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The existence and uniqueness of the solution for the proposed model are proved. The study
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properties. To validate the theoretical results, we provide a numerical scheme for the

fractional model and present various simulation results. These results can serve as a

valuable resource in developing strategies to mitigate the spread of the epidemic.

Corresponding author: Mohamed Abdelaziz Zaitri, zaitri@ua.pt

1. Introduction

The coronavirus epidemic emerged in the Chinese city of Wuhan in December 2019, and it

rapidly disseminated to other parts of the world. This virus is primarily transmitted through

respiratory infection in humans [1]. The disease is characterized by symptoms such as difficulty

breathing and fever. The incubation period of the virus ranges from 2 to 14 days before

symptoms become evident [1][2][3]. In February 2020, Algeria and other countries reported their

first confirmed case of the virus in an Italian citizen who had recently arrived. Authorities

promptly conducted scans on individuals showing suspicious symptoms or signs of infection.

However, despite the daily checks carried out by health authorities, there remains a significant

gap between the day of infection and the day of diagnosis. This gap has severe implications for

the spread of the disease, as it hinders the accurate assessment of the number of affected

individuals and the severity of the disease. Consequently, obtaining precise figures regarding

the number of infected and recovering individuals becomes challenging.

In order to study the clinical development and spread of the epidemic, researchers formulate

mathematical models that help assess the severity of the disease and determine necessary

interventions to mitigate its impact, such as social isolation, quarantine measures, and travel

restrictions  [4]. One widely used model for studying disease dynamics is the classical

susceptible-infected-recovered (SIR) model  [5]. These models provide insights into the

dynamics of disease spread, the timing of outbreaks and declines, and aid in determining when

it is appropriate for individuals to return to work. Typically, these models are formulated as

differential or stochastic equation sets. The initial results introducing these models date back

to the following references  [5]. Our model encompasses seven distinct compartments, each

representing a different stage or condition related to the epidemic. These compartments

include: susceptible individuals, exposed individuals, recovered individuals, quarantined

individuals, recovered-exposed individuals, and death individuals. By considering these seven

compartments, our model aims to provide a comprehensive representation of the different

stages and conditions related to the epidemic. In our research, we propose a reformulation of

the model presented in reference [3] by incorporating a fractional derivative of the Atangana-

Baleanu type. The motivation behind utilizing the Atangana-Baleanu derivative (ABD) in our

model is due to its distinct properties, such as a nonlocal and nonsingular kernel. These

properties are crucial for accurately capturing the crossover behavior observed in the dynamics
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of the epidemic. Other fractional derivative operators, such as Riemann-Liouville, Caputo, and

Caputo-Fabrizio, do not possess these specific properties, which may or may not adequately

describe the future dynamics of the coronavirus. This motivates our choice of the Atangana-

Baleanu derivative in our reformulated model [2].

Fractional differential equations have proven to be highly valuable in modeling various

biological systems. This can be observed in several research papers that have explored their

applications. Some notable papers related to the use of fractional calculus in modeling

biological systems include  [2][6][7][8][9]. These studies have highlighted the effectiveness and

relevance of fractional differential equations in capturing the complex dynamics and behaviors

exhibited by biological phenomena. Additionally, there are specific papers that focus on

approximating the Atangana-Baleanu derivative  [10][11]. These works further demonstrate the

significance of fractional calculus in accurately describing and understanding the dynamics of

biological systems.

This paper presents a comprehensive analysis of the epidemic by introducing a mathematical

model that captures the dynamics of disease spread, as described in reference  [3][12].

Subsequently, we propose a fractional model of the epidemic and investigate the existence and

uniqueness of solutions for our system. Additionally, we examine the existence of a disease-

free equilibrium and analyze its stability properties.

The structure of the article is as follows: In Section 2, we provide definitions and explanations

pertaining to fractional calculus. We then proceed to present the mathematical model of the

coronavirus, followed by its formulation using fractional derivatives. In Section 3, we conduct a

detailed analysis of the fractional model for the coronavirus, focusing specifically on the

existence and uniqueness of solutions. We delve into the mathematical properties and

characteristics of the model in order to gain deeper insights into its behavior. Moving on to

Section  4, we explore the equilibrium points of the model and examine their stability

properties. This analysis allows us to understand the long-term behavior of the epidemic and

assess the potential for disease control and mitigation strategies. In Section  5, we present a

numerical scheme for the fractional model, providing a practical approach to simulate and

study its dynamics. We include illustrative results from numerical simulations conducted with

various values of the fractional order parameter. These simulations help us visualize and

analyze the impact of different parameters on the spread and control of the epidemic.

Finally, in the conclusion, we summarize our findings and offer recommendations based on the

insights gained from the study. These recommendations aim to guide future research and

inform potential strategies for managing and combating an epidemic.

2. Preliminaries

In this section, we will cover some of the most important basic concepts and definitions of

fractional calculus and epidemic models.

Definition 1.  [13]  Let  , where  . The Atangana-Baleanu’s derivative (ABD) of

order   is defined as follows: 

in which    is the one-parameter Mittag-Leffler function and    is called

the normalization function featuring  .

Definition 2. [13] The Riemann-Liouville’s integral (RLI) of order   is defined as follows: 

Definition 3. [13] The Antangana-Baleanu’s integral(ABI) of order   and    is

defined by: 

z ∈ (a, b)H 1 b > a

γ ∈ (0, 1]

z(t) = ((t − v ) (v)dv,ABD
a D

γ
t

B(γ)

1 − γ
∫

t

a

Eγ )γ
γ

γ − 1
z′

Eγ B(γ) = 1 − γ +
γ

Γ(γ)

B(0) = B(1) = 1

γ

(z(t)) = (t − v z(v)dv,γ > 0.RLII γ
1

Γ(γ)
∫

t

a

)γ−1

γ ∈ (k,k + 1] k ∈ Z
+
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in which 

is called the normalization function featuring 

Property 1. [1] The Atangana-Baleanu’s integral of order   and   is stated as:

Remark 1. For  , and  , the following properties are satisfied:

1. ,

2. 

2.1. Model description of corona-virus with Atangana-Baleanu fractional derivative

We analyze the corona–virus model discussed by Ben Fradj and Cherif [3]. Let us consider the

total population at time   as  . We divide the population   into seven distinct subgroups:

susceptible individuals  , exposed individuals  , infected individuals  , recovered-

exposed individuals  , recovered individuals  , deceased individuals  , and

quarantined individuals  .

The relationships and interactions between these subpopulations can be visually represented

through the following compartmental diagram:

Figure 1. Schematic diagram of the model [3].

The model is developed based on a system of nonlinear differential equations, which can be

expressed as follows: 

with the initial conditions 

(z(t)) = (z(t)) + z(t),ABI I γ
γ

B(γ)

RLI

I γ
1 − γ

B(γ)

B(γ) = 1 − γ + ,
γ

Γ(γ)

B(0) = B(1) = 1.

γ ∈ (k,k + 1] k ∈ Z
+

(z(t)) = (z(t)) + z(t).ABI I γ
γ − k

B(γ − k)

RLI

I γ
1 + k − γ

B(γ − k)

RLI

I k

γ(k ∈ )Z
+ t > a

(z(t)) = z(t)ABDDγABII γ

(z(t)) = z(t) − (a) .ABI I γABDDγ ∑k
d=0 z

(d) (t−a)d

d!

t N(t) N(t)
S(t) (t)E1 I(t)

(t)E2 R(t) D(t)
Q(t)

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

(t) = − S(t) (t) − S(t)I(t) − S(t),Ṡ
λ1

N
E1

λ2

N
λ3

(t) = S(t) (t) + S(t)I(t) − ( + ) (t),E1̇
λ1

N
E1

λ2

N
α1 α2 E1

(t) = (t) − ( + )I(t),İ α1E1 β1 β2

(t) = (t),E2̇ α2E1

(t) = I(t),Ṙ β1

(t) = I(t),Ḋ β2

(t) = S(t),Q̇ λ3

(1)

qeios.com doi.org/10.32388/D7U6UD.2 3

https://www.qeios.com/
https://doi.org/10.32388/D7U6UD.2


where   is the contact rate between   and  ,   is the infection rate,   is the rate at which

susceptible people enter quarantine,    is the inverse of the average latent time,    is the

recovery rate of  ,    is the recovery rate,    is the death rate, and the total constant

population   is given by 

To incorporate the aforementioned effect into the mathematical representation, we modify the

system by replacing the traditional time derivative with the Atangana-Baleanu ordered

derivative [13]. The resulting formulation is as follows: 

where    is the Antangana-Baleaneau fractional derivative of order  , the model

variables in (1) are non-negative, and have appropriate initial conditions.

3. Existence and uniqueness of solutions via Atangana-

Baleanu fractional derivative

The initial value problem (2) can be written in the following matrix form: 

where 

In order to establish the non-negativity of solutions with the initial conditions, we also need

the following lemmas.

3.1. Bounded and non-negative solutions

For the proof of the theorem about non-negative and bounded solutions, we shall need the

following lemma

Lemma 1.  [2] Let    and    be a differentiable function such that 

 and  . Then, for any  , there exists   such that 

Remark 2. Let   and   for  . It is clear from Lemma(1) that

if   for all  , then the function   is non-decreasing, and if   for

all  , then the function   is non-increasing.

S(0) = , (0) = , I(0) = , (0) = ,R(0) = ,D(0) = ,Q(0) = ,S0 E1 E01 I0 E2 E02 R0 D0 Q0

λ1 S E1 λ2 λ3

α1 α2

E1 β1 β2

N

N = S(t) + (t) + I(t) + (t) + R(t) + D(t) + Q(t).E1 E2

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

S(t) = − S(t) (t) − S(t)I(t) − S(t),ABD
0 D

γ
t

λ1

N
E1

λ2

N
λ3

(t) = S(t) (t) + S(t)I(t) − ( + ) (t),ABD
0 D

γ
tE1

λ1

N
E1

λ2

N
α1 α2 E1

I(t) = (t) − ( + )I(t),ABD
0 D

γ
t α1E1 β1 β2

(t) = (t),ABD
0 D

γ
tE2 α2E1

R(t) = I(t),ABD
0 D

γ
t β1

D(t) = I(t),ABD
0 D

γ
t β2

Q(t) = S(t),ABD
0 D

γ
t λ3

(2)

ABD
0 D

γ
t γ ∈ (0, 1]

(t) = MX(t) + f(X),ABD
a D

γ
tX

′

X(t) = (S, , I, ,R,D,Q),E1 E2

M = ,

⎛

⎝

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

−λ3

0

0

0

0

0

λ3

0

−( + )α1 α2

α1

α2

0

0

0

0

0

−( + )β1 β2

0

β1

β2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

⎞

⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

f(x) = (− S − SI, S + SI, 0, 0, 0, 0, 0) .
λ1

N
E1

λ2

N

λ1

N
E1

λ2

N

0 < γ ≤ 1 f : [a, b] → R

∈ [a, b]f ′ L1 f ∈ C[a, b]ABDD
γ

a+ t ∈ [a, b] ξ ∈ [a, b]

f(t) = f(a) + f(t) + f(ξ).
1 − γ

B(γ)

ABD

D
γ

a+

(t − a)γ

B(γ)Γ(γ)

ABD

D
γ

a+

f(t) ∈ C[a, b] f ∈ C[a, b]ABDDγ 0 < γ ≤
f ≥ 0ABDDγ t ∈ (0, b) f f ≤ 0ABDDγ

t ∈ (0, b) f
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Definition 4. [7] Let   be the class of continuous functions   defined on the interval 

, satisfying the condition    for  . Additionally, let    be the

class of continuous column vectors   defined as: 

 where   The norm of   is given by: 

Lemma 2.  [7] Consider the interval  , where    and 

. Let   be a function. Then, the fractional differential equation 

has a solution, and this solution is unique if the following two conditions hold simultaneously:

1.  is bounded and continuous on  .

2.  satisfies the Lipschitz condition with respect to the second variable, i.e., 

where   is a constant independent of  .

Theorem 1. The initial value problem (2) possesses a unique solution. Moreover, this solution remains

nonnegative and bounded.

Proof. We will divide the proof into three steps:

Step 1 Firstly, we will prove that the solution is nonnegative. From equation (2), we have: 

Based on Lemma (1) and Remark (2), we can conclude that the solution of equation (2) is

nonnegative.

Step 2 Secondly, we prove that the solution is bounded. From (2), by using the first equation

and adding the first two equations, we get: 

with   and  , by integration of (ABD) we get: 

and on the other hand 

Hence 

Then 

C[0,T ] x(t)
[0,T ] sup|x(t)| < ∞ t ∈ [0,T ] C([0,T ])

X(t)

X(t) = ,( )(t)x1 (t)x2 (t)x3 (t)x4 (t)x5 (t)x6 (t)x7
T

(t) ∈ C[0,T ], i = 1, … , 7.xi X(t) ∈ C[0,T ]

∥X∥ = sup| (t)|, t ∈ [0,T ].∑
i=1

7

xi

E = [0,T ] × [ (0) − ϵ, (0) + ϵ]X (0) X (0) T > 0
ϵ > 0 f : E → R

X(t) = f(t,X(t)),γ > 0, (0) = , k = 0, 1, 2, … ,m − 1,ABD
a D

γ
t X (0) X0

f E

f

|f(t,X(t)) − f(t,Y (t))| ≤ L|X(t) − Y (t)|,

L > 0 t,X and Y

DγS(t)ABD |S=0

(t)ABDDγE1 | =0E1

I(t)ABDDγ |I=0

(t)ABDDγE2 | =0E2

R(t) =ABDDγ |R=0

D(t)ABDDγ |D=0

Q(t)ABDDγ |Q=0

= 0,

= SI ≥ 0,
λ2

N

= ≥ 0,α1E1

= ≥ 0,α2E1

= I ≥ 0,β1

= I ≥ 0,β2

= S ≥ 0.λ3

DγS(t) ≤ S(t),ABD λ3

N(t) ≤ − N(t),ABDDγ ξ1

N(t) = S(t) + (t)E1 = min( , + )ξ1 λ3 α1 α2

S(t) ≤ ( S(0) − s(t)) ≤ S(0),
B(γ)

B(γ) + (1 − γ)λ3

γB(γ)λ3

B(γ) + (1 − γ)λ3

ABI

I γ

N(t) ≤ (− N(0) − s(t)) ≤ N(0),ξ1

B(γ)

B(γ) + ξ1(1 − γ)

ξ1γB(γ)

B(γ) + (1 − γ)ξ1

ABI

I γ

S(t) + (t) ≤ S(0) + (0).E1 E1
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By adding the first three equations of (2), and following the same procedure, we get: 

with    and  , by following the same

procedure, we obtain: 

Hence, we have: 

Therefore, 

We can follow the same approach for the remaining variables  ,  ,  , and  , and obtain: 

Step 3 We define the matrix norm as  , where    and    represents the

largest eigenvalue of the matrix  . Let us consider the bounded and continuous function 

Assume that   and   are two distinct solutions of the initial value problem (2), such that: 

then 

Let 

It is clear that  . Then 

(t) ≤ S(0) + (0).E1 E1

M(t) ≤ − M(t),ABDDγ ξ2

M(t) = S(t) + (t) + I(t)E1 = min( , , + )ξ2 λ3 α2 β1 β2

M(t) ≤ (− N(0) − s(t)) ≤ M(0).ξ2

B(γ)

B(γ) + ξ2(1 − γ)

ξ2γB(γ)

B(γ) + (1 − γ)ξ2

ABI

I γ

S(t) + (t) + I(t) ≤ S(0) + (0) + I(0).E1 E1

I(t) ≤ S(0) + (0) + I(0).E1

E2 R D Q

(t)E2

R(t)

D(t)

Q(t)

= (0) + ( (0) + S(0)),E2

(1 − γ)α2

B(γ)
E1

= (0) + (S(0) + (0) + I(0)),E2

(1 − γ)β1

B(γ)
E1

= D(0) + (S(0) + (0) + I(0)),
(1 − γ)β2

B(γ)
E1

= Q(0) + (S(0)).
(1 − γ)λ3

B(γ)

|||. ||| |||M||| = ρ(M) ρ(M)
M

F(X) = MX + f(X).

X(t) Y (t)

X = (S, , I, ,R,D,Q), Y = ( , , , , , , ) and X,Y ∈ C[0,T ],E1 E2 S ′ E′
1 I ′ E′

2 R′ D′ Q′

∥F(X) − F(Y )∥ = ∥MX + f(X) − MY − F(Y )∥

≤ ∥M(X(t) − Y (t))∥ + ∥f(X) − f(Y )∥

≤ |||M|||∥X(t) − Y (t)∥ + |S|| − | + | ||S − |
λ1

N
E1 E′

1
λ1

N
E′

1 S ′

+ |S||I − | + | ||S − |
λ2

N
I ′ λ2

N
I ′ S ′

≤ sup { , + , + } ∥X − Y ∥λ3 α1 α2 β1 β2

+ sup{|S|, | |, | |} ∥X − Y ∥
+λ1 λ2

N
E′

1 I ′

≤ max { , + , + } ∥X − Y ∥λ3 α1 α2 β1 β2

+ max {|S|, | |, | |} ∥X − Y ∥.
+λ1 λ2

N
E′

1 I ′

L = max{ , + , + } + max {|S|, | |, | |} .λ3 α1 α2 β1 β2
+λ1 λ2

N
E′

1 I ′

L > 0

∥F(X) − F(Y )∥ ≤ L∥X(t) − Y (t)∥.
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By applying Lemma (2), and since   is continuous and satisfies the Lipschitz condition,

the initial value problem (2) has a unique solution. 

4. The stability result of the equilibrium point

To determine the equilibrium points of the system (2), we set the Atangana-Baleanu arbitrarily

ordered derivatives to zero, i.e., 

From this, we can deduce that the equilibrium point is given by 

Now, we proceed to evaluate the equilibrium point for the system (2). The Jacobian matrix of

the system (2) is determined as follows: 

Substituting the equilibrium point   into the above Jacobian matrix, we get:

The Jacobian matrix obtained from the system (2) has eigenvalues equal to zero. Therefore, the

equilibrium point   is determined to be unstable.

5. Numerical results and discussions

Upon applying the fractional integral operator   to equation (2) and utilizing the property

(1), we obtain the following numerical results for our fractional model with the ABD derivative: 

The kernel functions for the fractional epidemic model (2) are defined as follows: 

F(X(t))
□

S I R D Q = 0,ABDDγ =ABD DγE1 =ABD Dγ =ABD DγE2 =ABD Dγ =ABD Dγ =ABD Dγ

= (0, 0, 0, 0, 0, 0, 0 .E∗ )T

J = .

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

− − I −
λ1

N
E1

λ2

N
λ3

+ I
λ1

N
E1

λ2

N

0

0

0

0

λ3

− S
λ1

N

S − ( + )
λ1

N
α1 α2

α1

α2

0

0

0

− S
λ2

N

S
λ2

N

−( + )β1 β2

0

β1

β2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

E∗

J( ) = .E∗

⎛

⎝

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

−λ3

0

0

0

0

0

λ3

0

−( + )α1 α2

α1

α2

0

0

0

0

0

−( + )β1 β2

0

β1

β2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

⎞

⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

E∗

IABI

S(t)

(t)E1

I(t)

(t)E2

R(t)

D(t)

Q(t)

= S(0) + (t,S) + (t − v (v,S)dv,
1 − γ

B(γ)
K1

γ

B(γ)
∫

t

0
)γ−1K1

= (0) + (t, ) + (t − v (v, )dv,E1
1 − γ

B(γ)
K2 E1

γ

B(γ)
∫

t

0
)γ−1K2 E1

= I(0) + (t, I) + (t − v (v, I)dv,
1 − γ

B(γ)
K3

γ

B(γ)
∫

t

0
)γ−1K3

= (0) + (t, ) + (t − v (v, )dv,E2
1 − γ

B(γ)
K4 E2

γ

B(γ)
∫

t

0
)γ−1K4 E2

= R(0) + (t,R) + (t − v (v,R)dv,
1 − γ

B(γ)
K5

γ

B(γ)
∫

t

0
)γ−1K5

= D(0) + (t,D) + (t − v (v,D)dv,
1 − γ

B(γ)
K6

γ

B(γ)
∫

t

0
)γ−1K6
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1 − γ

B(γ)
K7

γ

B(γ)
∫

t

0
)γ−1K7
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To solve the fractional epidemic model (2), we employ the numerical procedure outlined in

reference [2]. The model can be represented as follows: 

Discretizing the above equation yields the following system: 

By utilizing the general formula for Adams’ method [14][1], we derive the subsequent numerical

approach for the Coronavirus model 2: 

(t,S)K1

(t, )K2 E1

(t, I)K3

(t, )K4 E2

(t,R)K5

(t,D)K6

(t,Q)K1

=

=

=

=
=

=

=

− S − SI − S,
λ1

N
E1

λ2

N
λ3

S + SI − ( + ) ,
λ1

N
E1

λ2

N
α1 α2 E1

− ( + )I,α1E1 β1 β2

,α2E1

I,β1

I,β2

S.λ3

S( )tn+1

( )E1 tn+1

I( )tn+1

( )E2 tn+1

R( )tn+1

D( )tn+1

Q( )tn+1

= S( ) + ( ,S) + ( − v (v,S)dv,t0
1 − γ

B(γ)
K1 tn

γ

B(γ)Γ(γ)
∫

t

0
tn+1 )γ−1K1

= ( ) + ( , ) + ( − v (v, )dv,E1 t0
1 − γ

B(γ)
K2 tn E1

γ

B(γ)Γ(γ)
∫

t

0
tn+1 )γ−1K2 E1

= I( ) + ( , I) + ( − v (v, I)dv,t0
1 − γ

B(γ)
K3 tn

γ

B(γ)Γ(γ)
∫

t

0
tn+1 )γ−1K3

= ( ) + ( , ) + ( − v (v, )dv,E2 t0
1 − γ

B(γ)
K4 tn E2

γ

B(γ)Γ(γ)
∫

t

0
tn+1 )γ−1K4 E2

= R( ) + ( ,R) + ( − v (v,R)dv,t0
1 − γ

B(γ)
K5 tn

γ

B(γ)Γ(γ)
∫

t

0
tn+1 )γ−1K5

= D( ) + ( ,D) + ( − v (v,D)dv,t0
1 − γ

B(γ)
K6 tn

γ

B(γ)Γ(γ)
∫

t

0
tn+1 )γ−1K6
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K7 tn

γ
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t

0
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( )E2 tn+1
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D( )tn+1

Q( )tn+1

= S( ) + ( ,S) + ( − v (v,S)dv,t0
1 − γ

B(γ)
K1 tn

γ

B(γ)Γ(γ)
∑
j=0

n

∫
tj+1

tj

tn+1 )γ−1K1

= ( ) + ( , ) + ( − v (v, )dv,E1 t0
1 − γ

B(γ)
K2 tn E1

γ

B(γ)Γ(γ)
∑
j=0

n

∫
tj+1

tj

tn+1 )γ−1K2 E1

= I( ) + ( , I) + ( − v (v, I)dv,t0
1 − γ

B(γ)
K3 tn

γ

B(γ)Γ(γ)
∑
j=0

n

∫
tj+1

tj

tn+1 )γ−1K3

= ( ) + ( , ) + ( − v (v, )dv,E2 t0
1 − γ

B(γ)
K4 tn E2

γ

B(γ)Γ(γ)
∑
j=0

n

∫
tj+1

tj

tn+1 )γ−1K4 E2

= R( ) + ( ,R) + ( − v (v,R)dv,t0
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B(γ)
K5 tn

γ

B(γ)Γ(γ)
∑
j=0

n

∫
tj+1

tj

tn+1 )γ−1K5

= D( ) + ( ,D) + ( − v (v,D)dv,t0
1 − γ

B(γ)
K6 tn

γ

B(γ)Γ(γ)
∑
j=0

n

∫
tj+1

tj

tn+1 )γ−1K6

= Q( ) + ( ,Q) + ( − v (v,Q)dv.t0
1 − γ

B(γ)
K7 tn

γ

B(γ)Γ(γ)
∑
j=0

n

∫
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where 

5.1. Data fitting and numerical simulations

We present a set of numerical findings. Firstly, we draw upon data from the National Office of

Statistics (NOS) in Algeria to provide key demographic insights for the year 2019. The total

population during that period stood at 43,400,000, and the average life expectancy was 76.79

years. Additionally, based on the available information, the estimated mortality rate is 

.

Subsequently, we analyze data collected in Algeria from March 24, 2020, to June 30, 2020, and

deduce the following parameter values:  ,  ,  ,  ,  , 

, and  .

For the simulation, we have chosen the following initial conditions: The total population at

time   is  , which can be expressed as 

To determine the number of susceptible individuals at  , we use the formula 

Moreover, we consider the initial conditions for the infected and exposed populations as

follows:   and  .

S( )tn+1

( )E1 tn+1

I( )tn+1

( )E2 tn+1

R( )tn+1

D( )tn+1

Q( )tn+1

= S( ) + ( ,S) + ( ,S),t0
1 − γ

B(γ)
K1 tn

γhγ

B(γ)Γ(γ + 2)
∑
j=0

n

σj,n+1K1 tj

= ( ) + ( , ) + ( , ),E1 t0
1 − γ

B(γ)
K2 tn E1

γhγ

B(γ)Γ(γ + 2)
∑
j=0

n

σj,n+1K2 tj E1

= I( ) + ( , I) + ( , I),t0
1 − γ

B(γ)
K3 tn

γhγ

B(γ)Γ(γ + 2)
∑
j=0

n

σj,n+1K3 tj

= ( ) + ( , ) + ( , ),E2 t0
1 − γ

B(γ)
K4 tn E2

γhγ

B(γ)Γ(γ + 2)
∑
j=0

n

σj,n+1K4 tj E2

= R( ) + ( ,R) + ( ,R),t0
1 − γ

B(γ)
K5 tn

γhγ

B(γ)Γ(γ + 2)
∑
j=0

n

σj,n+1K5 tj

= D( ) + ( ,D) + ( ,D),t0
1 − γ

B(γ)
K6 tn

γhγ

B(γ)Γ(γ + 2)
∑
j=0

n

σj,n+1K6 tj

= Q( ) + ( ,Q) + ( ,Q),t0
1 − γ

B(γ)
K1 tn

γhγ

B(γ)Γ(γ + 2)
∑
j=0

n

σj,n+1K7 tj

=σj,n+1

⎧

⎩
⎨
⎪

⎪

( − (n − γ)(n + 1 ) ,nγ+1 )γ

((n − k + 2 + (n − k − 2(n − k + 1 ) ,)γ+1 )γ+1 )γ+1

1,

 if k = 0

 if 1 ≤ k ≤ n

 if k = n + 1

μ = 0.0048

= 0.8λ1 = 0.02λ2 = 0.155λ3 = 0.01α1 = 0.2α2

= 0.023β1 = 0.0041β2

t = 0 N(0) = 43, 400, 000

N(0) = S(0) + (0) + I(0).E1

t = 0

S(0) = N(0) − (0) − I(0).E1

I(0) = 70 (0) = 200E1
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Figure 2. Susceptible population

Figure 3. Exposed population

Figure 3 displays the plotted curves that represent the number of individuals who are exposed

to the infection. A noteworthy observation from the graph is that an escalation in the number

of people exposed to the infection directly corresponds to an increase in the number of

individuals who subsequently become infected.

This observation highlights the crucial role of the exposed population in driving the spread of

the infection. As more individuals are exposed to the virus, there is a higher likelihood of

transmission to susceptible individuals, leading to a rise in the number of infections.
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Understanding and monitoring the dynamics of the exposed population are crucial for

assessing the potential risk and impact of an infectious disease outbreak.

Figure 4. Infected population

In Figure  4, the plotted curves illustrate the evolution of the number of infected individuals

over time. It is evident from the graph that the number of infected people reached its peak

approximately 50 days ago and has since started to decrease.

The dynamics of infection can be influenced by altering the values of two key parameters: the

fractional order   and the quarantine rate  . By varying these parameters, different patterns in

the infection dynamics can be observed. Adjusting    affects the rate at which infected

individuals recover, while modifying    influences the effectiveness of the quarantine

measures in limiting the spread of the infection.

Understanding the impact of these parameters is essential for devising effective strategies to

control and manage the spread of the infection. The simulation results provide valuable

insights into the behavior of the infected population and the potential outcomes under

different parameter settings.

γ λ3

γ

λ3
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Figure 5. Exposed-Recovered population

Figure 6. Recovered population
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Figure 7. Death population

In Figure 7, the graph showcases the evolution of the number of deceased individuals over time.

The number of deaths is significantly influenced by changes in the number of infected

individuals, as expected. As the infection spreads and the number of infected individuals rises,

the number of deaths also increases due to the severity of the disease.

Moreover, the values assigned to the two parameters, the fractional order   and the quarantine

rate  , have a notable impact on the number of deceased individuals. Altering these

parameters can lead to different outcomes in terms of the mortality rate and the overall impact

of the infection on the population.

Understanding the relationship between the number of infected individuals and the resulting

number of deaths, as well as the role of parameter values, is crucial for predicting and

mitigating the consequences of an infectious disease outbreak. This information can aid

policymakers and public health officials in making informed decisions to implement effective

measures for reducing the impact of the disease on the population.

γ

λ3
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Figure 8. Quarantine Population

Conclusions

This paper presented a fractional order model of Covid-19 using the Atangana-Baleanu’s

fractional derivative. The mathematical analysis of the model demonstrated the existence of

bounded and nonnegative solutions. Furthermore, a numerical scheme was developed to solve

the fractional model of Covid-2019, allowing for variations in the fractional order and

quarantine rate. The obtained graphical results clearly indicated that decreasing the fractional

order and quarantine rate leads to a decrease in the infected population. These findings

contribute to a better understanding of the dynamics of the Covid-19 pandemic and can aid in

the development of effective control measures.
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