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We establish the asymptotics of growing one-dimensional self-similar fractal graphs that are

networks with multiple weighted edges between nodes. The asymptotics is described in terms of

quantum central limit theorems for algebraic probability spaces in a pure state. We endow an

additional structure upon the repeating units of centro-symmetric Jacobians in the adjacency of a

linear graph, creating a self-similar fractal. The family of fractals induced by centrosymmetric

Jacobians is formulated as orthogonal polynomials that satisfy three-term recurrence relations and

support such limits. The construction proceeds with interacting Fock spaces and  -algebras endowed

with a quantum probability space, corresponding to the Jacobi coef�cients of the recurrence relations.

When some elements of the centrosymmetric matrix are constrained in a speci�c way, we obtain, as

the same Jacobian structure is repeated, quantum central limits. The generic formulation of Leonard

pairs that form bases of conformal blocks and probabilistic Laplacians used in physics provide a

choice of centrosymmetric Jacobians widening the applicability of the result. We establish that the T-

algebras of these 1D fractals, as they form a special class of distance-regular graphs, are thin, and the

induced association schemes are self-duals that lead to anyonic systems with modular invariance.

Corresponding author: Radhakrishnan Balu, radhakrishnan.balu.civ@army.mil

1. Introduction

In a series of publications, we characterized anyons, systems that are the building blocks of topological

quantum computing, in terms of interacting Fock spaces (IFS) and association schemes (AS)[1][2][3]. The

key idea is to identify modular invariance, which is central to rational conformal �eld theories[4], in a
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class of self-dual association schemes and to represent them in terms of IFS, which is a very generic way

to treat quantum systems[5]. This AS-IFS description of anyons is algebraic, in contrast to abstract

modular tensor categories, employing related mathematical objects that encode fusion rules,

conjugation, crossings in links, and braids.

We can start with an IFS corresponding to graphs to set up fusion rules of anyons via the induced

association scheme. The linear combination of the classes that make up the basis of the Bose-Mesner

algebra of the association scheme provides the matrix   that encodes the partition function of the spin

system that can be set on a graph. The   matrix induces a commuting square from which we can derive

a hyper�nite subfactor and the associated Temperley-Lieb algebra to describe the braidings of anyons.

After we set up the background and establish the quantum central limit theorem (QLT), we discuss the

modular data associated with the fractal graphs.

Algebraic (quantum) probability spaces are non-commutative generalizations of classical probability

spaces, and in this paper, we focus on graph-induced *-algebras. We associate complex vector spaces

with the vertices of the graph, and the resulting algebra is endowed with a state, which is a positive linear

functional. The physical picture corresponds to a quantum particle whose con�guration space is the

vertices of the graph, evolving under the in�uence of a magnetic �eld.

Since we are concerned with graphs, an IFS is a subconstituent algebra of adjacency matrices with a state

de�ned on it based on a �xed vertex. Our contribution in this work is to construct interacting Fock spaces

from one-dimensional self-similar graphs and to establish central limit theorems. An IFS is a

generalization of bosonic and fermionic Fock spaces, used in physics to describe the states of identical

microscopic particles. It is  -graded, with each number corresponding to the number of particles,

forming a disjoint union of Hilbert spaces. In the context of association schemes, interacting Fock spaces

arise as subconstituent algebras with Hilbert space structures instead of vector spaces, further endowed

with a real-valued linear functional de�ned with respect to a �xed vertex of the algebra.

The resulting structure is an algebraic probability space with adjacency matrices as non-commuting

operator-valued random variables. This setting enables generalizing central limit theorems (CLTs) from

classical probability spaces to non-commutative settings, with stochastic independence appropriately

extended to the non-commutative context. We can start with an association scheme with a �xed number

of classes and consider the operators of the corresponding T-algebra as quantum random variables. By

increasing the diameter of this graph, we can consider a sequence of random variables, that leads to the
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question of their limits along the lines of CLTs. We denote them as QCLTs that have applications in

quantum query complexity theory.

In this work, we considered 1D fractals whose adjacency matrices are irreducible tridiagonal, but the

analysis can be extended to other fractals, including 2D graphs. Quantum central limit theorems, which

provide the limiting spectral distribution of the adjacency matrix of a growing graph, are relevant to

routing in quantum networks and social networks represented as growing graphs. Our results are

signi�cant in the context of fractal-graph-based information processing. Moreover, fractal graphs may

be better suited for con�ning exotic phases of matter such as fractons[6], and our results have

implications for topological quantum computing. We refer the reader to our previous three publications[1]

[2][3]  for a detailed background on the materials used in this article. Our contribution, in the context of

fractals, relates IFS which is geometric, with quantum states described by orthogonal projections, and AS

that is topological with states encoded in the fusion spaces.

Let us now de�ne the notions of an algebraic probability space in the context of subconstituent algebras

induced by distance-regular graphs with a distinguished vertex.

De�nition 1. Let    be the �xed vertex of the subconstituent algebra  , of complex valued functions

de�ned on the vertices, endowed with an inner product    and a pure state as a linear functional

satisfying

The state and a notion of stochastic independence facilitate asymptotics of adjacency matrices of

growing graphs via central limit theorems.

2. Association Schemes and T-algebras

An association scheme[2]  is a collection of adjacency matrices of graphs with a set of    vertices,

which encodes 1-distance, 2-distance, …,  -distance adjacency relations of the graph. Let   be a (�nite)

vertex set, and   be a collection of   matrices. The collection   is an association

scheme if the following conditions hold:

�. , the identity matrix;

�. , the all-ones matrix (In other words, the  ’s in the  ’s partition  );

�. For each  ,  ; and

o T

⟨. , . ⟩

(a) = ⟨ ,a ⟩,a ∈ T .ρo δo δo

|X| = d

d X

X = {Aj}dj=0 X × X {0, 1} X

= IA0

= J∑d
j=0Aj 1 Aj X × X

j ∈ XAT
j
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�. For each  ,  .

An association scheme is said to be commutative if it also satis�es

�. For each  ,  .

Let    denote the real vector space of column vectors with coordinates indexed by  , with all

entries in  .

Let us now consider a commutative association scheme  . By the spectral theorem, there exists an

alternative basis   consisting of projection matrices onto the maximal common eigenspaces of 

. Since the algebra   generated by the   is closed under the Hadamard (entrywise) product,

forming what is known as a Bose-Mesner algebra, there exist scalars   such that:

where the operator   denotes the Hadamard product. The coef�cients   are known Krein parameters of

the association scheme and induce the structure of a commutative hypergroup. Let  , and

de�ne  . Then the normalized Hadamard product takes the form:

The dual notion to Krein parameters is that of the intersection numbers  , which arise from the matrix

product  . For a distance-regular graph (ex: complete graphs, cycles, and odd graphs),

the intersection number   represents the number of paths between a pair of  -distant vertices via  -

distant plus  -distant paths. This number is independent of the speci�c vertex pair chosen. In self-dual

association schemes, the Krein parameters and intersection numbers coincide.

De�nition 2. Terwilliger algebras (T-algebras)[7]  A Terwilliger algebra is an algebra related to an

association scheme. Given the Bose-Mesner algebra structure de�ned by the idempotents  , we can

de�ne a re�ned algebra by �xing a vertex    and considering the corresponding idempotents 

. The resulting algebra is called the Terwilliger algebra   with respect to the vertex  . A T-

module for this algebra is a subspace    such that  . Every T-module admits a

decomposition as an orthogonal direct sum of irreducible modules. When all irreducible T-modules have

dimension one for every  , the scheme is said to be thin. This thinness condition plays a key role in

characterizing self-dual association schemes.

i, j ∈ spanXAiAj

i, j =AiAj AjAi

V = R
X X

R

{Aj}dj=0

, … ,E0 Ed

, … ,A0 Ad A Aj

qki,j

∘ = (0 ≤ i, j ≤ d),Ei Ej
1

|X|
∑
k=0

d

qki,jEk

∘ qki,j

= rankmj Ej

=ej m−1
j Ej

∘ = ( ) .ei ej
1

|X|
∑
k=0

d
mk

mimj

qki,j ek

pkij

∙ =Ai Aj ∑k p
k
ijAk

pKij k i

j

{ }Ei

x ∈ X

{ (x)}Ei T (x) x

W ⊆ V BW ⊆ W, ∀B ∈ T

x ∈ X
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There is a substantial body of literature on T-algebras, and in this work, we establish a connection

between T-algebras and interacting Fock spaces following their foundational de�nitions[3]. This

correspondence allows us to transfer techniques between these two independently developed

frameworks.

Example 1. Let   be a �nite abelian group that acts transitively on a �nite set  . Then   also acts on 

 via   for   and  . Let   be the orbits of this

action, labeled such that  . (This is indeed an orbit, since   acts transitively on  .)

For each  , de�ne the matrix   by

Then, the set   forms an association scheme called a translation scheme. It is commutative if

and only if the action of    on    is multiplicity free- that is, the permutation representation of 

  associated with its action on    decomposes as a direct sum of irreducibles, with no irreducible

repeated more than once (up to unitary equivalence).

3. Interacting Fock spaces

Quantum probability-based interacting Fock spaces (IFS) generalize symmetric and antisymmetric Fock

spaces, which have wide-ranging applications from quantum optics in physics to graph theory. These

noncommutative spaces extend classical probability spaces, which only admit a single notion of

stochastic independence, by allowing multiple formulations of independence each leading to different

central limit theorems. In quantum probability theory, notions of independence are essential for de�ning

graph products, and based on the associated monadic operations, different forms of stochastic

independence arise. In a quantum probability space  , the usual commutative independence—for

example,    (as often assumed in quantum optics)—leads to conjugate

Brownian motion (measured as quadratures) in the limit. The monotone independence, de�ned by 

, relevant in quantum walks leads asymptotically to arcsine-Brownian

motion (i.e. a double-horn distribution). The other two common types of independence, free and boolean,

are not the focus of this work. In the context of graphs, these notions of independence correspond to

different graph product operations, each inducing a different type of limiting behavior.

De�nition 3.  [8]  An IFS associated with the Jacobi sequences  , where  ,

and real parameters  , is a tuple

G X G

X × X g ⋅ (x,y) = (g ⋅ x, g ⋅ y) g ∈ G x,y ∈ X , … , ⊆ X × XR0 Rd

= {(x,x) : x ∈ X}R0 G X

j = 0, … ,d ∈ {0, 1Aj }X×X

( = {Aj )x,y
1,
0,

if (x,y) ∈ Rj

otherwise.

X = {Aj}dj=0

G X

G X

(A,ϕ)

ϕ(bab) = ϕ(a)ϕ( );a, b ∈ Ab2

ϕ(bab) = ϕ(a)ϕ(b ;a, b ∈ A)2

{ }ωn = 0 ⇒ = 0, ∀n ≥ mωm ωn

{ } ⊆ Rαn
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where   is a sequence of orthogonal polynomials and   is the subspace of a Hilbert space   formed

as the disjoint union of degree-   polynomial subspaces. The operators    and    act on    and

satisfy the following relations:

These operators recover the recurrence relation:

Given such an IFS, we can associate a graph whose adjacent matrix is tridiagonal, with the form 

  This matrix admits a quantum decomposition 

. The orthogonal polynomial sequence   can be interpreted as corresponding to

a �xed vertex of the graph, with each   representing a stratum, that is, a level in the strati�cation of the

graph based on distance from the chosen vertex. For example, in the case of the Spiderweb graph (Figure

1), the central vertex serves as the �xed point, and the strati�cation proceeds radially outward.

Let us now consider the example of orthogonal polynomials over the real numbers ( ) and demonstrate

how they give rise to an IFS.

Example 2. A probability measure   on the real line   is said to have a �nite moment of order   if

This is denoted by  . Conversely, a sequence of real numbers    corresponds to the moment

sequence of a probability measure if either all terms are zero or, there exists some    such that 

. This characterization arises from the classical determinate moment

problem. Let   and   be complex-valued polynomial functions in one real variable. We de�ne the linear

functional and the inner product with respect to the measure   as

(Γ ⊆ H, , , ),B+ B− B∘

{ }Φn Γ H

n ,B+ B− B∘ Γ

B+Φn

B−Φn

B∘Φn

= .ωn+1
− −−−√ Φn+1

= ; = 0.ωn
−−√ Φn−1 B−Φ0

= .ϕn

x (x) = (x) + (x) + (x).Φn Φn+1 ωnΦn−1 αn+1Φn (1)

M =

⎡

⎣

⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎢

α1

ω1
−−√

ω1
−−√
α2

ω2
−−√

ω2
−−√
α3

⋱

ω3
−−√

⋱

ωn−1
− −−−√

⋱
αn

⋱

ωn
−−√

⋱ ⋱

⎤

⎦

⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎥

M = + +B+ B− B∘ { }Φn

Φn

R

μ R m

μ(dx) < ∞.∫
∞

−∞
xm

(μ)Mm { }Mm

m

> 0, 0 < i < m, = 0, j > mMi Mj

P Q

μ

μ(P )

⟨P ,Q⟩

= P (x)μ(dx).∫
R

= μ( Q).P ∗

(2)

(3)
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This    inner product helps de�ne an adjoint operation and along with a commutator (as shown in an

example below) results in a *-Lie algebra of polynomials. An orthogonal basis, with respect to this

measure, can be constructed and is denoted by  . These orthogonal polynomials satisfy the following

three-diagonal relation of the form:

which characterizes them as forming an IFS[5].

Example 3. The bosonic (symmetric) Fock space corresponds to the choice  . The

fermionic (antisymmetric) Fock space has Jacobi parameters   for  .

Example 4. The  -deformed 1-mode IFS is de�ned as follows. For  , the Jacobi parameters satisfy:

This structure corresponds to the commutation relation:

which generalizes the canonical bosonic and fermionic cases.

μ

{ }Φn

x (x) = (x) + (x) + (x),Φn Φn+1 αnΦn ωnΦn−1 (4)

= n, = 0ωn αn

= 1; = 0ω1 ωn n > 1; = 0αn

q q ≥ −1

=ωn

⎧

⎩
⎨
⎪

⎪

,∑n−1
k=0 q

k

1,
0,

if q > -1,
if q=-1 and n ≤ 1,
if q=-1 and n ≥ 2.

(5)

a − q a = 1,a+ a+
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Figure 1. Spiderweb Diagram - an example of a strati�ed graph on which an IFS can be

de�ned.

Let us now state and outline the proof of the quantum central limit (QCLT) for distance-regular graphs,

following[8].

Theorem 1. Let    be a growing distance-regular graph with an adjacency matrix  . Let us

denote the degree as   and assume the following conditions in terms of intersection numbers hold:

Let    be an interacting Fock space associated with    and    be the

diagonal operator de�ned by  ,   be the number operator. Then we have

= ( , )G
ν V ν Eν Aν

κ(ν)

ω

α

= = ,lim
ν→∞

ων
¯ ¯¯̄¯ lim

ν→∞

(ν) (ν)pn1,n−1 pn1,n

κ(ν)

= = .lim
ν→∞

αν
¯ ¯¯̄¯̄ lim

ν→∞

(ν)pn−1
1,n−1

κ(ν)− −−−√

= (G, { }, , )Γ{ }ωn Φn B+ B− { }ωn =Bo αN+1

{ }αn N

= , ϵ = {o, +, −}.lim
ν→∞

Aϵ
ν

κ(ν)− −−−√
Bϵ (6)
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in the sense of stochastic convergence with respect to the pure state, i.e,

Proof. We have the following relations[8]:

From the above it follows that   is a constant multiple of   and the constant is a

�nite product of   and  . Therefore, the left side of the limit exists. Moreover, since the actions

of    and    on the number vectors are given by the Jacobi coef�cients  ,    and  ,  ,

respectively, one may easily verify that the limit coincides with  . 

Example 5. [8] Let us consider a cyclic graph   with   vertices. Then, the intersection numbers

required to obtain the limits of the theorem are:

It is easy to see that   and so

This growing cyclic graph satis�es the conditions of the QCLT theorem. We will use similar techniques to

constrain the Jacobians of the building blocks to get the asymptotics of self-similar graphs.

Recently Koheestani et al[9] have established the QCLT for large family of distance-regular graphs with

classical parameters in the Gibbs state. We further extend the result to self-similar weighted graphs

(Figure 2) in the pure state by constructing graphs that satisfy the conditions of the above theorem.

⟨ , … ⟩ = ⟨ , … ⟩, ϵ ∈ {+, −, o},m = 1, 2, … .lim
ν→∞

Φν
0

Aϵm
ν

κ(ν)− −−−
√

A
ϵ1
ν

κ(ν)− −−−
√

Φν
0 Ψ0 Bϵm Bϵ1Ψ0 (7)

A+
ν

κ(ν)− −−−
√

Φn

A−
ν

κ(ν)− −−−
√

Φ0

Ao
ν

κ(ν)− −−−
√

Φn

= , n = 0, 1, 2, …(ν)ωn+1
¯ ¯¯̄¯̄ ¯̄ ¯̄
− −−−−−

√ Φn+1

= 0; = , n = 1, 2, …A−
ν

κ(ν)− −−−
√

Φn (ν)ωn
¯ ¯¯̄¯̄
− −−−−

√ Φn−1

= (ν) .αn
¯ ¯¯̄¯̄ Φn

…A
ϵm
ν

κ(ν)√

A
ϵ1
ν

κ(ν)√
Φν

0 Φν
+…ϵ1 ϵm

(ν)ωn (ν)αn

Aϵ
ν Bϵ

ν { }ωn
¯ ¯¯̄¯̄ { }αn

¯ ¯¯̄¯̄ { }ωn { }αn

⟨ , … ⟩Ψ0 Bϵ
m Bϵ

1Ψ0 □

C2N+1 2N + 1

(N) = {P n
1,n−1

1,
0,

n = 1, 2, …N,
otherwise.

(N) =P n−1
1,n

⎧

⎩
⎨

2,
1,
0,

n = 1,
n = 2, … ,N,
otherwise.

(N) = {P n−1
1,n−1

1,
0,

n = N + 1,
otherwise.

κ = = 0p0
11

(N) =ωn

⎧

⎩
⎨

1,
1/2,
0,

n = 1,
n = 2, …N,
otherwise.

(N) = {αn
1/ ,2–√
0,

n = N + 1,
otherwise.
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Figure 2. Cantor Set that is a self-similar graph

3.1. Self-similar   Laplacians on the half-integer lattice

In an earlier work, we considered a family of self-similar Laplacians on the half-line of integers and

computed their spectra that are relevant to integer quantum Hall effects in physics[10]. This class of

Laplacians investigated in[11] for the �rst time arises naturally when studying the unit interval endowed

with a particular fractal measure. Here, we focus on Laplacian without potentials and consider the

underlying graphs and their spectra.

In this context, we de�ne the self-similar structure on the half-integer lattice with the origin serving the

�xed vertex of our T-algebra. This self-similar structure describes a random walk on the half-line and

gives rise to a class of self-similar probabilistic graph Laplacians 

Let   be the set of nonnegative integers, and   be the linear space of complex-valued sequences 

. Let  , for each  , we de�ne    to be the largest natural number 

 such that   divides  . For   we de�ne a self-similar Laplacian  by,

We equip   with its canonical basis   where

p

Δp

Z+ ℓ( )Z+

(f(x))x∈Z+ p ∈ (0, 1) x ∈ ∖ {0}Z+ m(x)

m 3m x f ∈ ℓ( )Z+ Δp

( f)(x) =Δp .
⎧

⎩
⎨
⎪

⎪

f(0) − f(1),
f(x) − (1 − p)f(x − 1) − pf(x + 1),
f(x) − pf(x − 1) − (1 − p)f(x + 1),

if x = 0
if  x ≡ 1 (mod 3)3−m(x)

if  x ≡ 2 (mod 3)3−m(x)

(8)

ℓ( )Z+ {δx}x∈Z+
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The matrix representation of   with respect to the canonical basis has the following Jacobi matrix

The case   recovers the classical one-dimensional Laplacian (probabilistic graph Laplacian).

De�nition 4. Let    be the graph shown in Figure We de�ne the sequence of graphs 

  inductively. Suppose    is given for some integer  , where 

. The graph   is constructed according to the following substitution rule.

We repeat the following steps for  :

�. Insert a copy of    between the two vertices    and    of the protograph shown in the

following sense. We identify the vertex   in   with the vertex   and similarly, we identify the

vertex   in   with the vertex  .

�. We substitute the edges   and   in   with the corresponding directed weighted

edges as indicated in the protograph.

Figure 3. Construction of self-similar graph from repeating units. (Top) A copy of the basic building

block. The deleted edges correspond to the edges that are replaced when applying the substitution rule.

(Bottom) The fractal graph is constructed by inserting the three copies of the building block in outer

graph which is the 1D lattice While the vertices are labeled by the sequentially, the labeling of the edges

represents the transition probabilities (off-diagonal entries in the self-similar Laplacian).

In a companion paper[12] we discuss a family of centro-symmetric Jacobians and used them as building

blocks for constructing self-similar graphs. There is a three-term recurrence relation for the building

block and another one for the main graph. Let us consider the outer graph as that plays a role in the

asymptotics.

(y) = {δx
0
1

if x ≠ y

if x = y.
(9)

Δp

jacob = .i+,p

⎛

⎝

⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜

1
p − 1

0
0
0
0
0
0

⋮

−1
1

−p

0
0
0
0
0

⋮

0
−p

1
p − 1

0
0
0
0

⋮

0
0

p − 1
1

p − 1
0
0
0

⋮

0
0
0

−p

1
−p

0
0

⋮

0
0
0
0

−p

1
−p

0

⋮

0
0
0
0
0

p − 1
1

p − 1

⋮

0
0
0
0
0
0

p − 1
1

⋮

…
…
…
…
…
…
…
…

⋱

⎞

⎠

⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟

(10)

p = 1
2

= ( , )G0 V0 E0

{Gl}l∈N = ( , )Gl−1 Vl−1 El−1 l ≥ 1

= ∩ [0, ]Vl−1 Z+ 3l−1 = ( , )Gl Vl El

i ∈ {0, 1, 2}

Gl−1 mi mi+1

0 Gl−1 mi

3l−1 Gl−1 mi+1

(0, 1) ( , − 1)3l−1 3l−1 Gl−1
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In the above we scale the centrosymmetric matrix by the inverse of the dimension of the matrix that will

help with convergence later.

Let us now state and establish the main result.

Theorem 2. Let   be a growing 1D fractal (bidirectional network) with an adjacency matrix  .

Let us denote the degree as   and assume the following conditions hold:

Let   be an interacting fock space associated with   and   be the

diagonal operator de�ned by  ,   be the number operator. Then we have

in the sense of stochastic convergence with respect to the pure state, i.e,

Proof. We can rewrite the above equation (12) as to get the Jacobi coef�cients:

The    terms in repeating units are bounded by    and there are only �nitely many terms (�nite

moments) in equation (14) so the limit exists for the outer graph. Since, the elements   are probabilities

the scaling constant   is not required. If we build the graph with probabilistic Laplacian then it is clear

that we have the limits for the Jacobi coef�cients as the numerators are probabilities and less than one

and the denominator is  , and the QCLT theorem holds. The limiting measure can be obtained by the

jacob :=ics
1
m

⎛

⎝

⎜
⎜⎜
⎜⎜⎜
⎜⎜⎜

b(0)
a( )n0

0

⋮
0

a(1)
b(1)

a( − 1)n0

⋮
0

0
a(2)

b(2)

⋱
0

…
…

⋱

⋱
a(1)

0
0

⋮

a( )n0

b(0)

⎞

⎠

⎟
⎟⎟
⎟⎟⎟
⎟⎟⎟

(11)

{
(x) = 1,   (x) = x − b(1)P D

0 P D
1

(x) = (x − b(k)) (x) − a(k)a( + 1 − k) (x),  k ∈ {2, … , − 1}.P D
k

P D
k−1 n0 P D

k−2 n0
(12)

= ( , )G
ν V ν Eν Aν

κ(ν)

ω

α

= .lim
ν→∞

ω̄ν

κ(ν)

= .lim
ν→∞

ᾱν

κ(ν)

= (G, { }, , )Γ{ }ωn Φn B+ B− { }ωn =Bo αN+1

{ }αn N

= , ϵ = {o, +, −}.lim
ν→∞

Aϵ
ν

κ(ν)− −−−
√

Bϵ (13)

⟨ , … ⟩ = ⟨ , … ⟩, ϵ ∈ {+, −, o},m = 1, 2, … .lim
ν→∞

Φν
0

Aϵm
ν

κ(ν)− −−−
√

A
ϵ1
ν

κ(ν)− −−−
√

Φν
0 Ψ0 Bϵm Bϵ1Ψ0 (14)

x (x)P D
k−1

ωk

αk+1

= b(k) (x) + (x) + a(k)a( + 1 − k) (x).P D
k−1 P D

k
n0 P D

k−2

= a(k)a( + 1 − k).n0

= b(k).

a(i), b(j) 1

a(i)

m

κ = 4
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spectral decimation method[10] as the methods of applying continued fractions[8] are dif�cult in general

for an arbitrary distance-regular graph.

Another class of systems can be constructed starting from any Leonard pairs[13] and taking the centro-

symmteric Jacobians out of the pairs. For example the pairs where   is a any non-negative integer:

When we normalize the above centro-symmetric matrix and build the self-similar graph then again we

will have QCLT with spin Leonard pairs form the bases related by Krawtchouk polynmoials[14].

In the above examples we can replace the diagonal elements of the centro-symmetric Jacobian all zeros

with an integer less than the degree   and we will still have convergence. 

It is interesting to note that the adjacency matrix of our self-similar graphs are irreducible tridiagonal (

each entry on the subdiagonal is nonzero) with nonnegative entries and thus has a bidirectional path and

is described by a Q-polynomial[15].

4. Summary and Conclusions

We investigated graphs with weighted edges and endowed with self-similar fractal structures. We derived

the QCLT for a family of graphs in pure state by constraining the centro-symmetric Jacobian that

generate the fractals. The class of fractal graphs considered here lead to self-dual association schemes

and thus encode modular invariance of RCFTs. This analysis sets the stage for exploring QCLT for fractals

in coherent states that are relevant in physics and more general fractals in 2D such as the Sierpinski

gasket.
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