Review of: "The optical absorption of these impurities is related to the spectrum, and it is necessary to quantitatively evaluate the removal of background absorption."

Mika Honda
1 SATO (Japan)

Potential competing interests: No potential competing interests to declare.

Some samples have many impurities, such as polyhedral graphite particles, amorphous carbon, and catalyst particles. The optical absorption of these impurities is related to the spectrum, and it is necessary to quantitatively evaluate the removal of background absorption, which in this case is not possible, and quantitative analysis will be accompanied by an error. The third problem is caused by the presence of the dispersant, which spreads when dispersing the nanotubes. Its presence causes confusion in the quantitative detection of the amount of SWCNTs in the sample. In addition, the complexity related to the overlap of the peaks is problematic. An estimate of (m,n) in the sample is difficult, and only the data of the quantitative evaluation of the concentration of the special species of various errors with data analysis. It causes with unknown frequency along With As a result of the existence of a large number of SWCNTs with different (m,n)

References

1. ^Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.". Qeios. doi:10.32388/z3oxov.


7. ^Afshin Rashid. (2024). Review of: "FinFET nanotransistor downscaling causes more short channel effects, less gate
control, exponential increase in leakage currents, drastic process changes and unmanageable power densities". Qeios. doi:10.32388/hx4oyk.

8. Chad Allen. (2024). Review of: "FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities". Qeios. doi:10.32388/h3qk7b.


23. Luola Sendros. (2024). Review of: "nMOS instead of exhibiting thermionic emission modulation, changes through a quantum tunnel modulation 12&g; They change through a dam.". Qeios. doi:10.32388/5sdms6.


25. Afshin Rashid. (2024). Review of: "Many types of electrical nano-sensors using CP nanomaterials designed for nano-
26. Afshin Rashid. (2024). Review of: "In general, an electrical nano-biosensor consists of an immobilized static biological system (based on their own built-in immobilized static biological system)". Qeios. doi:10.32388/pq6ho0.


28. Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas". Qeios. doi:10.32388/a0nexa.

29. Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas". Qeios. doi:10.32388/a0nexa.

30. Afshin Rashid. (2024). Review of: "Nano supercapacitor called (electrostatic) -- The total thickness of each &lt; a i=4&gt;electrostatic nanocapacitors only 25 nm". Qeios. doi:10.32388/247k3y.


33. Afshin Rashid. (2024). Review of: "bipolar transistors (pMOS) have a state voltage connected (Von) around 2 to 3 volts". Qeios. doi:10.32388/c8zgvw.