Review of: "According to this, the thermal conductivity of multi-walled carbon nanotubes individually is more than 300 mK/W."

Luna Vebster

1 South Texas College

Potential competing interests: No potential competing interests to declare.

The thermal conductivity of this batch of nanotubes was investigated separately. They obtained the value of thermal conductivity as more than 011 mK/W for single-walled carbon nanotubes. According to this, the thermal conductivity of multi-walled carbon nanotubes individually is more than 300 mK/W.

The gradual increase in temperature in the nano-carbon inside the nano-transistor (picture above)

Since the structure of carbon nanotubes has different values for the production and reproduction of nanotransistors at different temperatures, it is shown as a function of temperature in the form of $T(\lambda)$. Starting from low temperatures and gradually increasing the temperature, it can be seen that the value of $T(\lambda)$ reaches a maximum value of 111.3 mK/W near the temperature of 011 K (this maximum can be seen as a peak in the graph) and then decreases with increasing temperature. The maximum value ($T(\lambda)$) has been observed so far in the investigations, is related to a special nano heat pipe sample that was measured at a temperature of 010 K. This value is equal to 00111 mK/W. Therefore, the value of $T(\lambda)$ for the nano carbon tube at its maximum is comparable to the highest value ($T(\lambda)$) that has been measured so far. According to the presented diagram, even at room temperature, the thermal conductivity of the carbon nanotube is very high and equal to 0011 mK/W; in the methods of reproduction of nanotransistors and nanotubes with the synthesis of carbon nanotubes based on catalytic chemical vapor deposition (CCVD), it includes the decomposition of a carbon source on small metal particles or clusters as a catalyst. This method of reproduction of nanotransistors includes a heterogeneous process and is homogeneous. The metals used for these reactions are transition metals, such as iron, cobalt, and nickel. Compared to electric arc discharge and laser ablation, carbon nanotubes are generally formed at a lower temperature of about 011 to 011 degrees. Generally, the selectivity of this method is higher for the production of multi-walled carbon nanotubes. Both homogeneous and heterogeneous processes are very sensitive to the nature and structure of the catalyst used in addition to the operating conditions. Compared to the electric arc method, the carbon nanotubes produced by this method have more length (several tens to hundreds of micrometers) and defects. The major drawback of nanotubes is due to the use of lower temperatures compared to the electric arc method, which does not allow any structural rearrangement.
References

