentinel 2A MSI 

1 0.62 0.81 11.43 

2 0.75 0.86 12.73 

3 0.71 0.82 11.44 

4 0.75 0.85 12.42 

5 0.75 0.86 12.31 

6 0.66 0.80 11.08 

7 0.68 0.83 11.38 

8 0.48 0.77 10.75 

9 0.65 0.78 10.76 

10 0.74 0.83 11.28 

11 0.61 0.81 11.35 

12 0.67 0.85 12.45 

13 0.6 0.78 10.45 

14 0.67 0.80 10.99 

15 0.54 0.76 10.38 

16 0.68 0.82 11.57 

17 0.67 0.77 10.48 

18 0.29 0.41 7.20 

19 0.34 0.63 8.66 

20 0.62 0.73 9.94 
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(a) (d) 

  
(b) (e) 

  

(c) (f) 

  

Figure 4: Yield prediction model established from regression analysis between yield data collected from 20 

farmers’ maize field for different images; [a. yield vs NDVI, 2018-19 b. yield vs NDVI, 2019-20 c. yield vs NDVI 

(mean), combined 2018-19 and 2019-20 for Landsat 8.]; [d. yield vs NDVI, 2018-19 e. yield vs NDVI, 2019-20 f. 

yield vs NDVI (mean), combined 2018-19 and 2019-20 for Sentinel 2A] at Kaharole upazila. 

The yield vs. NDVI relationship for Landsat 8 and Sentinel 2A satellite image are shown in Figure 4 revealed that the 

multiple determination of coefficient which are highest and other accuracy assessment like  the minimum values of 
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Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) of mean NDVI for combined maize 

growing season i.e., 2018-2019 and 2019-2020 is better fitted than the single maize growing season i.e., 2018-2019 

and 2019-2020, respectively for Kaharole upazila, Dinajpur. The parameters of the regression analysis estimated from 

yield vs. NDVI relationship for combined season, together with the value of R2, MAPE and RMSE are presented in 

Table 5. The relationship between mean NDVI for combined two maize growing season and yield are provided almost 

well compared to the single season basis NDVI vs. yield relationship for two satellite images. 

Table 5: Regression parameter and R2 for combined season at Farmers’ maize field 

Location Satellite Data Regression parameter for mean value Best Model Criteria 

β0 β1 SE(β1) P-Value MAPE RMSE R2 

Kaharole Landsat 8 5.291 9.073 1.126 0.0000 0.046 0.589 0.782 

Sentinel 2A 1.528 12.10 0.961 0.0000 0.031 0.403 0.898 

 

Here, the regression coefficients of all the fitted model of two satellite images are showing highly significant effect 

for Kaharole upazila in Table 5. From Table 5, we have also seen that multiple determination of coefficient (R2) along 

with others parameter are better for Sentinel 2A satellite image than Landsat 8 satellite image for Kaharole upazila, 

Dinajpur. 

Development and validation of the yield prediction model 

The yield prediction model based on the regression analysis was developed based on the yield data collected from 

2018–2019 and 2019–2020 maize growing season. To evaluate performance of the model validation is essential. Based 

on the deviation from the estimated and model prediction, model performance can be determined. Hence, the model 

has been further validated using yield data of 2020-2021 maize growing seasons. After 103th and 93th days after 

plantation, an NDVI image was selected for two satellite images viz., Landsat 8 and Sentinel 2A from 2020 to 2021 

growing season at Kaharole upazila, Dinajpur in Figure 5. 

a b 

Figure 5: Spatial distribution of the NDVI over the different locations for Landsat 8 and Sentinel 2A satellite 

images during growing season of 2020-2021. (a+b): 103th and 93th days after plantation for Kaharole upazila, 

Dinajpur for different satellite images. 
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The NDVI value was extracted from each of the 20 farmers’ fields each for two satellite images from Kaharole upazila 

of Dinajpur during the maize growing season 2020-2021, which were presented in Table 6. As the coefficient of 

determination (R2) was found high from the relationship of the mean value of NDVI and yield of combined season, 

the validation was done using the general mean value equation (NDVI and yield relationship of combined season) for 

two satellite images at maize location like Kaharole upazila, Dinajpur. The general mean value equation which was 

elaborately defined in the Table 5 has been used separately two developed regression model for validation along with 

two satellite images for Kaharole upazila. The general regression equation from the mean NDVI (combined maize 

growing season) is presented the equation 3. 

 

𝑌𝑖𝑒𝑙𝑑 = 𝛽( + 𝛽) ×𝑁𝐷𝑉𝐼*+,-(/0*12-+3	*,25+	67082-6	9+,90-)                          (3) 

 

The actual yield (t/ha) of maize and predicted yield (t/ha) using equation 3for two different satellite images for 

Kaharole upazila during 2020-2021 maize growing season were also presented in Table 6. 

Table 6:  Estimated yield and predicted yield from selected Farmer’s Maize Fields at Kaharole, Dinajpur 

during the season of 2020-2021 

 

Farmer’s 

Field 

Actual 

Yield(t/ha) 

    NDVI Values Predicted Yield (t/ha) Error of Yield (%) 

 

Landsat       

8 

Sentinel 

2A 

Landsat 8 Sentinel 

2A 

Landsat 8 Sentinel 2A 

1 11.25 0.53 0.73 10.1 10.36 10.22 7.91 

2 11.65 0.57 0.74 10.46 10.48 10.21 10.04 

3 11.95 0.61 0.77 10.82 10.85 9.46 9.20 

4 12.55 0.67 0.78 11.37 10.97 9.40 12.59 

5 11.53 0.53 0.71 10.09 10.12 12.49 12.23 

6 10.67 0.44 0.66 9.28 9.51 13.02 10.87 

7 12.37 0.61 0.77 10.83 10.85 12.44 12.28 

8 12.2 0.6 0.77 10.73 10.85 12.04 11.06 

9 12.15 0.61 0.77 10.83 10.85 10.86 10.69 

10 10.89 0.52 0.75 10.01 10.6 8.08 2.66 

11 12.35 0.58 0.76 10.55 10.72 14.57 13.19 

12 10.35 0.48 0.69 9.64 9.88 6.85 4.54 

13 10.87 0.5 0.71 9.83 10.12 9.56 6.89 

14 11.42 0.58 0.76 10.55 10.72 7.61 6.12 

15 11.1 0.44 0.67 9.28 9.64 16.39 13.15 

16 11.25 0.54 0.72 10.19 10.24 9.42 8.97 
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17 10.34 0.41 0.65 9.01 9.39 12.86 9.18 

18 9.1 0.39 0.62 8.82 9.03 3.07 0.77 

19 9.5 0.43 0.64 9.19 9.27 3.26 2.42 

20 11.04 0.54 0.72 10.19 10.24 7.69 7.25 

 

The highest and lowest observed yield of maize were 12.55 (t/ha) and 9.1 (t/ha) as well as maximum and minimum 

NDVI values were 0.67 and 0.39 for Landsat 8; 0.78 and 0.62 for Sentinel 2A for farmers’ field 4 and 18 respectively 

at Kaharole upazila, Dinajpur during the maize growing season 2020-2021 (Table 6). Largest and smallest predicted 

yield of maize for Landsat 8 were 11.37 (t/ha) and 8.82 (t/ha) as well as for Sentinel 2A these were 10.97 (t/ha) and 

9.03 (t/ha) for farmers’ field 4 and 18 respectively at Kaharole upazila, Dinajpur during the maize growing season 

2020-2021 (Table 6). Maximum and minimum yield gap (%) for Landsat 8 were 16.39 and 3.07 for farmers’ field 15 

and 18 respectively and also for Sentinel 2A were 13.19 and 0.77 for farmers’ field 11 and 18 respectively at Kaharole 

upazila, Dinajpur during the maize growing season 2020-2021 (Table 6). From Table 6, we shown that the predicted 

yield of maize for two satellite data were less than the actual yield of maize (under estimated) in each farmer’s field 

for Kaharole upazila, Dinajpur district. Depending on the value of Table 6, validation of maize yield for two satellite 

images viz., Landsat 8 and Sentinel 2A at Kaharole upazila was presented in Table 7 during the maize season 2020-

2021. 

Table 7: Validation of maize yield at Kahrole Upazila during the season 2020-2021 

Location Actual Yield 

(Mean) 

Predicted Yield (Mean) Mean Error of Yield (%) 

Landsat 8 Sentinel 2A Landsat 8 Sentinel 2A 

Kaharole, 

Dinajpur 

11.23 10.09 10.23 10.15 8.82 

The estimated farmers’ field yield (mean) was 11.23 (t/ha), the predicted yield (mean) for Landsat 8 and Sentinel 2A 

were 10.09 (t/ha) and 10.23 (t/ha) respectively at Kaharole upazila, Dinajpur during the maize growing season 2020-

2021. The percentage of mean yield error was 10.15 for Landsat 8 and 8.82 for Sentinel 2A. Error of mean yield (%) 

of Sentinel 2A was performed better than Landsat 8 at Kaharole upazila, Dinajpur during the maize growing season 

2020-2021 (Table 7). 

Conclusions 

The study has investigated the prediction capacity of remote sensing NDVI data for maize yield in selected location 

viz. Kaharole upazila, Dinajpur of Bangladesh which is known for maize dominating district. The study has also 

investigated the relationship between NDVI and yield for the study region. Here the two satellite images like Landsat 

8 (OLI) and Sentinel 2A (MSI) which were high spatial resolution data were used in this study. We downloaded total 

6 images which was maximum cloud free data were collected from Landsat 8 OLI and Sentinel 2A MSI satellite data 

for Kaharole upazila from Dinajpur district in the consecutive years 2018-19, 2019-20 and 2020-21 respectively. The 

single date of cloud free image acquisition based on maximum NDVI was used for each cropping period i.e., 2018-



16 
 

2019 and 2019-2020 respectively for maize cultivation to develop the yield prediction model. These equations were 

validated by using data from 2020-2021 maize growing seasons. 

 

Mean NDVI and mean yield of combined maize season is performed better than NDVI and its corresponding yield of 

single maize season for each satellite image and for Kaharole upazila. The yield prediction equations were found based 

on mean values of NDVI for combined growing season against yield of maize. The yield against NDVI relationship 

for both satellite images showed that the multiple determination of coefficient (R2) along with Mean Absolute 

Percentage Error (MAPE) and Root Mean Square Error (RMSE) of mean NDVI for combined maize growing season 

is almost better performed than the single maize growing season for the location Kaharole, Dinajpur. We have also 

shown that, regression model is fitted very well based on higher value of R2 for Sentinel satellite 2A data than Landsat 

8 satellite data at Kaharole upazila, Dinajpur district. The estimated farmers’ maize field yield (mean) was 11.23 (t/ha), 

the predicted yield (mean) for Landsat 8 and Sentinel 2A were 10.09 (t/ha) and 10.23 (t/ha) respectively. The absolute 

mean error of prediction was found to be about 10.15% for Landsat 8 and 8.82% for Sentinel 2A compared to the 

actual yield at Kaharole upazila, Dinajpur district during the maize growing season 2020-2021. We observed that the 

predicted yield (mean) of Sentinel 2A which is 1.33% more closed to actual yield than Landsat 8 at Kaharole upazila 

in Dinajpur district. We revealed that in this research, the yield prediction model for Sentinel 2A images performed 

better than the Landsat 8 because of high spatial resolution (~10m). It was found that NDVI data extracted from 

Sentinel 2A high resolution satellite images can be successfully used to predict the maize yield over Kaharole upazila 

with an appreciable accuracy. So, the high-resolution Sentinel 2A images can be an effective means for early 

prediction of maize yield. 
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