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Animal data can provide meaningful context for human gene expression at the single-cell level. This

can improve cell-type detection and clarify how well animal models represent human biology. To

achieve this, we propose a deep learning approach that identi�es a uni�ed latent space to map

complex patterns between datasets. The proposed method is tested to facilitate information transfer

in liver, adipose tissue, and glioblastoma datasets from various animal models. Our results are robust

for small datasets and large differences in the observed gene sets. Thus, we reliably uncover and

exploit similarities between species to provide context for human single-cell data.
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1. Background

Model organisms are crucial in advancing biomedical research by offering advantages such as easy

genetic manipulation and access to datasets from a variety of experimental contexts[1]. As a popular

choice, mouse models have signi�cantly contributed to the study of human diseases[2], including

diabetes[3], glioblastoma[4], and non-alcoholic fatty liver disease[5]. However, translating experimental

�ndings to humans is challenging owing to biological differences between species. Efforts to bridge this

evolutionary gap include engineered mouse models that replicate human biology more closely[6]. The
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emergence of single-cell RNA sequencing (scRNA-seq) has also opened up opportunities for deep

learning approaches to compare experimental �ndings across species.

Transfer learning techniques have established themselves as powerful tools for sharing information

between scRNA-seq datasets. These approaches often use encoder-decoder architectures to compress

datasets into a low-dimensional manifold. Examples include Cell BLAST[7] and ItClust[8], which annotate

and cluster cells based on knowledge transfer from reference datasets.

Architecture surgery techniques adjust network architectures according to the characteristics of different

datasets. After pretraining, additional neurons are inserted into the encoder and decoder input layers.

These neurons correct for unseen batch effects in the new data, while all other weights remain �xed

during subsequent training. This approach, pioneered by scArches[9], now spans a diverse set of

models[10][11][12]. Despite the method’s success, two primary challenges remain unaddressed for datasets

of different species (Figure 4).

First, some genes lack orthologs in other genomes, which requires different interpretations of certain

input nodes in their neural network architectures. For example, 20% of human protein-coding genes and

a signi�cant percentage of small and long noncoding RNAs lack one-to-one mouse orthologs[13]. To

enable training, architecture surgery-based approaches restrict datasets to orthologous genes or zero-�ll

missing values. Outside of architecture surgery, some models like SATURN[14]  and TACTiCS[15]  match

genes via protein sequences with transformer-based language models.

The second challenge is that biological similarities between cells do not always translate into similar

gene expression patterns, which can vary signi�cantly between species[13]. Therefore, neural networks

may struggle to recognize similar cells.

To account for differences between gene sets and expression levels, we introduce scSpecies. Our approach

pretrains a conditional variational autoencoder-based model[16] and fully reinitializes the encoder input

layers and the decoder network during �ne-tuning. Architecture alignment is guided by a nearest

neighbor search performed on homologous genes, which estimates the similarity between cells in both

datasets. This incentivizes our model to map biologically related cells into similar regions of the latent

space. The neighbor search requires only a small subset of observed genes to be homologs, while all

remaining genes can have no relationship at all. Moreover, scSpecies enables nuanced comparisons of

gene expression pro�les by generating gene expression values for both species from a single latent

variable.
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We tested our method on data from various species and organs, including liver cells[17], white adipose

tissue cells[18], and glioblastoma immune response cells[19]. Our results demonstrate that scSpecies

effectively aligns network architectures and latent representations. We improve upon cell label transfer

from the initial nearest neighbor search and existing architecture surgery approaches when measured in

terms of accuracy and multiple clustering metrics.

2. Results

Figure 1. Graphical representation of the scSpecies work�ow. Step 1: The encoder and decoder neural

networks are trained on the dataset of the context species. The weights of the last encoder layers are

incorporated into the encoder model for the target species. Step 2: A nearest neighbor search is performed on

the shared genes of the context and target dataset. This identi�es a set of   context neighbors for every target

cell. Step 3: The cells of the target dataset are encoded into the latent space. For cells with high agreement

among the cell labels of their neighbors, we retrieve the latent variables of their neighbors. Step 4: The latent

values of their   neighbors are passed to the decoder together with the human batch label. Step 5: The optimal

candidate among the   neighbors is chosen as the cell with the highest log-likelihood. Step 6: The distance

between the optimal candidate and the intermediate representation of its target cell is minimized. Step 7:

After training, normalized gene expression pro�les can be compared by decoding latent variables with both

decoder networks. Additionally, labels can be transferred via the aligned latent representation.

We present scSpecies, a tool for researchers who wish to use one scRNA-seq dataset as a context for

another from a different species. In the following, the dataset of the model organism is referred to as the

’context dataset’, and the dataset of the target organism is referred to as the ’target dataset’. scSpecies

aligns context scRNA-seq datasets with human target data, enabling the analysis of similarities and

differences between the datasets.

In addition to the context and target datasets, the model requires a sequence containing indices of

homologous genes, indicator variables for batch effects, and cell type labels for the context dataset.

The proposed work�ow (Figure  1) aligns the network architectures of two single-cell variational

inference (scVI)[20]  models in a pretraining strategy. In scVI, encoder neural networks map gene

expression vectors into a compressed latent space separating cells by biological features. Conversely, a
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decoder maps from this low-dimensional representation onto parameters of a negative binomial

distribution to (re-)generate gene expression data.

First, our proposed approach pretrains a scVI model on the context dataset. Afterwards, the last encoder

layers are transferred into a second scVI model for the target species. The aim of this architecture transfer

is to share learned information within the network weights between datasets and species. During

subsequent �ne-tuning, the shared weights remain frozen while all other weights are optimized.

Unlike existing architecture surgery approaches, we align the architectures in a reduced intermediate

feature space instead of at the data level. This approach is inspired by the notion of midlevel features

from computer vision[21][22]. These represent abstractions of the input image learned by neural networks

in their intermediate layers. Midlevel features combine individual elements into more general structures,

such as contours, speci�c shapes, or parts of objects. Transfer learning approaches then retrain the last

layers to transition these intermediate representations into task-speci�c network outputs for different

datasets[23].

Unlike images, scRNA-seq datasets lack ordered patterns as gene expression vectors can be permuted

without changing their information content. Nevertheless, the �rst encoder layers translate dataset-

speci�c features, such as in�uences of experimental batches or interactions between observed genes,

into a higher abstraction level (Figure  5). The resulting representation may correspond to more

fundamental cell properties that are less perceptible to noise and systematic differences between species.

To connect the new encoder layers with the pretrained structure, we identify sets of similar cells through

a nearest neighbor search performed on homologous genes. Afterward, scSpecies minimizes the distance

between a target cell’s midlevel representation and a suitable candidate from its set of neighbors. The

model determines the most suitable context cell as the candidate whose decoded latent representation

yields the highest log-density value at the location of the target cell within the decoder’s distribution. To

counter misclassi�cations, we align midlevel features for only those target cells whose context neighbors

have high agreement in their cell labels.

During model �tting, we thus encode similarity information both at the original data level and at the

level of learned features. The aligned latent space then captures cross-species similarity relationships

based on the �tted model, which facilitates information transfer across species.
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2.1. scSpecies aligns architectures across species

Figure 2. Visualization of the aligned representations for three dataset pairs obtained by training scSpecies

with a set of 25 neighbors. We color cells by �ne cell type labels for the liver and glioblastoma datasets, and by

coarse cell labels for the adipose tissue dataset. On the left, the bar plots indicate the accuracy of cell label

transfer through a nearest neighbor search in the aligned latent space. The left y-axis labels indicate cell type

codes corresponding to human cell labels. These codes are referenced in the legend. The bars contain the

frequency of assigned mouse cell labels. The results are averaged over �ve random seeds. The left y-axis

labels indicate improvement in accuracy for shared cell types over the data-level nearest neighbor search. In

addition to the bar plots, the UMAP coordinates of the aligned latent representations are visualized. The

lymphoid cell types are colored in green and brown; the myeloid cell types are colored blue and purple; and

the CD45  cell types are colored red, pink and yellow. The cells from the other dataset are indicated in a light

gray.

−
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We applied the scSpecies work�ow to three mouse-human dataset pairs containing liver cells, white

adipose tissue cells, and immune response cells to glioblastoma.

We visually examined alignment through UMAP coordinates[24]  of the combined latent variables of

dataset pairs (Figure  2). The 2D representation showed biologically meaningful alignment of the cells.

Cell types without context counterparts aligned with related cell types or formed distinct clusters.

To facilitate label and information transfer for target cells, we conducted a second nearest neighbor

search on the shared latent representation of both datasets. Afterwards, we inferred target cell labels

from their set of latent context neighbors via majority voting. For labels at the subcell type resolution, the

accuracy was 73% for liver, 49% for adipose tissue, and 69% for glioblastoma datasets. Misclassi�cations

mostly occurred within biologically related cells belonging to the same overarching cell type. For broader

cell type labels, accuracy increased to 92% for the liver, 82% for the adipose tissue, and 80% for the

glioblastoma dataset. These values represent signi�cant improvements upon the data-level nearest

neighbor search and existing architecture surgery approaches (Table 3). We also calculated the adjusted

Rand index and adjusted mutual information and observed improvements in these metrics.

We observed a greater increase in label transfer accuracy for cell types with noisy data-level nearest

neighbor search but clear separation in their pretrained latent space. For example, the initial neighbor

search matched less than half of all human liver basophils (cluster M.2.1) with mouse counterparts. This

value improved to over 90% through our method. However, in the adipose tissue datasets, neither the

context scVI model nor the nearest neighbor search separated dendritic cells, monocytes, and

macrophages. Thus, scSpecies could not separate these cell types either.

The results were consistent over architecture variations and averaged over �ve random seeds; however,

for cell types with noisy neighbor search results, like hepatocytes or portal vein endothelial cells,

misclassi�cations of the whole cell type occurred in one random seed.

We also tested scSpecies in a scenario where the target dataset was small but equally diverse in terms of

cell types and batch effects. Speci�cally, we randomly sampled 5000 cells from the human liver dataset

and trained the model to align with the full mouse context dataset. We repeated sampling and training

ten times and obtained accuracy scores of 88% and 68% for coarse and �ne cell labels, respectively, which

still indicates reasonable performance.
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2.2. The nearest neighbor search is an important component of scSpecies

We explored the importance of incorporating the nearest neighbor search into scSpecies. (Table  3)

Without this component, we observed misaligned latent representations and signi�cantly reduced label

transfer accuracy. Initializing the inner encoder layers with random, frozen weights yielded similar

results to using the pretrained structure. This implies that without an explicit neighbor alignment

component, transferred layers were treated like random nuisances.

Training with one neighbor forced the model to align some cells with mismatched counterparts as the

approach could not choose from a set of suitable options. We observed meaningful alignment but with

reduced performance.

Training with 25 neighbors improved the results noticeably on all datasets. To investigate the preferred

candidate choice, we tracked the cell prototypes during alignment. We created context and target

prototype cells consisting of empirical median gene expression values within a cell type. For each target

prototype, we included all context prototypes within its set of candidates and tracked their log-

likelihoods during alignment (Figure 10). At onset, the likelihoods for all prototypes were nearly equal.

This resulted in alignment driven by chance favoring cell candidates of the most occurring cell label. For

cell types with a noisy neighbor set, corrections during later training stages eventually aligned them with

appropriate prototypes. We observed this with hepatocytes, migratory cDCs, and basophils, which had

nearest neighbor search accuracies of 56%, 61%, and 45%, respectively. The cell types where the neighbor

search yielded predominantly incorrect results did not align correctly, such as killer T cells and cytotoxic

CD8  cells, which had initial accuracies of only 11% and 1%, respectively.

Finally, alignment with a large neighbor set caused neglect of rare cell types, resulting in lower

corresponding accuracy scores. Metrics such as the adjusted Rand index and adjusted mutual

information were comparable or improved, as they do not re�ect different cell type label sizes.

2.3. scSpecies can help to better separate latent cell clusters

To investigate the intermediate representations, we compared the clustering quality of intermediate

representations in unaligned and aligned scVI architectures. We found that clustering based on

experimental batches became increasingly mixed as the data progressed toward the latent space. In the

unaligned architectures, the Davies-Bouldin index (DBI) increased from 10 to 21.9 in the mouse context,

and from 15.8 to 33.5 in the human liver dataset. Conversely, cell type clusters showed increasingly better

+
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separation, resulting in a DBI reduction from 4.6 to 1.6 and from 4.9 to 2.4 for the mouse and human

datasets, respectively (Figures 5,6,7).

This phenomenon is caused by the design of scVI, which removes batch in�uences to enforce a normal

distribution in the latent space. Batch patterns are added by the decoder through their provided labels.

However, scVI must separate cell types to reconstruct cell characteristics from the latent representation.

Yet, certain cell types in the human liver dataset, such as hepatocytes, stellate cells, and �broblasts, are

predominantly associated with a single batch label. Consequently, the model inferred cell type

information from batch labels, removing biological characteristics from their latent variables. However,

these cell types were still separated in the intermediate spaces which are not regularized to follow a

normal distribution.

Alignment adjusted the target encoder architecture to the well-separated latent mouse context

representation. This improved latent cell cluster separation, as measured by a decrease in DBI from 2.4 to

1.8. For white adipose tissue and glioblastoma dataset pairs, clustering improvement was marginal, with

a decrease in DBI from 1.7 to 1.6 and from 2.2 to 2, respectively.

We also studied the effectiveness of directly aligning latent representations. Direct latent alignment does

not require access to the context model weights. However, we observed a decline in performance metrics

across all datasets. This underlines the potential of better alignment within the more information-rich

midlevel feature spaces.
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2.4. scSpecies can align datasets of multiple species

Figure 3. We utilized scSpecies to obtain an aligned liver cell landscape that spans multiple species. The

mouse dataset serves as a context for each species.

We employed scSpecies to simultaneously align liver cells from mice with fatty liver disease, humans,

pigs, monkeys, chickens, and hamsters, using a context dataset of healthy mice (Figure 3).

We successfully obtained aligned latent representations across species, despite fewer than half of the

genes having mouse orthologs in some datasets.

An intriguing application of scSpecies is the potential to align datasets with very limited gene coverage,

or even when there is no overlap in the observed gene set. This can be achieved by aligning each dataset

to a comprehensive context dataset that shares a common gene set with both.

However, a limitation of this approach is its inability to align cell types not present in the context dataset.

For example, plasma cells, which were absent from the mouse dataset, were not aligned across the

human, pig, and hamster datasets.
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2.5. scSpecies offers insights into the genetic manifestations of cells across species

To better understand the similarities and differences between context and target datasets, e.g., to clarify

in what aspects an animal might be a good model of human biological processes, we extended our

analysis from the latent space to the data level. Here, we compared the reconstructed gene expression

pro�les and assigned relevance scores to the input genes.

We decoded latent representations using both decoder models to obtain normalized gene expression

vectors for each species. These vectors allow us to compare and analyze the gene expression pro�les of

cells that have similar underlying biological properties. This analysis bene�ts from the correspondence

between latent representations of both species, which is dif�cult to establish at the data level.

For our investigation, we focused on cell types present in both the mouse and human liver datasets. We

assessed Log2Fold changes (LFCs) in normalized gene expression vectors, which indicate differences in

gene expression levels between species. We also calculated the probability of observing genes as

differentially expressed when sampling from the latent distribution of a cell type (Figure 8). Averaging

across cell types revealed that 56% of the genes exhibited an LFC value above one. Among these, 15% of

mouse genes were upregulated and 21% were downregulated compared with their human counterparts in

over 90% of decoded cells. With an LFC threshold of two, 24% of genes had an LFC outside this boundary.

With an LFC value of 0.4, a substantial 82% of genes showed an LFC outside this boundary. These results

agree in magnitude with[25], who found an LFC value of greater than 0.4 in 78% of genes comparing

humans with non-alcoholic liver disease and mice on a high-fat diet.

For white adipose tissue datasets, 50%, and for glioblastoma datasets, 47% of genes exhibited an LFC

value greater than one.

We compared this with training on context-target dataset pairs of healthy mice and mice with liver

disease. Here, only 22% of genes had an LFC value above one. Of those differentially expressed genes, 4%

and 5% were upregulated and downregulated in more than 90% of samples. Only 6% of genes had an LFC

over two, while 55% of genes showed LFC values above 0.4.

We extended our study by calculating relevance scores via Layer-wise relevance propagation (LRP)

[26] (Figure 9). These scores measure each gene’s contribution to a cell’s latent value, offering insights into

the learned signi�cance of speci�c genes across different cell types and species. LRP was recently used to

explain neural network predictions on scRNA-seq data[27].
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First, we found no signi�cant difference in relevance scores between non-homologous and shared genes,

suggesting that training networks on a reduced gene set omits informative parts of the data.

Second, we found that the relevance scores were correlated with the gene expression levels. For the mice

and human liver datasets, we found a Spearman’s    between the expression level of genes and their

relevance scores of 0.67 and 0.69 and a Pearson correlation coef�cient of 0.63 and 0.71. This suggests that

differences in gene expression translate into relevant features for the neural networks. A gene with high

relevance scores across most cell types was MALAT1, which is highly conserved across mammals[28].

3. Discussion

We introduced scSpecies, a novel deep learning approach designed to align neural network architectures

across different species. Aligning such architectures has been a challenging task due to differences in

genomes between species and variations in gene expression levels, even among homologous genes. Key

features of scSpecies include the retraining of the �rst encoder layers and integrating a nearest neighbor

search within the model. By focusing on the alignment of intermediate neural network layers rather than

the input layers, scSpecies captures more abstract biological properties that are less affected by noise and

species-speci�c variations. Additionally, the integration of a nearest neighbor search based on

homologous genes leverages model-based similarity information to guide the alignment process,

ensuring that biologically similar cells are mapped closely in the latent space.

Our results demonstrate that scSpecies effectively aligns scRNA-seq data from diverse species, including

mouse, human, pig, monkey, chicken, and hamster, across various tissues such as liver, white adipose

tissue, and glioblastoma cells. The method shows robust performance even when the datasets have a

limited number of shared genes or when the target dataset is small but diverse.

However, one limitation of the presented method is that cell types unique to the target dataset tend to be

aligned with biologically close cell types in the context dataset instead of being identi�ed as new clusters

by the model. This could lead to misinterpretation of species-speci�c cell populations. Additionally, when

creating a collection of multiple species, cell types not present in the context dataset will not align across

species that exhibit them. To avoid misalignment, the context dataset should therefore encompass all

suspected cell types of the reference datasets.

There remain multiple potential directions for further development of our approach. While we initially

tested scSpecies with a scVI base model, the method could be easily adapted to other CVAE-based models

in the future. Furthermore, scSpecies could be extended to handle multimodal datasets, such as those

ρ
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integrating scRNA-seq with protein expression data (CITE-seq). Our method would also bene�t from a

direct metric that identi�es cell types unique to the target datasets and detects cells that may be

misclassi�ed due to noisy nearest neighbor search results.

4. Conclusions

We have introduced scSpecies, a novel deep learning approach that extends architecture surgery

techniques to align scRNA-seq datasets across species. By retraining the �rst encoder layers, our method

overcomes challenges posed by non-orthologous genes and divergent gene expression patterns, enabling

more accurate cross-species comparisons. By aligning datasets from multiple species — even with

minimal gene overlap — scSpecies provides a framework to better understand and compare the cellular

and molecular similarities and differences of scRNA-seq datasets across species. Therefore, we envision

that our method could lead to more effective translation of experimental �ndings from model organisms

to humans, ultimately advancing our understanding of human biology.

5. Methods

In the following, we represent multidimensional vectors using bold italics and scalar values in regular

italics. Dataset elements are indicated with superscript indices, and vector positions with subscript

indices. The context dataset is indicated by the subscript    and the target dataset by the subscript  .

Superscripts and subscripts are omitted when they are exchangeable. Random variables are expressed in

a sans-serif mathematical font, as in  . We represent distributions of random variables with

uppercase letters, such as  , and their probability density functions with lowercase letters, like  .

Conditional distributions are denoted as  . In the following, we brie�y describe the scVI

model, which we subsequently use as a core of our proposed approach.

5.1. Single cell variational inference

Consider a dataset   obtained through a single-cell RNA sequencing experiment. The

mathematical model behind scVI[20] assumes that gene expression count vectors  , and batch indicator

variables  , correspond to observations of random variables    and  . The gene expression data

distribution   is conditioned on its batch effect  . This accounts for technical artifacts during data

collection. Within an experimental batch, gene expression vectors are independent and identically

distributed samples from  .

C T

X, Z, L

PZ (z)pZ

:=PX|s PX|S=s

D = {( , )}x(i) s(i) M

i=1

x

s X S

PX|s S = s

PX|s
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scVI models the data distribution within a parametric family. Building on conditional variational

autoencoders[16], a latent variable model is introduced. The random variable  , corresponding to the

representation of a cell in the latent space  , is employed to capture biological variability among cells in

the dataset. The one-dimensional random variable    with latent space    accounts for technical

variability due to different library sizes. Within the model, data is generated by drawing samples for 

  and    from a prior distribution  . Then, gene expression data is generated by drawing from the

sampling distribution  .

The data p.d.f.   can be expressed by integrating the joint probability across the latent spaces and then

applying the general product rule of probability,

To approximate this integral, scVI performs variational inference on the intractable posterior

distribution  . Therefore, the posterior probability is approximated by a variational distribution,

denoted as  . Further, scVI applies a mean �eld approximation, where p.d.fs of both

variational and prior distribution are factorized,

The prior    is assumed to be independent of    and �xed as standard normal distribution 

. The prior    is set as a log-normal distribution  . The

prior parameters are derived from empirical batch means and variances of the observed log-library sizes.

The variational distribution   is chosen as a normal distribution  , and   is set as a

log-normal distribution  .

The parameters for these distributions are determined by two encoder neural networks,

scVI obtains latent variables by sampling from the variational distributions through the

reparametrization trick[29].

The sampling distribution    for generating gene-expression data from a given latent variable is

assumed to follow a Gamma-Poisson mixture, resulting in a negative binomial distribution. The

corresponding decoder network outputs a denoised gene expression vector that sums to one.

Z

R
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L R>0

Z L PZ,L|s
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(x) = (x) (z, l) dzdl.pX|s ∫
z
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l
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PZ S

= N(0, )PZ Id PL|s = LogNormal( s, s)PL|s l⊤
μ l⊤

σ2

QZ|x,s N ( , )μZ σ2
Z

Id QL|x,s

LogNormal( , )μL σ2
L

(x, s) = ( , ) and  (x, s) = ( , ).fenc Z μZ σZ fenc L μL σL (3)

PX|z,l,s

(z, s) = ρ,   = 1.fdec ∑
g=1

N

ρg (4)

qeios.com doi.org/10.32388/D37AFF 13

https://www.qeios.com/
https://doi.org/10.32388/D37AFF


The value    provides an estimate of the percentage of transcripts in a cell that originate from gene  .

Gene expression values    can be drawn from a negative binomial distribution 

  parameterized by mean    and dispersion  . The dispersion parameter is constant for

every gene across cells of batch  . To address the potential issue of dropout, a zero-in�ated negative

binomial distribution can be used to model count data. The dropout probability parameter    is also

obtained from the decoder network. The weights of the three neural networks and the parameters 

 are optimized simultaneously by empirically estimating and maximizing the ELBO function

on mini batches  .

5.2. The scSpecies approach

We consider a scenario involving two scRNA-seq datasets,

Their data points consist of gene expression measurements    and batch indicator variables    from a

context species   and a target species  . Furthermore, context count vectors are clustered into distinct

groups based on cell type labels  , whereas target labels   are unknown.

The count vectors from both datasets share a gene subset   comprising count values from homologous

genes,

The number of non-homologous genes can differ in both datasets, either because a gene has no ortholog

in the genome of the other species or because it is not observed within the dataset. Therefore, gene

expression vectors can be of different dimension,  .

To map both datasets into a uni�ed latent space, we de�ne separate scVI models for each dataset,

We divide the training procedure for scSpecies into three steps: Training of the context scVI model,

followed by an initial data-level nearest neighbor search, and alignment of context and target latent

representations.
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5.2.1. Pretraining on the context dataset

First, the model    is trained on the context dataset by minimizing its negative ELBO function.

Following training, the architecture of the encoder network for the latent variable   is split up into two

parts:

The outer part   consists of the �rst   layer functions and maps data from the input space   to an

intermediate feature space  . The inner part,  , consists of the last    layers. It encodes an

intermediate representation onto the variational parameters with subsequent reparametrization into the

latent space  . We incorporate this inner encoder part into the encoder architecture of  ,

5.2.2. Nearest neighbor search

When the �rst layers are initialized randomly, the target model    cannot leverage the learned

structure in its subsequent encoder layers. To leverage the learned weights, we incentivize alignment of

intermediate target representations with intermediate features of similar context cells. This leads to an

aligned latent space as layer weights mapping from the intermediate space to the latent space are not

updated. To quantify similarity and establish a direct correspondence between cells of context and target

dataset, we perform a nearest neighbor search on the shared homologous gene subset  .  The nearest

neighbors serve as a set of candidates for every target cell from which the model can choose a best �t to

align their intermediate representations during the last training phase.

The nearest neighbor search identi�es an index set   of   nearest neighbors for every target

gene count vector  . That is, for every context cell with index  , the chosen measure of

association1 between the homologous gene counts   and   is lower than for cells outside the set:

Common metrics or distance functions can be used as a measure of association    to compare count

values of single-cell data. Some popular choices have been investigated in[30]. We utilize cosine similarity,

measuring the cosine of the angle between log1p-transformed count vectors, as it is fast to calculate even

on datasets containing numerous samples:
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The data-level nearest neighbor search can also be used to assign preliminary labels. We count the

multiplicity of cell labels for all context neighbors and assign, as a preliminary label prediction, the most

occurring label,

As the data-level nearest neighbor search is noisy, we additionally assign agreement scores based on the

occurrence of a cell label prediction  .

A higher agreement score indicates lower noise, as there is high agreement among cell labels of the

context neighbors. During the following alignment, only target cells exhibiting high agreement scores

are considered for alignment in the intermediate space. For this, we collect all agreement scores for target

cells predicted to have label    and compute the quantile at level    over this set  .

Finally, we collect the indices of all target cells whose agreement scores of their predicted cell label are

higher than the quantile   at level  , 

5.2.3. Aligning the intermediate and latent representations

During alignment, the weights of the pretrained encoder part   are not updated. To guide the model

towards leveraging the learned structure, scSpecies aligns intermediate representations with high

accuracy scores

with a representation of a suitable context neighbor representation

This is facilitated by minimizing the squared Euclidean distance.
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The optimal choice   for minimization among the   candidates is dynamically determined during

the alignment phase: First, we obtain a set of latent context neighbor variables for the target cells

considered during alignment,

These latent variables   are then decoded with the batch indicator variable   of their target cell. The

decoder output and target library size    parameterize a sampling distribution  , which is

used to calculate log density values for every candidate. The cell   whose latent representation results in

the highest log density value at   is chosen as optimal neighbor candidate:

Using this procedure, it is possible to assign a context neighbor with a �tting cell type if at least one

candidate with this cell type is found in this set. The training criterion for the model   on the target

dataset for a data point is

where   is the Iverson Bracket that takes value   when an index of a target cell   is in  , and 

  otherwise. This holds true for cells that exhibited a high degree of agreement during the data-level

nearest neighbor search. As minimization in the intermediate space is only incentivized for cells with

these indices, the remaining cells within a mini-batch are grouped around them in a way that minimizes

the nELBO of the scVI model.

The scalars    weighing different parts of the loss function, the quantile niveau    and

number of nearest neighbors   are hyperparameters.

5.2.4. Transferring cell states and cell types

The aligned latent representations   and   can be analyzed for similarities

and differences. For example, their dimensionality can be further reduced into two dimensions using a

dimension reduction algorithm like UMAP[24]. To remove the random in�uence of the latent sampling

process, we calculate UMAP coordinates using the variational mean parameters  .

We can transfer cell labels or cell states from the context to target species by performing a second

neighbor search on aligned latent representations. A suitable measure of association is the learned log-
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density, as it considers the learned manifold of the latent space:

We transfer the most common cell type among the top   candidates to the target cell.

5.2.5. Comparison of gene pro�les

To perform a comparison of gene expression pro�les between cells of context and target dataset, we

tailor the methods outlined in[31] and[32] to scSpecies. For a latent variable  , we obtain normalized gene

expression pro�les by decoding it with both decoder networks and averaging over all possible batches  :

Differences in gene expression pro�les can be analyzed for homologous genes, for example, by

calculating the log2-fold change (LFC)

For genes   with low expression levels in both species but still high differences, the offset   ensures the

associated LFC maintains a low order of magnitude. We modify the decoder output layers to avoid

artifacts from the softmax function. These artifacts can arise due to highly expressed non-homologous

genes or due to different data dimensions. We apply the softmax function to homologous and non-

homologous genes separately to obtain

where    is the dimensionality of the gene expression vector and   the number of homologous genes.

Afterwards, both vectors are scaled so that they sum to one,

Following[32], for a cell type   we calculate a mixture distribution of latent states.

The set    is the set of cells with label    with removed outliers. These outliers are identi�ed by

estimating the covariance matrix from variational mean samples  . Cells whose variational mean falls
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outside the 90%-con�dence ellipse described by the covariance estimate are removed. An LFC

distribution of homologous genes for cell types present in both datasets can be estimated by sampling

latent variables from   and computing the corresponding LFC values  . We calculate the median of

the empirical LFC distribution as well as the probability    of observing an LFC in gene 

 higher than level  .

5.3. Layer-wise relevance propagation

In the following, we brie�y describe Layer-wise Relevance Propagation (LRP)[26]. LRP explains the

output   of a neural network   by decomposing it into local contributions of input nodes  , called

relevance scores  [26]. These relevance scores serve as a measure of each input’s in�uence on the

network’s output: positive scores ( ) signify a positive in�uence, whereas negative scores ( )

indicate a negative effect. LRP structurally decomposes the function learned by neural networks into a

set of smaller, simpler sub-functions of adjacent layers, while ensuring the conservation of relevance

scores across the network. This applies locally, where the sum of the relevance score    is conserved

across two successive layers of the neural network, and globally between the resulting relevance score for

each input node   and the output   of the model[26].

Considering a neural network with ReLU activation function, the output   of a neuron is given by the

input   of the previous layer and their connected weights   of the neurons by

including the bias with  . The relevance scores    describe the contribution of each neuron

activation   to  . They can be computed by the LRP-  rule through

Here,    are the positive weights, while    controls how much these positive contributions are

emphasized[33]. LRP methodology aligns with the principles of Deep Taylor Decomposition, which

breaks down and redistributes the network’s output function    layer by layer through Taylor series

expansions. This decomposition allows for the derivation of various LRP rules tailored to the network

architecture and the speci�c function being analyzed[34]. To compute relevance scores for context and

target gene expression vectors    we propagated the relevance of their latent variational mean

parameters   through the corresponding encoder network. We aggregate relevance scores through
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lk

Rk (29)

w+
jk

γ

f(x)

,xC xT

,μC μT

qeios.com doi.org/10.32388/D37AFF 19

https://www.qeios.com/
https://doi.org/10.32388/D37AFF


averaging over latent dimensions and data points of a cell type. A direct comparison of scores between

species is complicated by the in�uence of non-homologous genes and batch-effects on the relevance

scores of homologous genes through the conservation property. Rather, ranked lists of genes by scores

can be compared across species.

5.4. Metrics

We evaluated label transfer and clustering performance using four key metrics:

BAS: The balanced accuracy score calculates the proportion of cells correctly labeled in both context

and target datasets, averaging over all shared cell types and adjusting for the occurrence of smaller

cell labels by weighing them equally.

ARI: The adjusted Rand index[35]  measures the similarity between predicted and true cell labels,

correcting for chance. It considers both correct pairings and misclassi�cations.

AMI: The adjusted mutual information[35]  quanti�es how much information the predicted labels

share with the true labels, adjusting for random label assignments.

DBI: The Davies-Bouldin index[36]  evaluates clustering quality by comparing the compactness of

clusters to the separation between them. Lower values indicate better clustering.

These metrics collectively assess the accuracy of cell type label transfer and the quality of cell clustering

in the aligned latent space. Details regarding their calculation are found in the documentation of the

package skikit learn[37] which we used to calculate these metrics.
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5.5. Hyperparameters

Model Layer In Architecture Out

1 300

1 300 200

2 200 10

1 200

2 200 1

1 200

2 200 300

3 300

Table 1. The network architecture used for all models.   denotes the gene expression data dimension, and 

 the number of batch effects. Layer functions contain an af�ne linear transformation, followed by layer

normalization (LN), ReLU activation functions which are clipped to the interval  , and dropout layers with

a dropout rate of  . Latent representations are obtained from the variational mean and scale encoder

model output via the reparametrization trick.

All models were trained with the same network architecture. Gene expression was modeled using a zero-

in�ated negative binomial distribution with constant dispersion for genes within an experimental batch.

We chose a 10-dimensional latent space and a 300-dimensional intermediate space and mapped to and

from these spaces with network architectures listed in Table  1. We trained models for 30 epochs on

datasets with more than 10,000 cells and 60 epochs on datasets with less observed samples. Network

parameters were updated with the ADAM optimizer[38] using standard hyperparameters and a batch size

of  .

fouter N+ S − →−−−−−−−−−−−−−−
Linear, LN, ReLU, Dropout

finner

− →−−−−−−−−−−−−−−
Linear, LN, ReLU, Dropout

2 ⋅ 10− →−−
Linear

− →−−−−−
Rep. trick

fenc L

N+ S − →−−−−−−−−−−−−−−
Linear, LN, ReLU, Dropout

 2 ⋅ 1 − →−−
Linear

− →−−−−−
Rep. trick

fdec

10+ S − →−−−−−−−−−−−−−−
Linear, LN, ReLU, Dropout

− →−−−−−−−−−−−−−−
Linear, LN, ReLU, Dropout

− →−−−−−−−−−−−−−−
Linear,  (Softmax, Sigmoid)

2N

θg,s S − →−−−−−−−−−−−−−−−
Matrix multiplication

N

N

S

[0, 6]

p = 0.1

M = 128
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We chose to weigh the KL-Divergence terms with    at epoch 1, incrementally increasing their

in�uence to   over 10 epochs. Similarly, the alignment term started with a weight of  , which

was raised to  . The number of nearest neighbors was set to    and the quantile cut-off for

alignment was set to   across datasets exceeding 10,000 samples. For smaller datasets, we lowered

the threshold to   to avoid discrimination against scarce cell types. In the latent nearest neighbor

search, we pre-computed for each target cell a set of 200 nearest neighbors using the Euclidean distance

between the variational mean vectors. Among the 25 cells that resulted in the highest likelihood values,

we transferred the most occurring cell label. For differential gene expression analysis, we sampled 10,000

times from the plugin estimator and set the offset variable to  .

To compute layer-wise relevance scores we retrained the networks with unbounded ReLU activation

functions and without layer normalization, as it is dif�cult for LRP to handle normalization layers. To

counteract exploding intermediate values caused by high gene expression values, we trained the model

on log1p-transformed values. Omitting layer normalization lead to a slight performance drop of around

2.5% across all performance metrics. We calculated relevance scores using the LRP-  rule with  .

We trained both scArches and scPoli on a scVI base model using the scArches package implementation.

These models were trained with the same network architecture as scSpecies. We trained both models on

homologous genes, as the scArches publication states that zero-�lling only produces reliable results

when less than 25% of genes are affected[9][See feature overlap between reference and query]. scPoli received

training with 10-dimensional batch representations. All other hyperparameters were left at default

values.

β = 0.1

β = 1 η = 10

η = 25 k = 25

p = 0.8

p = 0.6

ε = 10−6

γ γ = 0.15
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5.6. Pre-processing of the datasets

Dataset Organism

Shared genes Cells Batches Number of cell types

Coarse Fine

Liver

 Mouse 4 000 165 680 34 15 (15) 36 (36)

 Mouse NAFLD 2 860 91 787 22 14 (14) 28 (22)

 Human 1 808 146 839 30 15 (14) 32 (20)

 Human small 1 808 5 000 30 15 (14) 32 (20)

 Pig 1 694 21 907 2 9 (8) unknown

 Monkey 1 293 8 483 2 7 (7) unknown

 Chicken 1 197 7 456 2 9 (7) unknown

 Hamster 1 662 5 955 2 11 (9) unknown

White fat

 Mouse 4 000 192 470 26 17 (17) 47 (47)

 Human 1 937 137 306 24 16 (15) 44 (37)

Glioblastoma

 Mouse 4 000 46 321 6 14 (14) 23 (23)

 Human 1 823 58 560 12 14 (14) 24 (22)

Table 2. The datasets employed for evaluating scSpecies use mice as context species  . The number   of

homologous genes of context and target dataset are listed in the third column. Furthermore, all datasets are

annotated with cell type labels, both at coarse and �ne levels. The amount of distinct labels are detailed in the

’Number of cell labels’ columns. Additionally, the amount of shared cell labels with the context dataset, are

indicated in parentheses.

Our model underwent testing on publicly available datasets. (Table 2)

The ’Liver Cell Atlas’[17][39]  contains a diverse collection of liver cells from multiple species, including

mice (both with and without non-alcoholic fatty liver disease), humans, pigs, monkeys, chickens, and

hamsters. We utilized all cells acquired through the scRNA-seq and CITE-seq pipelines.
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The ’Single-Cell Atlas of Human and Mouse White Adipose Tissue’[18][40] contains gene expression data

from human and murine white fat cells. We selected cell samples obtained via single-nucleus sequencing.

The ’Brain Immune Atlas’ pro�les immune response to a grade IV glioma. For humans we selected cells

obtained via scRNA-seq of newly diagnosed and recurrent glioblastoma. For mice we selected cells from

the immune response to transplanted glioblastoma[19][41].

We applied a uniform pre-processing pipeline across all datasets. Initially, the dimension of gene

expression vectors was reduced to 4000 most highly variable genes[42]. Then we excluded cells with less

than 2% nonzero genes or belonging to extremely scarce batch and cell labels with less than 20 samples.

To obtain a consistent nomenclature between the datasets some cell labels were renamed. In the liver and

glioblastoma datasets, some cells have inconsistent cell type labels. For example, some human liver cells

are labeled as neutrophils in the �ne and monocytes in the coarse cell label category. We excluded all cells

with such a labeling con�ict.
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6. Extended Data

Model scArches scPoli kNN classi�er

Neighbors - -

Cell labels coarse �ne coarse �ne coarse �ne coarse �ne coarse �ne

Balanced label transfer accuracy score in % (BAS)

Liver - human 64.05 48.05 80.74 55.72 80.72 59.46 79.70 62.04 75.16 57.25

Liver - mouse 97.62 78.50 98.67 81.44 97.69 79.40 98.03 80.03 97.45 76.08

White fat 65.79 37.50 65.45 37.41 74.37 40.20 73.80 41.17 67.64 37.86

Glioblastoma 51.96 46.60 80.92 59.94 75.59 54.47 76.37 56.65 71.70 54.51

Adjusted Rand index (ARI)

Liver - human 0.725 0.248 0.841 0.263 0.740 0.194 0.824 0.253 0.859 0.290

Liver - mouse 0.983 0.837 0.984 0.825 0.983 0.822 0.985 0.839 0.982 0.844

White fat 0.773 0.414 0.846 0.443 0.868 0.371 0.884 0.438 0.877 0.469

Glioblastoma 0.458 0.401 0.583 0.581 0.481 0.384 0.537 0.455 0.525 0.470

Adjusted mutual information (AMI)

Liver - human 0.685 0.516 0.794 0.538 0.711 0.487 0.781 0.554 0.809 0.575

Liver - mouse 0.976 0.871 0.983 0.869 0.977 0.860 0.981 0.875 0.977 0.870

White fat 0.768 0.607 0.831 0.657 0.839 0.599 0.861 0.654 0.848 0.659

Glioblastoma 0.576 0.500 0.656 0.598 0.610 0.507 0.679 0.568 0.672 0.568

scSpecies lat. alignment intermediate alignment

Neighbors

Cell labels coarse �ne coarse �ne coarse �ne coarse �ne coarse �ne

Balanced label transfer accuracy score in % (BAS)

Liver - human 90.35 71.12 5.01 2.81 86.35 66.74 92.08 73.29 91.54 71.62

Liver - small 86.57 65.67 7.91 4.52 79.45 59.59 87.76 67.78 81.19 62.66

k = 1 k = 25 k = 250

k = 25 k = 0 k = 1 k = 25 k = 250
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Model scArches scPoli kNN classi�er

Liver - mouse 97.56 80.40 5.36 1.83 97.99 81.06 98.11 81.24 97.82 79.51

White fat 79.31 48.81 5.79 2.27 78.14 47.02 82.02 49.15 83.17 48.42

Glioblastoma 88.41 67.54 9.61 6.26 84.69 63.87 88.88 68.87 84.07 64.90

Adjusted Rand index (ARI)

Liver - human 0.865 0.456 0.204 0.163 0.872 0.406 0.888 0.509 0.887 0.593

Liver - small 0.841 0.451 0.237 0.181 0.747 0.275 0.863 0.481 0.849 0.545

Liver - mouse 0.975 0.832 0.182 0.192 0.985 0.834 0.987 0.837 0.984 0.834

White fat 0.944 0.519 0.142 0.137 0.880 0.487 0.959 0.528 0.963 0.540

Glioblastoma 0.717 0.648 0.144 0.216 0.633 0.551 0.753 0.684 0.734 0.666

Adjusted mutual information (AMI)

Liver - human 0.824 0.703 0.351 0.408 0.827 0.673 0.855 0.731 0.864 0.760

Liver - small 0.805 0.676 0.334 0.354 0.697 0.540 0.825 0.696 0.830 0.727

Liver - mouse 0.971 0.870 0.380 0.455 0.980 0.875 0.981 0.878 0.978 0.876

White fat 0.912 0.711 0.268 0.352 0.867 0.690 0.929 0.725 0.934 0.734

Glioblastoma 0.782 0.698 0.246 0.401 0.745 0.628 0.799 0.683 0.783 0.675

Table 3. Comparison of model performance on four different datasets. The results are averaged over �ve

random seeds and the best results highlighted by bold font. The results for each dataset are listed for the

coarse - �ne cell label categories. The upper table contains the results obtained by scArches and scPoli. The

kNN columns refer to the results of a data-level   nearest neighbor classi�er trained on shared homologous

genes. The results from scSpecies are listed in the bottom table. The �rst column corresponds to the results of

a scSpecies model where latent representations instead of the intermediate representations are aligned. The

column with zero neighbors corresponds to completely omitting the nearest neighbor integration within the

model. The column with one neighbor corresponds to omitting learning a suitable neighbor candidate, as the

choice is �xed.

k
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Figure 4. Alignment performance of the architecture surgery-based approaches scArches and scPoli. The four

left-hand plots were generated by aligning two mouse liver cell datasets. One dataset contains cell samples

from healthy organisms, while the other contains cells from mice with non-alcoholic fatty liver disease.

Despite the difference in disease conditions the latent representations are well aligned. The four plots on the

right side were obtained by aligning human liver cells with those of healthy mice. Here, both approaches

encounter dif�culties with cross-species alignment.

Figure 5. Intermediate spaces of a scVI model applied to the mouse liver context dataset. It details the layer

transformations from data space to latent space. Subplot 1 represents the UMAP coordinates of the original

dataset, while subplot 8 shows the variational mean vectors in the latent space. Subplots 2–7 depict the UMAP

coordinates of the intermediate dataset representation obtained by applying the corresponding layer

transformation. Each subplot presents two scatter plots: the upper one showing clusters based on cell labels

and the lower one depicting experimental batches. Additionally, the Davies-Bouldin index is used to assess

the clustering quality for each subplot.

Figure 6. Intermediate spaces of a scVI model applied to the unaligned human liver target dataset. For an

explanation of the subplots, see Figure 5.

Figure 7. Intermediate spaces of a scSpecies model applied to the mouse-human liver dataset pair. Each

subplot presents two scatter plots: the upper one showing context cell label clusters and the lower one

depicting the human target cell clusters. Additionally, the Davies-Bouldin index is used to asses clustering

quality for each subplot. Alignment of the two datasets is encouraged in subplot 4.
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Figure 8. A comparative analysis of gene expression pro�les between humans and mice using scSpecies. We

computed the median of the empirical log2 fold change distribution, displayed along the x-axis. The y-axis

illustrates the likelihood of a gene being differentially expressed in mice versus humans with an LFC

exceeding one. The compared cells are decoded from a randomly selected latent value within a latent cell type

distribution. The �gure highlights the top seven genes in mice that are signi�cantly up-regulated (indicated

in red) and the top seven that are notably down-regulated (blue) in comparison to their human equivalents.

Figure 9. Plots of human and mouse gene LRP scores against each other. Each dot represents a homologous

gene. For every cell, Spearman’s   and Person’s R between human and mice LRP values are given in the axis

label. Coloring corresponds to combined products of human and mice gene expression, with values of 0 are

colored in dark tones and high values in bright colors.

Figure 10. Illustration of the alignment process of scSpecies with   neighbors. On the y-axis, we plot the

negative log-density values derived from reconstructing human liver cell prototypes using their candidate set

of mouse latent variables. The x-axis shows a log-scale trajectory of these values, averaged over the last 

 iterations.
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PyTorch 2.1. The preprocessing scripts to obtain the datasets and the code to reproduce our results can be

accessed at https://github.com/cschaech/scSpecies. We recommend to use a device equipped with an

NVIDIA GPU.
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Footnotes

1 Lower values indicate higher association.

References

�. ^Leonelli S, Ankeny RA. (2013). "What makes a model organism?" Endeavour. 37 (4): 209–212. doi:10.1016/j.

endeavour.2013.06.001.

�. ^Cesar P. Canales, Katherina Walz. Chapter 6 - the mouse, a model organism for biomedical research. In: K

atherina Walz, Juan I. Youngeditors. Cellular and animal models in human genomics research.: Academic P

ress 2019. pp. 119–140. (Translational and applied genomics). doi:10.1016/B978-0-12-816573-7.00006-7. ISBN

978-0-12-816573-7

qeios.com doi.org/10.32388/D37AFF 29

https://github.com/cschaech/scSpecies
https://www.qeios.com/
https://doi.org/10.32388/D37AFF


�. ^McMurray F, Moir L, Cox RD. (2012). "From mice to humans". Current Diabetes Reports. 12. doi:10.1007/s118

92-012-0323-2.

�. ^Haddad AF, Young JS, Amara D, Berger MS, Raleigh DR, et al. (2021). "Mouse models of glioblastoma for th

e evaluation of novel therapeutic strategies". Neuro-Oncology Advances. 3 (1): vdab100. doi:10.1093/noajnl/v

dab100.

�. ^Lau JK, Zhang X, Yu J. (2017). "Animal models of non-alcoholic fatty liver disease: Current perspectives and

recent advances". J Pathol. 241 (1): 36–44.

�. ^Stripecke R, Münz C, Schuringa JJ, Bissig KD, Soper B, et al. (2020). "Innovations, challenges, and minimal i

nformation for standardization of humanized mice". EMBO Mol Med. 12 (7): e8662.

�. ^Cao ZJ, Wei L, Lu S, Yang DC, Gao G. (2020). "Searching large-scale scRNA-seq databases via unbiased cell

embedding with cell BLAST". Nature Communications. 11 (1). doi:10.1038/s41467-020-17281-7.

�. ^Hu J, Li X, Hu G, Lyu Y, Susztak K, et al. (2020). "Iterative transfer learning with neural network for clusterin

g and cell type classi�cation in single-cell RNA-seq analysis". Nature Machine Intelligence. 2 (10): 607–618.

doi:10.1038/s42256-020-00233-7.

�. a, bLotfollahi M, Naghipourfar M, Luecken MD, Khajavi M, Büttner M, et al. (2021). "Mapping single-cell dat

a to reference atlases by transfer learning". Nature Biotechnology. :1–10.

��. ^De Donno C, Hediyeh-Zadeh S, Moinfar AA, Wagenstetter M, Zappia L, et al. (2023). "Population-level inte

gration of single-cell datasets enables multi-scale analysis across samples". Nature Methods. 20 (11): 1683–1

692. doi:10.1038/s41592-023-02035-2.

��. ^Lotfollahi M, Rybakov S, Hrovatin K, Hediyeh-zadeh S, Talavera-López C, et al. (2023). "Biologically infor

med deep learning to query gene programs in single-cell atlases". Nature Cell Biology. 25 (2): 337–350. doi:1

0.1038/s41556-022-01072-x.

��. ^Michielsen L, Lotfollahi M, Strobl D, Sikkema L, Reinders MJT, et al. (2023). "Single-cell reference mapping

to construct and extend cell-type hierarchies". NAR Genomics and Bioinformatics. 5 (3): lqad070. doi:10.109

3/nargab/lqad070.

��. a, bBreschi A, Gingeras TR, Guigó R. (2017). "Comparative transcriptomics in human and mouse". Nature Re

views Genetics. 18 (7): 425–440. doi:10.1038/nrg.2017.19.

��. ^Rosen Y, Brbić M, Roohani Y, Swanson K, Li Z, et al. (2024). "Toward universal cell embeddings: Integrating

single-cell RNA-seq datasets across species with SATURN". Nature Methods. 21 (8): 1492–1500. doi:10.1038/s

41592-024-02191-z.

qeios.com doi.org/10.32388/D37AFF 30

https://www.qeios.com/
https://doi.org/10.32388/D37AFF


��. ^Biharie K, Michielsen L, Reinders MJT, Mahfouz A. (2023). "Cell type matching across species using protein

embeddings and transfer learning". Bioinformatics. 39 (Supplement_1): i404–i412. doi:10.1093/bioinformatic

s/btad248.

��. a, bSohn K, Yan X, Lee H. (2015). "Learning structured output representation using deep conditional generati

ve models". In: Proceedings of the 28th international conference on neural information processing systems

- volume 2.: Cambridge, MA, USA: MIT Press pp. 3483–3491. (NIPS’15).

��. a, bGuilliams M, Bonnardel J, Haest B, Vanderborght B, Wagner C, et al. (2022). "Spatial proteogenomics reve

als distinct and evolutionarily conserved hepatic macrophage niches". Cell. 185 (2): 379–396.

��. a, bEmont MP, Jacobs C, Essene AL, Pant D, Tenen D, et al. (2022). "A single-cell atlas of human and mouse w

hite adipose tissue". Nature. 603 (7903): 926–933. doi:10.1038/s41586-022-04518-2.

��. a, bPombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, et al. (2021). "Single-cell pro�ling of my

eloid cells in glioblastoma across species and disease stage reveals macrophage competition and specializa

tion". Nature Neuroscience. 24 (4): 595–610. doi:10.1038/s41593-020-00789-y.

��. a, bLopez R, Regier J, Cole M, Jordan MI, Yosef N. (2018). "Deep generative modeling for single-cell transcript

omics". Nature methods. 15: 1053–1058. Available from: https://api.semanticscholar.org/CorpusID:53643161

��. ^Fernando B, Fromont E, Tuytelaars T. (2014). "Mining mid-level features for image classi�cation". Internat

ional Journal of Computer Vision. 108 (3): 186–203. doi:10.1007/s11263-014-0700-1.

��. ^Boureau Y-L, Bach F, LeCun Y, Ponce J. (2010). "Learning mid-level features for recognition". In: 2010 IEEE

computer society conference on computer vision and pattern recognition. pp. 2559–2566. doi:10.1109/CVPR.

2010.5539963.

��. ^Yosinski J, Clune J, Bengio Y, Lipson H. (2014). "How transferable are features in deep neural networks?" In:

Proceedings of the 27th international conference on neural information processing systems - volume 2.: Ca

mbridge, MA, USA: MIT Press pp. 3320–3328. (NIPS’14).

��. a, bMcInnes L, Healy J, Melville J. UMAP: Uniform manifold approximation and projection for dimension red

uction. 2020. Available from: https://arxiv.org/abs/1802.03426

��. ^Jiang C, Li P, Ruan X, Ma Y, Kawai K, et al. (2020). "Comparative transcriptomics analyses in livers of mice,

humans, and humanized mice de�ne human-speci�c gene networks". Cells. 9 (12): 2566.

��. a, b, c, dBach S, Binder A, Montavon G, Klauschen F, Müller K-R, et al. (2015). "On pixel-wise explanations for

non-linear classi�er decisions by layer-wise relevance propagation". PLOS ONE. :46.

��. ^Keyl P, Bischoff P, Dernbach G, Bockmayr M, Fritz R, et al. (2023). "Single-cell gene regulatory network pre

diction by explainable AI". Nucleic Acids Res. 51 (4): e20.

qeios.com doi.org/10.32388/D37AFF 31

https://www.qeios.com/
https://doi.org/10.32388/D37AFF


��. ^Ma X-Y, Wang J-H, Wang J-L, Ma CX, Wang X-C, et al. (2015). "Malat1 as an evolutionarily conserved lncRN

A, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage he

matopoietic cells". BMC Genomics. 16 (1): 676.

��. ^Kingma DP, Welling M. Auto-encoding variational bayes. 2022. Available from: https://arxiv.org/abs/1312.6

114

��. ^Skinnider MA, Squair JW, Foster LJ. (2019). "Evaluating measures of association for single-cell transcripto

mics". Nature methods. 16 (5): 381—386. doi:10.1038/s41592-019-0372-4.

��. ^Boyeau P, Lopez R, Regier J, Gayoso A, Jordan MI, Yosef N (2019). "Deep generative models for detecting dif

ferential expression in single cells". bioRxiv. doi:10.1101/794289.

��. a, bBoyeau P, Regier J, Gayoso A, Jordan MI, Lopez R, Yosef N (2023). "An empirical bayes method for differen

tial expression analysis of single cells with deep generative models". Proceedings of the National Academy o

f Sciences. 120 (21): e2209124120. doi:10.1073/pnas.2209124120.

��. ^Montavon G, Binder A, Lapuschkin S, Samek W, Müller KR. "Layer-wise relevance propagation: An overvie

w". In: Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR, editors. Explainable AI: Interpreting, explai

ning and visualizing deep learning. Cham: Springer International Publishing; 2019. pp. 193–209. doi:10.100

7/978-3-030-28954-6_10.

��. ^Montavon G, Bach S, Binder A, Samek W, Müller KR (2017). "Explaining NonLinear classi�cation decisions

with deep taylor decomposition". Pattern Recognition. 65: 211–222. doi:10.1016/j.patcog.2016.11.008.

��. a, bNguyen Xuan Vinh, Julien Epps, James Bailey. (2010). Information theoretic measures for clusterings com

parison: Variants, properties, normalization and correction for chance. J Mach Learn Res. 11:2837–2854.

��. ^Davies DL, Bouldin DW (1979). "A cluster separation measure". IEEE Transactions on Pattern Analysis and

Machine Intelligence. PAMI-1 (2): 224–227. doi:10.1109/TPAMI.1979.4766909.

��. ^Userguide to skikit learn. 2024. Available from: https://scikit-learn.org/stable/modules/model_evaluation.h

tml.

��. ^Kingma DP, Ba J. Adam: A method for stochastic optimization. 2017. Available from: https://arxiv.org/abs/1

412.6980.

��. a, bBrain immune atlas. 2022. Available from: https://www.livercellatlas.org/.

��. a, bSingle-cell atlas of human and mouse white adipose tissue. Available from: https://singlecell.broadinstit

ute.org/single_cell/study/SCP1376.

��. a, bBrain immune atlas. 2021. Available from: https://www.brainimmuneatlas.org/.

qeios.com doi.org/10.32388/D37AFF 32

https://www.qeios.com/
https://doi.org/10.32388/D37AFF


��. ^Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015). "Spatial reconstruction of single-cell gene express

ion data". Nature Biotechnology. 33 (5): 495–502. doi:10.1038/nbt.3192.

Declarations

Funding: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –

Project-ID 499552394 – SFB 1597 Small Data.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/D37AFF 33

https://www.qeios.com/
https://doi.org/10.32388/D37AFF

