Many modeling and functionalization technologies are being developed to control the location, distribution, amount, or structure and orientation of biological nanomolecules at the nanomaterial level. Therefore, our level of contact between biological nanomolecules and nanomaterials is of particular importance in countless applications. Covalent and non-covalent modifications are two general methods for coupling biological molecules and CP nanomaterials. Covalent functionalization is a chemical process in which a strong bond or relationship between nanomaterials and biological molecules is formed. In many cases, surface chemical modifications are required to create active groups that can bind to biomolecules. Unlike covalent functionalization, in the non-covalent method, nanomolecules can be removed without destroying the geometric and electronic structure on the surface. Nanomaterials are formed.

Conclusion:

The large surface-to-volume ratio in nanostructures and the high potential for signal amplification provide ideal conditions for marking and detecting biological elements in the structure of nanosensors.

References

1. ^Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption,". Qeios. doi:10.32388/z3oxov.
circuits (positive and negative)". Qeios. doi:10.32388/jreu5m.

8. ^Chad Allen. (2024). Review of: "FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities". Qeios. doi:10.32388/h3qk7b.

26. *Afshin Rashid. (2024). Review of: "In general, an electrical nano-biosensor consists of an immobilized static biological system (based on their own built-in immobilized static biological system)". Qeios. doi:10.32388/pq6ho0.

28. *Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas". Qeios. doi:10.32388/a0nexa.

29. *Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas". Qeios. doi:10.32388/a0nexa.

32. *Lola Carterr. (2024). Review of: "CP materials are able to provide sensitive and rapid responses to specific biological and chemical species". Qeios. doi:10.32388/nseza9.

33. *Lola Carterr. (2024). Review of: "So far, arrays of electrostatic nanocapacitors cannot store much total energy because they are too small". Qeios. doi:10.32388/csrr0u.