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Mean �eld control (MFC) problems have vast applications in arti�cial intelligence, engineering, and

economics, while solving MFC problems accurately and ef�ciently in high-dimensional spaces

remains challenging. This work introduces variational conditional normalizing �ow (VCNF), a neural

network-based variational algorithm for solving general MFC problems based on �ow maps.

Formulating MFC problems as optimal control of Fokker–Planck (FP) equations with suitable

constraints and cost functionals, we use VCNF to model the Lagrangian formulation of the MFC

problems. In particular, VCNF builds upon conditional normalizing �ows and neural spline �ows,

allowing ef�cient calculations of the inverse push-forward maps and score functions in MFC

problems. We demonstrate the effectiveness of VCNF through extensive numerical examples,

including optimal transport, regularized Wasserstein proximal operators, and �ow matching

problems for FP equations.

1. Introduction

In recent years, generative arti�cial intelligence (AI) has attracted much attention in the scienti�c

computing community across various �elds. Typical applications include text generation[1][2], image

generation[3][4][5], and protein folding[6][7]. At the core of these applications are nonlinear generative

models, such as normalizing �ows[8] and neural ordinary differential equations[9]. These models aim to

learn a transport map from a reference distribution to a target distribution, enabling sample generation

that approximates the target. The optimization problems in generative models can be interpreted as

variational problems in probability space, also known as the mean �eld control (MFC) problems[10][11].
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MFC problems incorporate interactions among multiple agents in the optimal control problem, providing

a method for modeling large-scale collective behaviors in arti�cial intelligence[12], engineering[13][14],

and economics[15][16]. In literature, the second-order MFC problems can be expressed as a coupled system

of Hamilton–Jacobi–Bellman (HJB) and Fokker–Planck (FP) equations, which jointly characterize the

optimal velocity �eld governing the agents’ density evolution. The second-order MFC emphasizes

Kolmogorov forward and backward operators from the diffusion processes in the coupled systems. In

particular, optimal transport (OT), i.e., Wasserstein distances between probability distributions, with

their dynamical formulation[17], can be viewed as a special class of �rst order MFC problem with �xed

initial and terminal time constraints on distributions and without diffusion.

Traditional methods for solving OT and MFC problems are well-studied in low-dimensional spaces[18][17]

[19]. Recently, machine learning-based approaches have emerged as promising tools for tackling high-

dimensional MFCs, pioneered by[20], which solves high-dimensional deterministic MFCs by

approximating the value function using deep neural networks. In Lagrangian coordinates, solving MFC

problems often involves solving the Monge–Ampére equation, which arises from the change of variable

formula for probability densities. Classical numerical PDE algorithms[17][21]  perform well in low

dimensions. In comparison, modern generative models tackle the Monge–Ampére equation from a

variational perspective, optimizing over a parametrized family of transformations by minimizing certain

objective functions, such as the Kullback–Leibler (KL) divergence between the generated and target

distribution. A typical example is the neural spline �ow[8], which constructs transport maps based on

monotone rational-quadratic splines. This network structure enables ef�cient computation of both the

inverse transport map and the determinant of the Jacobian of the transport map. Such a formulation is

particularly useful in approximating the score function, de�ned as the gradient of the log-density

function. Additionally, the score function approximates the Kolmogorov forward operator associated with

diffusion processes. Given the potential of generative models and score functions, a natural question

arises: Can we apply generative models to solve second-order MFC problems in high dimensional spaces?
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Figure 1. VCNF framework for solving generalized MFC problems.

In this paper, we introduce the variational conditional normalizing �ow (VCNF), an extension of

conditional normalizing �ows[22]  designed for solving general MFC problems. Conditioning on time  ,

VCNF models a family of distributions    that evolve continuously over time to solve the MFC

problems. Unlike standard normalizing �ows with �xed time stamps, VCNF allows for evaluation and

sampling at arbitrary time. The time derivative can be computed using �nite difference or automatic

differentiation. By leveraging numerical approximations of score functions, VCNF can effectively handle

second-order MFC problems with diffusive density evolution. Speci�cally, we demonstrate this capability

by solving the FP equation within the �ow matching framework. We show in the numerical experiments

that VCNF is highly robust and ef�cient in solving various MFC problems. In particular, we are able to

achieve around    relative error, which is commonly expected for neural network-based models in

scienti�c computing[23], with little parameter tuning. In addition, VCNF effectively captures the evolution

of multimodal distributions and accurately models the transitions between unimodal and multimodal

distributions under different initial conditions, demonstrating its �exibility and reliability. A schematic

of our framework is demonstrated in Figure 1, details of which will be discussed in subsections 2.2, 2.3,

and 3.1.

This paper is organized as follows. In section 2, we review some background on MFC problems, including

both Eulerian and Lagrangian formulations. Several important examples are covered. In section 3, we

t
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present the construction of the model, the details for evaluating various quantities, and the algorithm for

solving MFC problems. In section 4, we provide extensive numerical experiments to show the robustness

and ef�ciency of VCNF. In section 5, we conclude this work and discuss potential future directions.

2. Mean �eld control problems

In this section, we review second-order MFC problems in Eulerian and Lagrangian coordinates. We also

introduce several important examples, including OT, RWPO, and �ow matching for FP equation.

2.1. Mean �eld control problem in Eulerian coordinates

We consider the MFC problem where one aims to minimize the variational objective

subject to the FP equation with initial condition

The objective functional involves a running cost    and a terminal cost 

. The state dynamic is characterized by the evolution of the density function (2). In the

MFC problem, a central planner controls the drift of the dynamic  , which has a direct impact on

the density  . The goal of the MFC problem is to minimize the cost (1) w.r.t.   and   subject to the

constraint (2). The diffusion term   indicates that this MFC problem is of second-order.

The MFC problem also has a stochastic formulation:

subject to the state dynamic

  is the density function of    and satis�es the FP equation (2).    is a  -dimensional standard

Brownian motion.   is the expectation over all realizations of the state dynamic.

We remark that mean �eld games (MFGs)  [24][25]  differ from MFCs primarily due to the absence of a

central planner in MFGs. Consequently, a change of control by a single agent does not affect the

population distribution. However, for a large class of MFG problems, one can �nd the corresponding

L(x, t, v(x, t),p(x, t))p(x, t)dxdt + G(x,p(x,T ))p(x,T )dx,inf
v,p
∫

T

0
∫
R
d

∫
R
d

(2.1)

p(x, t) + ⋅ (p(x, t)v(x, t)) = γ p(x, t), p(⋅, 0) = .∂t ∇x Δx p0 (2.2)

L : × [0,T ] × × → RR
d

R
d

R+

G : × → RR
d

R+

v(x, t)

p(x, t) v p

p(x, t)Δx

E[ L( , t, v( , t),p( , t)dt + G( ,p( ,T )] ,inf
v

∫
T

0
xt xt xt xT xT

d = v( , t)dt + d , ∼ .xt xt 2γ−−
√ Wt x0 p0

p(⋅, t) xt Wt d

E
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variational formulations (also known as potential MFGs) and transform them into MFC problems [20][26]

[27].

Numerical methods for solving MFC problems generally fall into two broad categories. The �rst category

focuses on the variational formulation of MFC, optimizing the objective functional directly. In this

framework, probabilistic modeling techniques, such as neural ODE  [9]  and normalizing �ow  [28]  are

commonly used to get the population distribution. These methods offer advantages in �exibility and

scalability, making them well-suited for high-dimensional problems. The second category leverages the

HJB formulation of the MFC, where the optimal solution is characterized by a coupled FP-HJB system.

Common approaches in this category parameterize the solution to the HJB equation and solve the FP-HJB

system  [29][30][31][32][33]. Hybrid approaches also exist, which employ mixed loss functions to enhance

robustness and accuracy [34][35].

For completeness, we present the HJB-FP for MFC problem. Interested readers could refer to Chapter

4  [36]  for more details. We de�ne the Hamiltonian    as the Legendre

transform of   w.r.t.  ,

Then, the optimal control, i.e., optimal velocity, is given by

where   and   satisfy the coupled FP-HJB system

2.2. Mean �eld control problem in Lagrangian coordinates

We can also describe the MFC problem in Lagrangian coordinates, where we focus on the push-forward

map   instead of the velocity �eld  . Let   be a reference measure. In this paper, we use the standard

Gaussian distribution    as the reference measure, and we will not distinguish a probability

measure with its density function. Let    be a �ow of invertible push forward map,

which gives the density function at   by 

H : × [0,T ] × × → RR
d

R
d

R+

L v

H(x, t, w,p) := v − L(x, t, v,p).sup
v∈Rd

w⊤

v(x, t) = ϕ(x, t v − L(x, t, v,p(x, t)),argmaxv∈Rd ∇x )⊤

p(x, t) ϕ(x, t)

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪

p(x, t) + ⋅ (p(x, t) H(x, t, ϕ(x, t),p(x, t))) = γ p(x, t) ,∂t ∇x Dw ∇x Δx

ϕ(x, t) + H(x, t, ϕ(x, t),p(x, t))∂t ∇x

− ⋅ p(x, t) = −γ ϕ(x, t) ,
∂L(x, t, v(x, t),p(x, t))

∂p
Δx

p(⋅, 0) = , ϕ(x,T ) = −G(x,p(x,T )) − p(x,T ) .p0

∂G(x,p(x,T ))

∂p

f v q(z)

N (0, )Id

f : × [0,T ] →R
d

R
d

t ∈ [0,T ]
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The associated Monge–Ampére equation is 

In this case, the density function   satis�es the transport equation 

where   is the inverse map of  . If we assume that   satis�es the FP equation (2.2), then

we can apply Nelson’s transformation[37]. Since 

where   is often called the score function, the FP equation can be rewritten as 

 We can compute the velocity �eld   through 

 Therefore, the MFC problem in Lagrangian coordinates is 

In VCNF, the density   is obtained through the logarithm of the Monge–Ampére equation 

The temporal derivative of the push forward map    and the score function    are

approximated through numerical differentiation (see subsection 3.2).

2.3. Examples of mean �eld control problems

We provide three important examples for MFC problems in this section, including OT, RWPO, and �ow

matching for FP equations.

p(⋅, t) = f(⋅, t q(⋅) .)#

p(x, t) = p(f(z, t), t) = q(z) .det
∣

∣
∣

∂f(z, t)

∂z

∣

∣
∣
−1

p

p(x, t) + ⋅ [p(x, t) f( (x, t), t)] = p(x, t) + ⋅ [p(x, t) f(z, t)] = 0 ,∂t ∇x ∂t f−1 ∂t ∇x ∂t

(⋅, t)f−1 f(⋅, t) p(x, t)

∇p(x, t) = p(x, t) ⋅ = p(x, t)∇ logp(x, t) ,
∇p(x, t)

p(x, t)

∇ logp(x, t)

p(x, t) + ⋅ [p(x, t) (v(x, t) − γ logp(x, t))] = 0 .∂t ∇x ∇x (2.3)

v

v(x, t) = f( (x, t), t) + γ logp(x, t) = f(z, t) + γ logp(f(z, t), t) .∂t f−1 ∇x ∂t ∇x

inf
f,p
∫

T

0

s.t.

L (f(z, t), t, f(z, t) + γ logp(f(z, t), t),p(f(z, t), t)) q(z) dz dt∫
R
d

∂t ∇x

+ G(f(z, t),p(f(z, t),T ))q(z) dz∫
R
d

f(⋅, t q = p(⋅, t) , f(⋅, 0 q = .)# )# p0

(2.4)

p(f(z, t), t)

logp(x, t) = logp(f(z, t), t) = log q(z) − log det .
∣

∣
∣

∂f(z, t)

∂z

∣

∣
∣ (2.5)

f(z, t) logp(f(z, t), t)∇x
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Optimal transportation. The OT problem can be viewed as a special MFC problem where the terminal

cost is replaced by a terminal constraint. By the Benamou–Brenier formulation[17], computing the

Wasserstein-   distance between two probability distributions is equivalent to the following variational

problem

The minimal cost to (2.6) is  , where    denotes the Wasserstein-   distance between

two measures. In Lagrangian coordinates, the OT problem reads

Regularized Wasserstein proximal operator. Closely related to OT, the RWPO computes a regularized OT

problem with a diffusion term and a terminal cost[38]. The objective is

For derivation of this variational formulation, see Appendix B.1. Using Nelson’s transformation

introduced in Subsection 2.2, the RWPO problem in Lagrangian coordinate is

Flow matching for Fokker–Planck equation. Another important application of MFC is the �ow matching

problem for the FP equation

For example,[39][40] use NFs to solve the steady state of the (fractional) FP equation. Similarly, CNFs are

used to approximate the time-dependent FP equation[41].

In our setting, we aim to learn the push forward map    such that 

 represents the solution to the FP equation at  . The objective functional is

2

p(x, t) dxdt ,inf
v,p
∫

1

0
∫
R
d

1

2
∥v(x, t)∥2

s. t. p(x, t) + ∇ ⋅ (p(x, t)v(x, t)) = 0 , p(⋅, 0) = , p(⋅, 1) = .∂t p0 p1

(2.6)

( ,1
2
W2 p0 p1)2 (⋅, ⋅)W2 2

q(z) dz dt ,inf
f,p
∫

1

0
∫
R
d

1

2
∥ f(z, t)∥∂t

2

s. t. f(⋅, 0 q = , f(⋅, 1 q = .)# p0 )# p1

p(x, t) dx dt + V (x)p(x,T ) dx ,inf
v,p
∫

T

0
∫
R
d

1

2
∥v(x, t)∥2 ∫

R
d

s.t. p(x, t) + ⋅ (p(x, t)v(x, t)) = p(x, t) , p(⋅, 0) = .∂t ∇x
1

β
Δx p0

(2.7)

q(z) dz dt + V (f(z,T )) q(z) dz ,inf
f,p
∫

T

0
∫
R
d

1

2
f(z, t) + logp(f(z, t), t)

∥

∥
∥∂t

1

β
∇x

∥

∥
∥
2

∫
R
d

s.t. f(⋅, t q = p(⋅, t) , f(⋅, 0 q = .)# )# p0

(2.8)

p(x, t) + ⋅ (p(x, t)b(x, t)) = γ p(x, t) .∂t ∇x Δx

f : × [0,T ] →R
d

R
d

f(⋅, t q = p(⋅, t))# t

q(z) dz dt ,inf
f,p
∫

T

0
∫
R
d

∥ f(f(z, t), t) − b(f(z, t), t) + γ logp(f(z, t), t)∥∂t ∇x
2

s.t. f(⋅, t q = p(⋅, t) , f(⋅, 0 q = .)# )# p0

(2.9)
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3. Variational conditional normalizing �ows

In this section, we describe the architecture of the VCNF model based on invertible spline

transformations. We then explain its applications to solving MFC problems.

3.1. Conditional normalizing �ow via neural spline �ow

As discussed in Subsection 2.2, the Lagrangian formulation of MFC problems requires parameterizations

of a family of invertible maps in high dimensions. Following the idea in[8], we build multi-dimensional

invertible transformations through one dimensional invertible transformations 

 parameterized by   based on spline functions (see details in Appendix A.1). Comparing to

models[42]  with af�ne transformation, this class of models are powerful in �tting complex

distributions[8].

The overall transformation is built on compositions of several invertible auto-regressive layers:

where    denotes the parameters of the whole model.    are auto-regressive layers with

different coupling orders. A typical auto-regressive layer with coupling order    consists of 

  coupling transformations    composed sequentially (for  ), each of which

consists of the following steps:

�. Compute   where   is the conditioning network.

�. Compute  , the detailed parametrization of   is explained in Appendix

1.

�. Set   for   and return  .

Note that  , the parameters of one dimensional invertible transformations, are not the inputs but the

outputs of the conditioning networks  , which are fully-connected feedforward

neural networks for  . The    is the number of the bins for the spline functions. For

example, an auto-regressive layer of the CNF in   dimensions with coupling order   can be written as 

ϕ(⋅, θ) : R → R θ

(⋅, t) = (⋅, t) ∘ ⋯ ∘ (⋅, t).fψ f
(l)
ψ

f
(1)
ψ

(3.1)

ψ { (⋅, t)f
(i)
ψ

}li=1

(1, 2, … ,d)

d ↦x(k) x(k+1) k = 0, … ,d − 1

= ( , t) ∈θk NN(k) x
(k)
1:k R

3K−1 NN(k)

= ϕ( , )x
(k+1)
k+1 x

(k)
k+1 θk ϕ( , )x

(k)
k+1 θk

=x
(k+1)
i x

(k)
i i = 1, . . . ,k,k + 2, . . . ,d x(k+1)

θk

: →NN(k)
R
k+1

R
3K−1

k = 0, … ,d − 1 K

2 (1, 2)

( ) ( ) ( ) .
x

(0)
1

x
(0)
2

− →−−−−−−−−−−−
= ϕ( , (t))x

(1)
1 x

(0)
1 NN(0)

1

= x
(1)
2 x

(0)
2

x
(1)
1

x
(1)
2

− →−−−−−−−−−−−−−
= x

(2)
1 x

(1)
1

= ϕ( , ( ,t))x
(2)
2 x

(1)
2 NN(1)

2 x
(1)
1

x
(2)
1

x
(2)
2
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Speci�cally, the 2D transformation is decomposed into two steps: in the �rst step, the �rst coordinate

performs invertible transformations parametrized by the output of the conditioning network   and

the second step contains an invertible transformation of the second coordinate.

As illustrated in (3.2), for different times    and  , the outputs of the conditioning networks and their

corresponding invertible transformations are different. Therefore the distributions generated at different

times are not the same. Moreover, as the coupling is directed, another auto-regressive layer

implementing the other coupling direction (from   to  ) is needed to guarantee the expressivity. In this

work, we apply a network structure that has two auto-regressive layers with reverse coupling orders 

 and  , so that any two dimensions are coupled. Our model is simpler than the

network in[26] with eight auto-regressive layers, while producing competitive results. Within each auto-

regressive layer, we use    bins for each spline transformation layer; the conditioner network contains 

 hidden layers with width  . Consequently, the total number of parameters of the network is   for

all of our  D problems. The prior   is chosen to be the standard Gaussian. For all experiments, we use the

Adam[43] optimizer with a learning rate of  .

Our VCNF can also approximate key ingredients of MFC problems ef�ciently. The velocity �eld, which is

the temporal derivative of the push forward map  , can be calculated by auto-differentiation or

numerical differentiation schemes. Throughout the paper, we use the following central difference

schemes to approximate the temporal derivative of the push forward map    and the spatial

derivative for the log-density  : 

where    is the standard basis in  , and    is evaluated via (2.5). Applying chain rule to (3.1), one

obtains    where    is the i-th auto-regressive layer and 

 (with convention  ) is the spatial input of  .

3.2. Numerical approximation for mean �eld control problems

In this section, we explain the numerical approximation to the MFC problems. We use the dynamical

formulation of OT as an illustrative example.

NN(0)

t1 t2

x2 x1

(1, 2, . . . ,n) (n,n − 1, . . . , 1)

5

2 16 1200

2 q

10−3

f(z, t)∂t

f(z, t)

logp(x, t)

f(x, t)∂t

logp(x, t)∂xi

≈ =: f(x, t) ,
f(x, t + Δt/2) − f(x, t − Δt/2)

Δt
DΔt

t

≈ =: , ∀i
logp(x + Δx /2, t) − logp(x − Δx /2, t)ei ei

Δx
( logp(x, t))DΔx

x i

(3.3)

ei R
n logp

log det = log det∣
∣

∂fψ

∂z

∣
∣ ∑l

i=1

∣

∣
∣

∂f (i)
ψ

∂z(i)

∣

∣
∣ f

(i)
ψ

= ∘ ⋯ ∘ (z, t)z(i) f
(i−1)
ψ

f
(1)
ψ

= zz(1) f
(i)
ψ
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As per (2.6), we need to calculate the kinetic energy associated with the temporal normalizing �ow and

enforce the constraints. From the Lagrangian perspective, the continuity equation is inherently satis�ed

by the �ow model. However, the initial and terminal conditions at   must be enforced explicitly. To

address this, we introduce two extra terms of KL divergence to penalize the deviation of the VCNF model

at   and  . The objective functional we used is written in time-continuous form as

where   is a weight parameter. While one can use primal-dual algorithms to update the dual variable 

, we �nd in experiments that using a �xed   yields better performance. Note that when implementing

the KL divergence numerically, the term    in 

 can be omitted as it does not depend on

the trainable parameters.

Next, as the kinetic energy contains double integration over both the spatial and temporal dimensions,

we employ a Monte Carlo sampling method. The integration over    is simulated through uniform

sampling from  . As for the integration over  , we �rst sample    from latent distribution 

  and then compute the transformed samples using the normalizing �ow model  , as

described in (2.4).

Lastly, while the velocity �eld can be computed via auto-differentiation, we �nd that the �nite difference

scheme yields satisfactory results while being computationally more ef�cient.

Combining all components, we compute the loss function in a mini-batch setting through the Monte

Carlo sampling method, ensuring a balance between computational ef�ciency and approximation

accuracy. We �rst obtain i.i.d. samples   and   from  , and then approximate

the loss function as 

where    and  . Here,    is the batch size of the samples from the

normalizing �ow models, while    is the batch size of the samples from the initial and target

distributions. In our experiments, we set  .

t = 0, 1

t = 0 1

∫ p(x, t)dxdt + λ ( ( ||p(⋅, 0)) + ( ||p(⋅, 1))) ,∫
1

0

1

2
∥v(x, t)∥2 DKL p0 DKL p1

λ > 0

λ λ

∫ log( (x)) (x)dxp0 p0

( ||p(⋅, 0)) = ∫ log( (x)) (x)dx − ∫ log(p(x, 0)) (x)dxDKL p0 p0 p0 p0

t

[0, 1] x {zj}
Nk
j=1

q(⋅) x = f(z, t)

{z
(i)
j }Nt Nk

i=1, j=1 { ,z
(b,0)
j z

(b,1)
j }Nb

j=1 q(z)

− (logp( , 0) + logp( , 1)) ,
1

NtNk

∑
i=1

Nt

∑
j=1

Nk 1

2
f( , )∥

∥DΔt
t z

(i)
j t(i) ∥

∥
2

2

λ

Nb

∑
j=1

Nb

x
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(1)
j
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(0)
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3.3. Algorithm

With the above discussions, we present Algorithm 3.1 to solve the MFC problem using VCNF. We illustrate

our algorithm using the OT problem. Other related MFC problems can be treated similarly by modifying

the loss function in step 6.

4. Numerical experiments

In this section, we perform numerical experiments to test the effectiveness of our VCNF. All the

experiments were conducted on a single NVIDIA A100 GPU with 40GB memory and CUDA 12.2. with

driver 535.129.03. For all experiments, we use the Adam[43]  optimizer with a learning rate of    for 

 optimization steps. The code reproducing all the experiments can be found in[44].

4.1. Optimal transport

We present the numerical results for OT problems in this subsection. We �rst test the OT problems

between two Gaussian distributions, where a closed-form solution is used to compute the errors. We then

test more general distributions and present qualitative results.

2D OT: Gaussian to Gaussian. Given two Gaussian distributions   and  , the optimal

transport map is given by 

The corresponding optimal �ow map is  . The squared Wasserstein-  distance

between   and   is 

10−3

30000

N ( , )μ0 Σ0 N ( , )μ1 Σ1

T (x) = + A(x − ) , A = .μ1 μ0 Σ−1/2
0 ( )Σ1/2

0 Σ1Σ1/2
0

1/2
Σ−1/2

0

f(⋅, t) = (1 − t)Id + tT (⋅) 2

N ( , )μ0 Σ0 N ( , )μ1 Σ1
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We calculate the accuracy of our method using the above formulations for several different initial and

target distributions listed in Table 1. The benchmarks are squared Wasserstein-2 distances between the

initial and target distributions multiplied by  . The approximated value of squared Wasserstein-2

distances for different penalty   and the relative errors (in bracket) are presented in the table. We leave

the errors for the transportation maps in the appendix.

Benchmark

case 1 36.000

case 2 36.125

case 3 36.860

case 4 36.931

case 5 0.125

case 6 0.860

case 7 0.931

Table 1. Accuracy of VCNF on 2D Gaussian-to-Gaussian in OT problem. The source and target distributions

are Gaussian distributions with different mean and covariances. Mean: in cases 1-4, the source is centered at 

, and the target is centered at  ; in cases 5-7, both the source and the target are centered at  .

Covariances: the source covariance for case 1 is [[1,0], [0,1]]; the source covariance for case 2 and 5 is [[1,0],

[0,0.25]]; the source covariance for case 3 and 6 as [[4,1.5],[1.5,3]]; the source covariance for case 4 and 7: [[5,1],

[1,0.5]]. The covariances for the target distributions are identity matrices for all cases. The   is �xed to be  .

Figure 2 shows a visualization of the optimal transportation process. The red dots show the particle

trajectories from the source distribution to the target distribution. The densities are also visualized at

+ Tr( + − 2 ).∥ − ∥μ0 μ1
2
2 Σ0 Σ1 ( )Σ1/2

0 Σ1Σ1/2
0

1/2

1
2

λ

λ

= 100
λ

= 200
λ

= 500
λ

= 1000
λ

= 2000
λ

= 5000

34.594
(3.90%)

35.296
(1.96%)

35.868
(0.37%)

35.882
(0.33%)

36.341
(0.95%)

36.568
(1.58%)

35.045
(2.99%)

35.606
(1.43%)

36.281
(0.43%)

36.474
(0.97%)

36.799
(1.87%)

37.030
(2.51%)

35.133
(4.69%)

35.572
(3.49%)

36.226
(1.72%)

35.898
(2.61%)

36.892
(0.09%)

37.871
(2.75%)

33.560
(9.13%)

35.370
(4.23%)

36.555
(1.02%)

36.700
(0.63%)

37.090
(0.43%)

37.380
(1.22%)

0.1254
(0.32%)

0.1264
(1.12%)

0.1284
(2.72%)

0.1289
(3.12%)

0.1323
(5.84%)

0.1347
(7.76%)

0.8345
(2.91%)

0.8715
(1.40%)

0.9068
(5.47%)

0.9351
(8.72%)

0.9571
(11.28%)

0.9973
(15.93%)

0.8907
(4.33%)

0.9232
(0.84%)

0.9564
(2.73%)

0.9733
(4.54%)

1.0300
(10.63%)

1.0779
(15.78%)

(−3, −3) (3, 3) (0, 0)

Nt 20
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each time stamp. Greater dots represent earlier time stamps and this convention is kept for later

visualization.

Figure 2. 2D Gaussian-to-Gaussian in OT problem. The source and target distributions are given by 

 and   respectively. We visualize both the density evolution and

several trajectories of the particles. In all the �gures, the density heatmap is plotted for the domain 

. The four red curves represent the trajectories of four starting points 

 moving from upper left to lower right.

2D OT: Gaussian mixture to Gaussian. VCNF can also solve complex transport problems from a Gaussian

mixture distribution to a Gaussian distribution as shown in Figure 3. We compute the transport map from

a mixture of eight Gaussian distributions with centers 

  to a single Gaussian distribution. All eight

trajectories in red dots and the density plot at each time stamp demonstrate the effectiveness of our

VCNF model.

N ( ) ,( )
−3

3

5

1

1

0.5
N ( ) ,( )

0

0

1

0

0

1

[−6, 3] × [−3, 6]

(−5, 3.5), (−5, 2.5), (−1, 3.5), (−1, 2.5)

(5, 0), (3, 4), (0, 5), (−3, 4), (−5, 0), (−3, −4), (0, −5), (3, −4)
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Figure 3. 2D Gaussian mixture-to-Gaussian in OT problem. All trajectories start from the centers of the

Gaussian mixture components, i.e.  ,  ,  ,  ,  ,  ,  ,   and the plot

domain is   The terminal Gaussian distribution is centered at the origin and all

Gaussian distributions have covariance matrix  .

4.2. Regularized Wasserstein proximal operator

In this subsection, we compute the RWPO problem (2.7) using VCNF. We take the initial distribution 

 and the potential function  . To estimate the velocity �eld and

the score function in (2.8), we apply the �nite difference scheme (3.3). The reason we avoid using auto-

differentiation for the score function is that, the number of forward calculations is proportional to the

dimension of the state space, which is not ef�cient in high dimensions. We also remark that gradient

estimators based on control variates can mitigate this issue[45].

Denote by   all the trainable parameters. The objective functional (2.8) is approximately

where   stands for the batch size of the initial condition loss, potential loss, and kinetic energy

loss of the objective function, respectively. The constant    represents the entropy of    which is

irrelavant to the optimization.

(5, 0) (3, 4) (0, 5) (−3, 4) (−5, 0) (−3, −4) (0, −5) (3, −4)

[−7.5, 7.5] × [−7.5, 7.5].

I

∼ N (0, 2(T + 1) /β)ρ0 Id V (x) = ∥x /2∥2

ψ

L(ψ) =

≈

  q(z) dz dt∫
T

0
∫
R
d

1

2
(z, t) + logp( (z, t))

∥

∥
∥∂tfψ

1

β
∇x fψ

∥

∥
∥

2

+ λ ( ||p(⋅, 0)) + [V (x)]DKL p0 Ex∼ (⋅,1 pfψ )#

 
T

2NtNk

∑
i=1

Nt

∑
j=1

Nk

f( , ) + logp( ( , ), )
∥

∥
∥DΔt

t z
(i)
j t(i) 1

β
DΔx

x fψ z
(i)
j t(i) t(i) ∥

∥
∥

2

+ C + (− logp( , 0)) + V ( ( , 1)) ,
λ

Nb

∑
i=1

Nb

x
(0)
i

1

N1
∑
j=1

N1

fψ z
(1)
j

(4.1)

, ,Nb N1 Nk

C p0
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Figure 4. RWPO with initial condition of Gaussian distribution with covariance   and quadratic

potential  . We choose   with t batch size  . The density on the domain 

 is visualized with trajectories starting from   that contract to

the middle.

We perform numerical experiments with different diffusive constants   and report the accuracy in Table

2. We observe that the VCNF model gives reasonable results for a wide range of the penalty parameter  .

Benchmark 

3.386

6.773

4.197

8.394

Table 2. Accuracy of VCNF on solving the RWPO with a quadratic potential.   is the time period and   is the

inverse diffusion coef�cient. The   is �xed to be  . It can be observed from the table that as   increases

and   decreases, the accuracy of our model deteriorates. This may be caused by the density being subject to

greater evolutions.

Regularized Wasserstein proximal operator with double well potential. Next, we consider the

experiments in[46]. We can set    to be a double-well potential, given by 

. The explicit solution is stated in B.1. The

Σ = 4I

V (x) = ∥x /2∥2 T = 2,β = 1,λ = 200 20

[−4, 4] × [−4, 4] (−3, −3), (−3, 3), (3, 3), (3, −3)

β

λ

λ = 100 λ = 200 λ = 500 λ

= 1000
λ

= 2000

β = 1,T
= 1

3.360
(0.79%)

3.380
(0.18%)

3.3984
(0.37%)

3.404
(0.56%)

3.460
(2.18%)

β = 0.5,
T = 1

7.254
(7.10%)

6.856
(1.23%)

7.570
(11.77%)

7.016
(3.60%)

6.872
(1.46%)

β = 1,T
= 2

4.197
(0.01%)

4.184
(0.31%)

4.217
(0.46%)

4.241
(1.05%)

4.284
(2.06%)

β = 0.5,
T = 2

8.944
(6.54%)

8.409
(0.18%)

9.025
(7.51%)

10.207
(21.59%)

9.559
(13.88%)

T β

Nt 20 T

β

V

V (x) = (( − a + ( + a )(( + a + ( − a )/4x1 )2 x2 )2 x1 )2 x2 )2
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value of   is taken to be  . Our solution’s visualization and accuracy summary are presented in Figure

5 and Table 3.

Figure 5. RWPO with initial condition of Gaussian distribution with covariance   and double-well

potential  . We choose  , and 

. The density on domain   is visualized and red points denote the trajectories starting

from the boundary points   and then

contracting to two wells.

Density 

2.621% 2.948% 3.067% 3.281% 3.307% 4.545%

4.129% 4.262% 4.309% 4.357% 4.933% 4.755%

2.766% 3.437% 4.146% 5.566% 6.927% 5.238%

4.008% 3.858% 5.066% 4.916% 4.472% 5.287%

Table 3. Accuracy of VCNF on solving RWPO with Gaussian initial condition and double-well potential.

Throughout the experiments, we change   (the double-well potential) and   (inverse diffusion coef�cient) to

test the accuracy and robustness of VCNF.   is �xed to be   and  .

4.3. Flow matching for Fokker–Planck equation

Lastly, we compute the �ow matching problem for the FP equation using VCNF. With the help of the score

function, one can rewrite the FP equation (2.3) as a continuity equation. Therefore, solving the FP

equation is equivalent to matching the velocity �eld of VCNF to the drift �eld in the FP equation

subtracted by the score function. Note that the score function can be ef�ciently evaluated using VCNF.

a 0.5, 1

Σ = 4/5I

V (x) = (( − 1 + ( + 1 )(( + 1 + ( − 1 )/4x1 )2 x2 )2 x1 )2 x2 )2 T = 2,β = 5,λ = 100

= 10Nt [−2, 2] × [−2, 2]

(−2, −2), (−2, 0), (−2, 2), (0, 2), (2, 2), (2, 0), (2, −2), (0, −2)

λ = 100 λ = 200 λ = 500 λ = 1000 λ = 2000 λ = 5000

β = 5, a = 1

β = 5, a = 0.5

β = 10, a = 1

β = 10, a = 0.5

a β

T 2 = 10Nt
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Recently, solving FP equations under Lagrangian coordinate with neural network is also investigated

in[47], with numerical analysis on the convergence order of the proposed method.

Fokker–Planck equations from Ornstein–Uhlenbeck (OU) processes. We �rst consider the FP equation

for the OU process   By rewriting it as a continuity

equation with velocity given by  , we can solve it by �ow matching with the loss

function 

We remark that this loss function is different from the physics-informed loss function[40], which is

derived from the FP equation via auto-differentiation. Instead, our method only requires �rst-order

derivatives, which is computationally more ef�cient. This loss is also similar to the �ow matching loss

function in[48]. We approximate the integration via Monte Carlo sampling method:

The score function is estimated via �nite differences (3.3). We report the root mean squared error (RMSE)

of the solution of FP equation using our model at time    over a grid of size    on 

. The RMSE error between the computed density    and the true

solution   at   is approximated by Monte Carlo sampling:

where   and   are i.i.d. sampled from  . The results are concluded in Table 4. We observe

that our model is robust and is not sensitive to the penalty parameter  .

p(x, t) = ⋅ (axp(x, t)) + γ p(x, t) , t ∈ [0,T ] .∂t ∇x Δx

−ax − γ logp(x, t)∇x

∫ p(x, t) dxdt + λ ( ||p(⋅, 0)) .∫
T

0
∥v(x, t) + ax + γ logp(x, t)∥∇x

2 DKL p0

L(ψ) ≈ 
1

NtNk

∑
i=1

Nt

∑
j=1

Nk

( , ) + a ( , ) + γ logp( ( , ), )∥
∥∂tfψ z

(i)
j t(i) fψ z

(i)
j t(i) ∇x fψ z

(i)
j t(i) t(i) ∥

∥
2

  + λ (− logp( , 0)) .∑
i=1

Nb

x
(0)
i

(4.2)

T = 1 N = 500 × 500

[−5, 5] × [−5, 5] p(⋅, t) = (⋅, t q(⋅)fψ )#

p∗ t = 1

RMSE( ,p) ≈ ,p∗ ( , t = 1) − p( , t = 1
1

N
∑
i=1

N

p∗ xi xi )2

− −−−−−−−−−−−−−−−−−−−−−−−−−−

⎷


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λ
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Density 

Table 4. Accuracy of VCNF on solving the FP equation via the �ow matching framework. We vary the drift

parameter  . The initial distribution is Gaussian with zero mean and covariance   and  . This table

records the RMSE of the solution obtained by VCNF calculated on a   grid of 

Fokker–Planck equation with non-gradient velocity �eld. In the previous example, the velocity �eld 

 can be viewed as the gradient �eld of some potential function, which gives the FP equation a gradient

�ow interpretation in Wasserstein-  metric space. Moreover, the invariant measure satis�es the detailed

balance condition at equilibrium. However, FP equations with non-gradient velocity �elds are also of

importance[49][50]. Many FP equations admit non-equilibrium stationary states without detailed balance,

this is also closely related to the recent success in generative modeling using diffusion models[51]. In this

section, we consider FP equations with a non-gradient velocity �eld and a “smiling” invariant measure:

The non-gradient velocity �eld is given by a combination of the original gradient vector �eld and a small

Hamiltonian vector �eld perturbation of size 

This Hamiltonian vector �eld perturbation will leave the original invariant measure unchanged while

breaking the detailed balance condition for the stochastic process[50]. Our results are demonstrated in

Figure 6. Similar to (4.2), the objective function   is approximately given by

λ = 100 λ = 200 λ = 500 λ = 1000 λ = 2000 λ = 5000

a = 1 8.274

× 10−4

5.966

× 10−4

5.840

× 10−4

6.776

× 10−4
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× 10−4

1.074
× 10−3

a = 0.5 3.750

× 10−4

1.482

× 10−4

2.477

× 10−4

4.138

× 10−4

4.354

× 10−4

2.812
× 10−3

a 4I γ = 0.5

500 × 500 [−5, 5] × [−5, 5].
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Nt
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with   substituted by  .

Figure 6. FP equation with standard Gaussian initial distribution and “smiling” invariant distribution. The

“smiling” distribution   has potential function  . The   is �xed to be 

. Notice that we choose non-uniform time step for better visualization of the trajectories. The domain of

visualization is   with all trajectories starting at the boundary points 

. All the trajectories converge to the lower hemicycle 

4.4. Scalability of the algorithm

We also test the scalability of the VCNF on solving high dimensional problems. For OT, we can solve for

transport maps between Gaussian distributions over 20D within 17 mins to achieve 1% relative error

using 30000 steps. For the FP equation, our model can handle 10D problems in 34 mins for 30000 steps

and achieve a    absolute    error calculated by Monte Carlo sampling with    samples. For the

RWPO, our algorithm takes 53 mins to run 30000 steps and achieves a relative error of  . We also

�nd that choosing the smallest temporal batch size, i.e.,    throughout all the high-dimensional

experiments is extremely advantageous as it signi�cantly reduces the computational cost while

maintaining a good accuracy.

5. Discussion

In this paper we developed VCNF, which is a neural network-based framework for solving MFC problems

using methods in generative models. In particular, our neural network structure makes use of both CNFs

and neural spline �ows. By leveraging the conditional generative model, one can capture the probability

distribution’s temporal evolution at any given time, which naturally �ts into the trajectory-wise

formulation of the MFC problems. Moreover, the CNF structure allows us to evaluate various quantities of

interests, such as the velocity, kinetic energy, score function, through numerical differentiation and

a( ( , ))fψ z
(i)
j t(i) −v( ( , ))fψ z

(i)
j t(i)

π(x) V (x) = ( + − 4 + ( + 11
4
x2

1 x2
2 )2 x2 )2 δ

0.5

[[−3, 3] × [−3, 3]

(−3, −3), (−3, 0), (−3, 3), (0, 3), (3, 3), (3, 0), (3, −3)

+ = 4.x2
1 x2

2

10−5 L2 108

0.44%

= 1Nt

qeios.com doi.org/10.32388/COTXYL 19

https://www.qeios.com/
https://doi.org/10.32388/COTXYL


Monte–Carlo sampling. By taking a Lagrangian perspective of MFC problems, the objective functional

can be ef�ciently estimated and optimized by Monte–Carlo sampling. We demonstrate the effectiveness

and accuracy of the VCNF in solving various problems, including OT, RWPOs, and controlling non-

gradient vector �eld FP equations. Speci�cally, we solve the initial value FP equation under the

framework of �ow matching technique from generative models. Our model is robust to handle evolution

problems between distributions with different modalities, e.g., from a Gaussian mixture distribution to a

Gaussian distribution. Moreover, our method can be ef�ciently scaled to high dimensions with

reasonable computational cost.

In future work, we shall explore using VCNF on �ow matching problems to simulate general FP

equations, including those with nonlinear drift vector �elds. Another interesting direction is to apply the

proposed framework to real image data sets for solving time-reversible diffusion models.

Appendix A. Implementation details

A.1. Details of the network architecture

We brie�y introduce the conditional normalizing �ow beyond subsection 3.1 with consistent notations.

We refer interested readers to[8] for more details. We �rst discuss how the conditioning network is used

to parametrize the monotonic rational-quadratic spline:

A conditioning neural network    takes    and    as input and outputs a vector    of length 

.

Vector   is partitioned as  , where   have length  , and   has length  .

Vectors   are passed through an elementwise softmax function separately and then multiplied by 

. Two outputs   are both vectors with   positive components that

sum up to  . Therefore, they are used as the width of   bins spanning   in   and   axes, see

Figure 1 of[8]. Equivalently, the nodes of the spline function are given by

The vector   is passed through a softplus function and is interpreted as the values of the derivatives 

 at the internal knots.

NN(k) x1:k t θk
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The above method constructs a monotonic, continuously-differentiable, rational-quadratic spline which

passes through the knots, with the given derivatives at the knots. De�ning 

, the expression for the rational-quadratic spline over the  -th

bin is given by

for  . In practice, we use   bins for each spline transformation layer.

Appendix B. Mathematical formulation of the numerical

experiments

In this section, we provide the details of the mathematical formulations of the numerical experiments

discussed in section 4.

B.1. Regularized Wasserstein proximal operators

Let the initial distribution be  . The FP-HJB system governing the RWPO

problem is

The true solution   is given by 

The solution to the HJB equation is 

The optimal velocity is  . Given the close form solution, we can obtain the exact value of the

objective functional as 

= , ξ(x) = ∈ [0, 1]s(k) −y (k+1) y (k)

−x(k+1) x(k)

x−x(k)

−x(k+1) x(k)
k

= +
(ξ)α(k)

(ξ)β (k)
y (k) ( − )[ + ξ(1 − ξ)]y (k+1) y (k) s(k)ξ2 δ(k)

+ [ + − 2 ]ξ(1 − ξ)s(k) δ(k+1) δ(k) s(k)
(A.2)
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To solve the RWPO problem using our framework, note that the continuity equation contains a diffusion

term, which is equivalent to substracting a score function from the original velocity �eld 

Consequently, the loss function can be directly modi�ed to include the score function 

For generalized potential function  , one has the following kernel solution.

Proposition B.1. (Kernel solutions). The solution to the FP-HJB system for RWPO problem is given by the

following kernel formulation. 

and 

In particular, 

where   is the kernel function

The optimal cost is given by  .

=

=

  (x, t) dx dt + V (x) (x, t) dx∫
T

0
∫
R
d

1

2
∥ (x, t)∥v∗ 2

p∗ ∫
R
d
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R
d

∥x∥2

2(T − t + 1)2
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(B.1)
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B.2. Fokker–Planck equation

We �rst consider the FP equation corresponding to the Ornstein–Uhlenbeck (OU) process with constant

drift   and constant diffusion 

Using Itô’s calculus, we have 

Taking expectations on both sides, we obtain that the second moment of   satis�es the following ODE 

The analytic solution of (B.6) is given by  , which is used to calculate the

accuracy of VCNF.
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