
28 January 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

LiLMaps: Learnable Implicit Language Maps

Evgenii Kruzhkov1, Sven Behnke2,3

1. Autonomous Intelligent Systems, Computer Science Institute VI, University of Bonn, Bonn, Germany; 2. Autonomous Intelligent Systems,

Computer Science Institute VI – Intelligent Systems and Robotics, University of Bonn, Bonn, Germany; 3. Center for Robotics and the Lamarr

Institute for Machine Learning and Artificial Intelligence

One of the current trends in robotics is to employ large language models (LLMs) to provide non-predefined

command execution and natural human-robot interaction. It is useful to have an environment map together

with its language representation, which can be further utilized by LLMs. Such a comprehensive scene

representation enables numerous ways of interaction with the map for autonomously operating robots. In

this work, we present an approach that enhances incremental implicit mapping through the integration of

vision-language features. Specifically, we (i) propose a decoder optimization technique for implicit language

maps which can be used when new objects appear on the scene, and (ii) address the problem of inconsistent

vision-language predictions between different viewing positions. Our experiments demonstrate the

effectiveness of LiLMaps and solid improvements in performance.

1. Introduction

Classic robotic maps are commonly used for estimating distances to obstacles and costs of motions in

navigation and localization tasks. However, more comprehensive tasks, as well as natural human-robot

interaction, may require a deeper understanding of the environment, and thus imply more advanced map

representations. For example, visual-language navigation is the task where a robot must interpret a natural

language command from a non-expert user and proceed towards the goal according to the command. The

environment might be unknown in advance, but the robot still must navigate in the shortest possible time.

From this example, it is clear that a map that allows one to easily find correlation between the given language

command and a partially or fully mapped environment can be more useful than a pure obstacle costmap.

In this work, we make a step towards creation of efficient yet compact natural language environment

representations and introduce Learnable implicit Language Maps (LiLMaps). We chose an implicit

representation because of its ability to compactly represent the data and for the possibility of further detailed

reconstruction.

Recent studies in implicit mapping demonstrate outstanding results in geometry reconstruction. While in these

studies, geometry decoders can be easily pre-trained or even trained in the first few iterations, in our work we

Qeios

qeios.com doi.org/10.32388/D8Q0Y8 1

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

demonstrate that LiLMaps performs better compared to the pre-trained language decoders because some

language features can be poorly represented in them. Moreover, pre-training the decoder to represent every

possible language feature could make its structure and training process significantly more complicated, and it

can reduce its flexibility for different applications.

Another challenging problem that frequently appears in incremental language learning is the inconsistency of

measurements taken from different viewing positions. Precise range sensors, such as LiDARs and RGB-D

cameras, are commonly used in implicit mapping, but usually they do not provide contradictory measurements.

However, in visual-language navigation tasks, information about the environment is often derived from RGB

images. Vision-language features extracted from RGB images may have many sources of inconsistency: a

painting can be recognized as a wall from a greater distance; a bed object can be misclassified as a sofa at

different angles of view; objects on image borders and occluded objects might not be visible enough to provide

correct features; inaccurate detection on the object edge can spoil features of the objects behind them; etc.

LiLMaps focuses on incremental implicit language mapping, i.e., when new observations become available

incrementally, one-by-one. This is a typical condition for SLAM, and LiLMaps can be integrated into existing

implicit SLAM approaches with minimal changes. We achieve this with the following key techniques that are

presented in this work:

Adaptive Language Decoder Optimization dynamically updates the decoder to new discovered language

features in the environment providing flexible and sufficient coverage of language representations.

Measurements Update Strategy adjusts incoming measurements reusing accumulated and implicitly stored

knowledge about the environment to reduce measurements inconsistency.

Our experiments show that LiLMaps enables incremental vision-language environment exploration with just a

small overhead.

qeios.com doi.org/10.32388/D8Q0Y8 2

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

Figure 1. Reconstructed implicit language map built with LiLMaps. Semantic colors

are assigned based on the similarity of reconstructed language features and

CLIP[1] encodings of semantic categories from the Matterport3D dataset[2].

2. Related Works

Language and Vision-Language Models

Dynamic execution of natural language commands has been an active research topic for a long time[3][4].

Previous works often propose custom environment representations that are difficult to reuse in real

applications. Recently, large language models (LLMs) have received increased attention in this field. The

advantage of LLMs is their ability to be applied to a wide range of tasks. LLMs can enhance robot abilities to

understand and execute natural language commands[5][6]. In addition, LLMs have been shown to be successful

in guiding object grasping[7][8], navigation[9][10][11][12][13] and scene understanding[14][15][16]. Vision-Language

Models (VLMs)[17][18][19][20], which extract language information about the environment from the provided

images, are frequently used in conjunction with LLMs. For instance, CLIP[1] is one of the most widely used

models capable of mapping images into a natural language space.

qeios.com doi.org/10.32388/D8Q0Y8 3

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

Often, VLMs transfer only single or batched images into a natural language vector space. However, some tasks

may benefit from mapping the entire environment into the language space. For example, VLMaps[9] suggests

enhancing 2D maps with language features and then demonstrates that navigation and detection tasks can be

solved directly on these enhanced maps. Although VLMaps can be used alongside simultaneous localization and

mapping (SLAM), its performance depends on localization and mapping quality, and the method is limited to

building only 2D language maps. On the other hand, OpenScene[15] can generate maps as 3D point clouds with

corresponding language features. However, the method performs best in batch-like operations, where all RGB

images of the environment, their poses, and 3D point clouds are available in advance, meaning no real-time

data is processed. Another approach, ConceptFusion[21], demonstrates that language features can be fused into

3D maps using traditional SLAM approaches. SAM3D[22] projects SAM segmentation masks[23] into 3D and

creates 3D scene masks.

Implicit Representations

Implicit representations[24][25][26][27][28] have gained popularity for their compactness and ability to achieve

high-resolution reconstructions. They demonstrate great capabilities in environment mapping. iMap[29] uses

an RGB-D sensor to perform a real-time SLAM task. Nice-SLAM[30] extended the possible sizes of the mapped

environment. SHINE-Mapping[31] demonstrated implicit mapping of outdoor environments. Recently, works

based on Gaussian splatting[32] demonstrated exceptional results[28][33][34][35]. In addition to geometry,

implicit maps demonstrate a successful reconstruction of semantic information[36], physical properties[37], and

visual features[38].

Integration of language features into implicit representation is an actively researched topic. LERF[39] studies

the fusion of language features into Radiance Fields, but is limited to small scenes. LangSplat[40] uses Gaussian

Splatting[32] to achieve higher precision and training speed. However, LangSplat demonstrates only the

reconstruction of small table-sized scenes and does not consider incremental mapping.

Implicit representations are highly dependent on the type of encoding they use. The encodings employed in the

original NeRF work[24] were able to generalize the predictions[37][38], but were constrained by the limited size

of the environments. Subsequent works successfully increased training and reconstruction speeds[25][41].

Gaussian Splatting[32] is currently one of the most popular encodings due to its speed, simplicity, and high

quality reconstruction. However, some works may benefit from structured encodings such as grid-based[42],

octree-based feature volumes[43], or combined ones[44].

Compared to the works discussed above, our approach can build large-scale 3D implicit language maps and can

be seamlessly integrated with implicit SLAM methods. LiLMaps use a sparse octree-based representation[43] to

qeios.com doi.org/10.32388/D8Q0Y8 4

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

store learnable features, but our method is not tied to any particular representation and can be adapted to

others with minimal effort.

3. Method

We address the task of building an implicit vision-language representation along with environment mapping.

Sec. 3.1 describes our model architecture used in LiLMaps. During incremental mapping, the future observed

objects and their encoded representations are unknown in advance, which makes it challenging to train a

language decoder to represent all language features. To address this issue, in Sec. 3.2 we propose the adaptive

language decoder optimization strategy that can effectively adjust the decoder to new language features while

retaining previously observed ones. In this work, we employ a visual language encoder but pixel-wise language

features are often inconsistent between frames. We address this issue in Sec. 3.3.

3.1. LiLMaps Architecture

Figure 2 shows the architecture of the proposed approach. Input data for our pipeline are point clouds

associated with CLIP language features (language point clouds), as well as camera poses estimated by any

external SLAM method. We produce language point clouds by extracting language features from an RGB image.

Extracted language features are projected to the point clouds in the world coordinate system using the

corresponding depth image and camera pose. The extraction of language features can be done using per-pixel

visual language encoders such as LSeg, OpenSeg, Segment-Anything-CLIP[20], etc. For example,

VLMaps[9] utilizes LSeg for this purpose. In this study, the visual language encoder is treated as an external

module, and improving its performance is not our focus.

qeios.com doi.org/10.32388/D8Q0Y8 5

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

Figure 2. Implicit language mapping. Vision-language features are extracted from the RGB image. The

corresponding points of the depth image are projected to the world coordinate system. Each point can be encoded

using its coordinates and octree: the coordinates are used to find the corresponding octree voxels (blue, red, green);

learnable features stored in the voxels’ corners are interpolated and summed, producing the point encoding.

 vectors are stored only in the voxels of the coarse octree level (blue). The language decoder reconstructs the

language feature in the spatial coordinates of the point based on its encoding and the vector . Language loss

optimizes the learnable features and vectors. After optimization, the language map can be reconstructed in

arbitrary spatial coordinates. The language detector is optimized independently of the implicit mapping (Sec. 3.2).

Our goal is to enable implicit vision-language mapping under the conditions of environment exploration when

future measurements are not available. We use the octree structure as positional encoding to build the implicit

representation. Unless otherwise specified, we consistently use three different levels of the octree to store the

features. Each level of the octree is made up of voxels, and each voxel from a higher level can encompass

multiple voxels from lower, more detailed levels. It should be noted that we use a sparse octree representation,

meaning voxels are only present where observations have been made. When the point clouds are projected to

the world coordinates, we find the corresponding voxels in the octree for each point. Each voxel holds learnable

features at its corners. These features are shared among voxels that have common corners.

The language features have a high dimensionality and a straightforward solution to encode them in the octree is

to increase the size of the learnable features stored in the corners. However, storing high-dimensional learnable

features consumes a significant amount of memory. Instead, we suggest storing one high-dimensional

learnable feature vector per voxel of the first (coarse) octree level, while keeping the corner features low-

dimensional.

To train the implicit representation, we apply the cosine similarity loss between the features decoded from the

octree and the vision-language features of the input point cloud:

φ

F

φ̄̄̄ F

F

F

φ̄̄̄ φ

qeios.com doi.org/10.32388/D8Q0Y8 6

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

where is the number of points with vision-language features in the point cloud.

Note that we encode every new available measurement into the learnable features using (1), but the weights of

the language decoder are not updated with this loss. The optimization of the decoder is described in Sec. 3.2.

The decoder reconstructs the language feature in spatial coordinates using feature vector and corners

features of the corresponding voxels. Before feeding to the decoder, the corner features are linearly interpolated

into the reconstruction point and summed across all octree levels. The decoder consists of three fully connected

layers. The first two layers expand the dimensions of the corner features and produce the element-wise scaling

vector for , which is then multiplied by it and passed to the last fully connected layer, which outputs the

predicted language feature .

3.2. Adaptive Language Decoder Optimization

Equation (1) uses our MLP-based language decoder to predict vision-language features based on the

encodings stored in the octree. However, the new data can contain features that have not been observed before.

In this case, the decoder weights must be updated to be able to reconstruct new features without forgetting the

old ones, but re-training of the whole previously mapped environment is computationally expensive.

We propose adaptive language decoder optimization in Algorithm 1. When a new point cloud with vision-

language features arrives, we perform decoder optimization before the optimization of octree features

described in Sec. 3.1.

= − CosineSimilarity(,),Lvl

1

N
∑
i=1

N

φi φ̄̄̄i (1)

N

φ̄̄̄ F

F

φ̄̄̄

φ̄̄̄

qeios.com doi.org/10.32388/D8Q0Y8 7

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

The proposed optimization operates with a language decoder (Line 2) and learnable parameters. The learnable

parameters are the inputs that are directly forwarded to the decoder. In our work (Figure 2), the learnable

parameters are vectors (Line 5) and the interpolated and summed point encoding (Line 4). Note that

Algorithm 1 is not limited to our network architecture and can be adapted to other implicit representations by

simply replacing the corresponding learnable parameters.

Firstly, we extract only unique language features (Line 10) from all available ones in the input point cloud and

then filter out already known features (Line 11). In both cases, cosine similarity and a predefined threshold are

used to estimate similarity.

F

τ

qeios.com doi.org/10.32388/D8Q0Y8 8

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

For the new features (unobserved features without duplicates), we initialize the learnable parameters: the

encodings and vectors (Lines 15–19). Note that the initialized encodings (Line 15) correspond to the linearly

interpolated and summed features of the corners of the octree (Point Encoding in Figure 2). We initialize only a

single feature vector for all new language features (Line 17) because the feature vector stored in the coarse

octree level may be used for points with different language features (Sec. 3.1). We also regularize new vectors

by enforcing them to be similar to existing ones (Lines 27 and 29). However, this regularization is optional and

can be omitted or changed to any other regularization required by the corresponding implicit representation.

The proposed adaptive optimization approach optimizes the decoder for unobserved language features and

finds the learnable parameters for them. Only the decoder and new learnable parameters are optimized (Line

21). The already known features and their encodings are not optimized, but used to prevent forgetting (Lines 22

to 24). After optimization, we update the list of known vision-language features and their learnable parameters

(Lines 32 to 34).

The proposed optimization efficiently stores only a small number of known features for replay (Line 3), as

demonstrated in experiments (Figure 6). It enables fast decoder optimization using vectorization. Moreover,

the language decoder and the learnable parameters are optimized only if new language features are observed.

3.3. Measurement Update Strategy

During incremental mapping, new observations added to the map should not corrupt previous measurements.

However, vision-language features predicted by the visual encoder may not be consistent between frames.

VLMaps[9] averaged the language features of the objects received from different views. We note that the

averaging can be done in a recursive form:

In this work, we propose to use as target for training in Eq. (1) a weighted average between observations

 and the features already stored in the map:

This averaging is especially useful for noisy measurements such as vision-language features because they may

significantly vary with distance to the objects or point of view (Sec. 4.1). Mapping with Eq. (3) forces the map to

store all observations similarly to[9]. However, we observed better results when not all previous data are stored

and decided to use exponential smoothing instead of averaging:

where is set dynamically to higher values if new measurements are more different from the previously

optimized map features and lower otherwise:

F

F F

F

= = + , with = 0.An
1

N
∑
i=1

N

φi
n − 1

n
An−1

φn

n
A0 (2)

φ∗
n

φn φ̄n−1

= + , with = 0.φ∗
n

n − 1

n
φ̄n−1

φn

n
φ̄0 (3)

= α + (1 − α) with~ = 0,φ∗
n φ̄n−1 φn φ̄0 (4)

α φn

φ̄n−1

qeios.com doi.org/10.32388/D8Q0Y8 9

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

4. Experiments

In the experiments, we validate that our method can be used for incremental implicit mapping of language

features. We use depth, semantic, and RGB images provided by[9] through the Habitat simulator using

Matterport3D[2]. Matterport3D provides ground truth meshes with each face assigned to a class label. To get

ground truth point clouds with the corresponding language features, we sample the meshes and encode their

labels using CLIP[1]. During all experiments, we project depth images into 3D using the current camera pose to

obtain input point clouds. The parameters we use during the experiments are summarized in Table 1.

Parameter Symbol Value

Similarity threshold 0.02

Used octree levels 8,9,10

Fine level resolution 0.05 [m]

Learnable features size 16

F vectors size 512

Iterations per decoder optimization 100

Iterations per mapping loss Eq. (1) 100

Table 1. LiLMaps parameters and their values in the experiments.

α = .
CosineSimilarity(,)φi φ̄i

0.5 + CosineSimilarity(,)φi φ̄i

(5)

τ

m

L

Nopt

qeios.com doi.org/10.32388/D8Q0Y8 10

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

Figure 3. Left: Environments reconstructed without measurement update; Middle: Ground Truth; Right: Environments

reconstructed with measurement update.

4.1. Mapping Quality

We evaluate accuracy, recall, precision, and intersection over union for our implicit language map. Accuracy is

defined as the number of points with correctly reconstructed language features divided by the total number of

points. The values are compared with the OpenScene 3D model[15] trained on Matterport3D[2]. The results of

random sequences are presented in Table 2. To validate the measurement update strategy, we also present

results with deactivated measurement update, marked by an asterisk (LiLMaps*).

qeios.com doi.org/10.32388/D8Q0Y8 11

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

5LpN3gDmAk7_1 YmJkqBEsHnH_1 gTV8FGcVJC9_1 jh4fc5c5qoQ_1 JmbYfDe2QKZ_2

A mR mP mIoU A mR mP mIoU A mR mP mIoU A mR mP mIoU A mR mP mIoU

LiLMaps* 97 97 96 93 98 93 92 89 98 98 95 94 98 96 88 85 95 96 92 89

LiLMaps 97 97 93 91 96 94 96 90 97 98 93 92 98 98 92 89 95 96 90 87

LiLMaps* 84 77 70 57 84 77 82 65 85 85 84 73 83 78 73 61 78 77 77 63

LiLMaps 88 86 75 66 90 82 87 72 90 90 86 79 90 84 82 71 85 88 82 74

OpenScene[15] 68 45 67 36 63 50 77 41 61 49 60 36 77 52 59 39 56 51 67 41

LiLMaps* 64 29 46 21 52 44 58 31 65 48 59 32 59 32 44 21 53 41 50 33

LiLMaps 68 37 57 26 57 56 60 34 70 50 63 33 73 39 58 27 56 42 56 34

VLMaps 28 - - 19 28 - - 19 28 - - 19 28 - - 19 28 - - 19

Table 2. Language mapping quality evaluation: accuracy (A), recall (mR), precision (mP) and mean IoU (mIoU) in

[%].

Figure 4. Left: Language map produced by OpenScene 3D[15]; Middle: Ground Truth; Right: Language map created by

LiLMaps.

For LiLMaps and LiLMaps* , the language features of a measurement are obtained directly from the closest

points of the ground truth point cloud. This allows us to estimate upper-bound performance with close-to-

ideal input data. However, simulation measurements and ground truth points sampled from uneven meshes do

not always match perfectly. As a result, some input points may have wrong language features or do not have

language features at all.

LiLMaps and LiLMaps* denote experiments in which language features are extracted from semantic

images. Simulated semantic images have incorrect labels due to mesh discontinuities and on object edges. This

GT

GT

SEM

SEM

LSeg

LSeg

GT GT

SEM SEM

qeios.com doi.org/10.32388/D8Q0Y8 12

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

allows us to test LiLMaps when the input data are closer to the real ones, e.g. when the data are imprecise and

inconsistent between frames.

Our approach demonstrates the best performance when used with the GT data. The introduction of the

Measurements Update does not change the performance significantly, as the input features are precise and

consistent between frames in this case.

Figure 5. Language map incrementally created with our adaptive optimization. Bottom Left: A

region mapped in the beginning. Bottom Right: The same region after the mapping is completed.

All initially mapped objects remain unchanged.

As expected, LiLMaps and LiLMaps* yield worse results due to the inconsistency of the input data, but

both still outperform OpenScene[15]. LiLMaps outperforms LiLMaps* due to the proposed measurement

update technique which addresses potential data inconsistencies. Figure 3 shows maps learned with activated

SEM SEM

SEM SEM

qeios.com doi.org/10.32388/D8Q0Y8 13

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

and deactivated measurement update procedure. Enabling measurements update results in a cleaner final map,

which is crucial for object detection and navigation.

Figure 4 compares a LiLMaps reconstruction with the prediction of the OpenScene 3D model. Despite OpenScene

being trained on the same dataset, it struggles with certain labels and completely misses labels such as ”TV

monitor”, ”appliances”, ”stool”, whereas our approach achieves high accuracy for these labels and does not

completely miss objects.

Table 2 compares our approach combined with the LSeg model (LiLMaps and LiLMaps*) and VLMaps

(VLMaps) with metrics reported in[9]. LSeg frequently misses objects (e.g., segments a painting as a wall) or

provides wrong language features (e.g., detects a bed as a sofa), which significantly influence the final results.

Improving the quality of per-pixel language segmentation is beyond the scope of this research, however. In all

cases, our 3D reconstructed language maps yield better results than the mean results reported in VLMaps[9] for

their 2D maps.

4.2. Adaptive Language Decoder Optimization

We demonstrate the impact of our Adaptive Optimization Strategy on sequence 5LpN3gDmAk7_1 with GT

labels. We compare the performance of the decoder trained with our Adaptive Optimization with other decoders

built from pre-trained models. We chose OpenScene[15] 3D model’s head as the pre-trained decoder because it

can predict language features for arbitrary input point clouds. For fair comparison, we changed our language

decoder architecture (LiLMaps) to match the architecture of OpenScene’s head. This head does not allow us

to use the learnable vectors , however, and therefore the results in Table 3 are presented when only the

learnable corner features with are optimized.

Decoders

F1-Score

100% – 90% 90% – 80% 80% – 70% 70% – 50% 50% – 0%

LiLMaps 20 2 1 (picture) 0 0

LiLMaps 20 2 0 1 (towel) 0

OpenScene 16 4 2 0 1 (objects)

OpenScene 16 5 1 0 1 (objects)

OpenScene 9 8 1 3 2 (picture, shelving)

Table 3. Number of classes falling into different F1-score ranges for compared decoders. A method is considered to be

better if a larger number of classes are listed in the first column with .

LSeg LSeg

simple

F

m = 96

↑ ↓ ↓↓ ↓↓↓ ↓↓↓↓

F1 > 90%

qeios.com doi.org/10.32388/D8Q0Y8 14

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

Table 3 summarizes number of classes with distinct F1-score qualities using different optimization types:

decoder trained with the proposed adaptive optimization (LiLMapssimple); decoder pre-trained with the

proposed optimization (LiLMapspretrained); and pre-trained and fixed headings of OpenSceneMIT[15], trained on

different datasets (Matterport3D[2], nuScenes[45], ScanNet[46]).

Figure 6. Number of language features stored for the adaptive optimization with varying

feature similarity thresholds . Blue: Language features are extracted from ground truth

(GT) data; Orange: Language features are extracted by LSeg; Red line: Total number of

different GT classes presented in the scene.

To obtain LiLMapspretrained we extract all available labels from the scene, convert them to language features

using CLIP and use our adaptive language decoder optimization with all features at once. The additional

possibility of pre-training the decoder in advance without any real measurements may be useful for some

applications. Our adaptive language decoder optimization allows to adjust pre-trained decoders online if

necessary, but for this experiment, we do not update pre-trained models (LiLMapssimple, OpenSceneMIT,

OpenSceneSC, OpenSceneMS) during the mapping.

The final results of LiLMapssimple are similar to those of LiLMapspretrained because every time a new object is

observed, the corresponding language features are included in the Adaptive Optimization and the decoder of

LiLMapssimple is updated to represent new features without forgetting the old ones. Adaptive and pre-trained

LiLMaps models may have minor differences in the results due to their initial states and optimization processes

being different. In Figure 5 we demonstrate that the proposed adaptive optimization can incrementally extend

τ

qeios.com doi.org/10.32388/D8Q0Y8 15

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

the decoder to represent new features without catastrophic forgetting of language features observed in the

beginning.

The results of Table 3 show that the proposed adaptive optimization LiLMapssimple performs better than pre-

trained and fixed models. Our adaptive optimization fits the model to a specific scene while pre-trained

decoders (in this case OpenScene’s heads) are trained for general language prediction. If a model trained for

general prediction is used, then some language features of the environment may be poorly represented in it (e.g.

picture and shelving in Table 3), while well-represented features may be irrelevant for the specific scene. This

can be seen in the results of OpenSceneMIT. OpenSceneSC is trained on Matterport3D[2] and has better results.

OpenSceneMS is trained on ScanNet[46] which is similar to Matterport3D that explains the similar results.

However, OpenSceneHE pre-trained on NuScenes[45] has significant degradation in the results because the

NuScenes environment is more different from Matterport3D. Moreover, our adaptive language decoder

optimization allows one to build a custom decoder architecture while employing pre-trained models could

restrict available architecture options.

We analyze different values of the threshold used to extract unique and unknown features from all input

features. Figure 6 shows the final number of features that were considered distinguished and were involved in

the optimization at the end of mapping. Lower values lead to a larger number of features, but they are still

memory efficient. For comparison, the stored features are collected from hundreds of high-resolution images,

but their final number is less than of the number of pixels in a single image with resolution 640 480.

During all tests, adaptive language decoder optimization operated at a rate of 4 frames per second (fps). To

achieve real-time performance, adaptive optimization can be executed in parallel to mapping.

5. Conclusion

In this work, we presented an implicit language mapping approach called LiLMaps. We address the problem of

unseen language features that appear during the mapping process and the problem of inconsistencies between

frames. Currently, LiLMaps is the only approach capable of large-scale incremental implicit language mapping.

It can be used alone and enables a variety of interactions with the environment, for instance, 3D language-

based object detection (7). Additionally, it can be integrated into existing implicit mapping approaches,

introducing only slight overhead.

We evaluated LiLMaps on the public dataset commonly used in related works. Based on the results, we

outperform similar works in terms of language mapping quality. However, LiLMaps significantly depends on

the quality of visual language features produced by the encoder, which is considered to be an external module in

our study. The importance of this dependency is reduced by the proposed Measurement Update strategy that

handles inconsistency between frames. We demonstrated that LiLMaps can adapt to the environment

τ

τ

0.5% ×

qeios.com doi.org/10.32388/D8Q0Y8 16

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

outperforming pre-trained decoders. The proposed Adaptive Optimization demonstrates the ability to prepare

decoders given arbitrary language features without the need for actual observations.

Figure 7. 3D language-based object detection performed on our language map. LiLMaps creates an implicit language

map which is reconstructed and queried for different objects. The highest correspondences between the

reconstructed language map and corresponding request (blue) are highlighted in red.

qeios.com doi.org/10.32388/D8Q0Y8 17

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

Acknowledgment

This research was funded by the German Federal Ministry of Education and Research (BMBF) in the project

WestAI – AI Service Center West, grant no. 01IS22094A.

References

1. a, b, cRadford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark J, et al. Learni

ng transferable visual models from natural language supervision. In: International Conference on Machine Learni

ng (ICLM). PMLR; 2021. p. 8748-8763.

2. a, b, c, d, eChang A, Dai A, Funkhouser T, Halber M, Niessner M, Savva M, Song S, Zeng A, Zhang Y (2017). "Matterp

ort3D: Learning from RGB-D Data in Indoor Environments". International Conference on 3D Vision (3DV). pages 6

67--676.

3. ^Anderson P, Wu Q, Teney D, Bruce J, Johnson M, Sünderhauf N, Reid I, Gould S, Van Den Hengel A. Vision-and-la

nguage navigation: Interpreting visually-grounded navigation instructions in real environments. In: IEEE Confere

nce on Computer Vision and Pattern Recognition (CVPR). 2018. p. 3674-3683.

4. ^Hong Y, Wang Z, Wu Q, Gould S (2022). "Bridging the gap between learning in discrete and continuous environm

ents for vision-and-language navigation". In: IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). pp. 15439–15449.

5. ^Obinata Y, Kanazawa N, Kawaharazuka K, Yanokura I, Kim S, Okada K, Inaba M (2023). "Foundation Model bas

ed Open Vocabulary Task Planning and Executive System for General Purpose Service Robots". arXiv preprint arXi

v:2308.03357. arXiv:2308.03357.

6. ^Hu Y, Xie Q, Jain V, Francis J, Patrikar J, Keetha N, Kim S, Xie Y, Zhang T, Zhao Z, et al. Toward general-purpose r

obots via foundation models: A survey and meta-analysis. arXiv preprint arXiv:2312.08782. 2023.

7. ^Dalal M, Chiruvolu T, Chaplot D, Salakhutdinov R. "Plan-Seq-Learn: Language model guided RL for solving long

horizon robotics tasks." In: 12th International Conference on Learning Representations (ICLR); 2024.

8. ^Lynch C, Wahid A, Tompson J, Ding T, Betker J, Baruch R, Armstrong T, Florence P (2023). "Interactive language:

Talking to robots in real time". IEEE Robotics and Automation Letters (RA-L). 2023.

9. a, b, c, d, e, f, g, hHuang C, Mees O, Zeng A, Burgard W (2023). "Visual Language Maps for Robot Navigation". In: IE

EE International Conference on Robotics and Automation (ICRA).

10. ^Chen B, Xia F, Ichter B, Rao K, Gopalakrishnan K, Ryoo MS, Stone A, Kappler D (2023). "Open-vocabulary querya

ble scene representations for real world planning". In: IEEE International Conference on Robotics and Automation

(ICRA). pp. 11509–11522.

11. ^Raman SS, Cohen V, Rosen E, Idrees I, Paulius D, Tellex S (2022). "Planning with large language models via corre

ctive re-prompting". NeurIPS Foundation Models for Decision Making Workshop (FMDM).

qeios.com doi.org/10.32388/D8Q0Y8 18

https://arxiv.org/abs/2308.03357
https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

12. ^Ahn M, Brohan A, Brown N, Chebotar Y, Cortes O, David B, Finn C, Fu C, Gopalakrishnan K, Hausman K, et al. (20

22). "Do as I can, not as I say: Grounding language in robotic affordances". arXiv preprint arXiv:2204.01691.

13. ^Song CH, Wu J, Washington C, Sadler BM, Chao WL, Su Y (2023). "LLM-Planner: Few-shot grounded planning fo

r embodied agents with large language models". In: IEEE/CVF International Conference on Computer Vision (ICC

V). pp. 2998–3009.

14. ^Ha H, Song S (2022). "Semantic Abstraction: Open-world 3D scene understanding from 2D vision-language mo

dels". In: Conference on Robot Learning (CoRL), volume 205 of Proceedings of Machine Learning Research, pages

643–653. PMLR.

15. a, b, c, d, e, f, g, hPeng S, Genova K, Jiang C, Tagliasacchi A, Pollefeys M, Funkhouser T, et al. "OpenScene: 3D scene u

nderstanding with open vocabularies." In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CV

PR); 2023. p. 815–824.

16. ^Chen W, Hu S, Talak R, Carlone L (2022). "Leveraging large language models for robot 3D scene understanding".

arXiv preprint arXiv:2209.05629.

17. ^Li B, Weinberger KQ, Belongie SJ, Koltun V, Ranftl R. "Language-driven Semantic Segmentation." In: 10th Intern

ational Conference on Learning Representations (ICLR); 2022.

18. ^Ghiasi G, Gu X, Cui Y, Lin T-Y. "Scaling open-vocabulary image segmentation with image-level labels." In: Euro

pean Conference on Computer Vision (ECCV). Springer; 2022. p. 540–557.

19. ^Ranasinghe K, McKinzie B, Ravi S, Yang Y, Toshev A, Shlens J. "Perceptual Grouping in Contrastive Vision-Langu

age Models." In: IEEE/CVF International Conference on Computer Vision (ICCV); 2023. p. 5548-5561.

20. a, bLi MF (2023). "Per-pixel Features: Mating Segment-Anything with CLIP". Available from: https://github.com/j

ustin871030/Segment-Anything-CLIP.

21. ^Jatavallabhula KM, Kuwajerwala A, Gu Q, Omama M, Iyer G, Saryazdi S, Chen T, Maalouf A, Li S, Keetha NV, Tew

ari A, Tenenbaum JB, de Melo CM, Krishna KM, Paull L, Shkurti F, Torralba A. "ConceptFusion: Open-set multimo

dal 3D mapping." In: Robotics: Science and Systems XIX (RSS); 2023.

22. ^Yang Y, Wu X, He T, Zhao H, Liu X (2023). "SAM3D: Segment anything in 3D scenes". arXiv preprint arXiv:2306.0

3908. Available from: https://arxiv.org/abs/2306.03908.

23. ^Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, Xiao T, Whitehead S, Berg AC, Lo WY, et al. Segment

anything. In: IEEE/CVF International Conference on Computer Vision (ICCV); 2023. p. 4015–4026.

24. a, bMildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R (2021). "NeRF: Representing scenes as

neural radiance fields for view synthesis". Communications of the ACM. 65 (1): 99–106.

25. a, bReiser C, Peng S, Liao Y, Geiger A (2021). "KiloNeRF: Speeding up neural radiance fields with thousands of tiny

MLPs". In: IEEE/CVF International Conference on Computer Vision (ICCV). pp. 14335–14345.

qeios.com doi.org/10.32388/D8Q0Y8 19

https://github.com/justin871030/Segment-Anything-CLIP
https://github.com/justin871030/Segment-Anything-CLIP
https://arxiv.org/abs/2306.03908
https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

26. ^Bloesch M, Czarnowski J, Clark R, Leutenegger S, Davison AJ. "CodeSLAM -- learning a compact, optimisable rep

resentation for dense visual SLAM". In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 201

8. p. 2560--2568.

27. ^Ortiz J, Clegg A, Dong J, Sucar E, Novotn\u00fd D, Zollh\u00f6fer M, Mukadam M (2022). "iSDF: Real-Time Neur

al Signed Distance Fields for Robot Perception". In: Robotics: Science and Systems XVIII (RSS), 2022.

28. a, bMatsuki H, Murai R, Kelly PHJ, Davison AJ. "Gaussian splatting SLAM". In: IEEE/CVF Conference on Computer V

ision and Pattern Recognition (CVPR). 2024. p. 18039–18048.

29. ^Sucar E, Liu S, Ortiz J, Davison AJ (2021). "iMAP: Implicit mapping and positioning in real-time". In: IEEE/CVF In

ternational Conference on Computer Vision (ICCV). pp. 6229–6238.

30. ^Zhu Z, Peng S, Larsson V, Xu W, Bao H, Cui Z, Oswald MR, Pollefeys M. "NICE-SLAM: Neural implicit scalable enc

oding for SLAM." In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 12786-1

2796.

31. ^Zhong X, Pan Y, Behley J, Stachniss C (2023). "SHINE-Mapping: Large-scale 3D mapping using sparse hierarchic

al implicit neural representations". IEEE International Conference on Robotics and Automation (ICRA). pp. 8371–

8377.

32. a, b, cKerbl B, Kopanas G, Leimkühler T, Drettakis G (2023). "3D Gaussian Splatting for Real-Time Radiance Field

Rendering." ACM Transactions on Graphics (TOG). 42 (4): 139--1.

33. ^Zhu S, Qin R, Wang G, Liu J, Wang H (2024). "SemGauss-SLAM: Dense semantic Gaussian splatting slam". arXiv

preprint arXiv:2403.07494.

34. ^Naumann J, Xu B, Leutenegger S, Zuo X (2024). "NeRF-VO: Real-time sparse visual odometry with neural radia

nce fields". IEEE Robotics and Automation Letters (RA-L). 9 (8): 7278–7285.

35. ^Zhu L, Li Y, Sandström E, Schindler K, Armeni I (2024). "LoopSplat: Loop Closure by Registering 3D Gaussian Spl

ats". arXiv preprint arXiv:2408.10154.

36. ^Zhi S, Sucar E, Mouton A, Haughton I, Laidlow T, Davison AJ (2021). "iLabel: Interactive neural scene labelling".

arXiv preprint arXiv:2111.14637. Available from: https://arxiv.org/abs/2111.14637.

37. a, bHaughton I, Sucar E, Mouton A, Johns E, Davison AJ. Real-time mapping of physical scene properties with an a

utonomous robot experimenter. In: Conference on Robot Learning (CoRL), volume 205 of Proceedings of Machine

Learning Research. PMLR; 2022. p. 118-127.

38. a, bMazur K, Sucar E, Davison AJ (2023). "Feature-realistic neural fusion for real-time, open set scene understand

ing". In: IEEE International Conference on Robotics and Automation (ICRA). pp. 8201–8207.

39. ^Kerr J, Kim CM, Goldberg K, Kanazawa A, Tancik M (2023). "LERF: Language embedded radiance fields". In: IEE

E/CVF International Conference on Computer Vision (ICCV). pp. 19729–19739.

qeios.com doi.org/10.32388/D8Q0Y8 20

https://arxiv.org/abs/2111.14637
https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

40. ^Qin M, Li W, Zhou J, Wang H, Pfister H (2024). "LangSplat: 3D language Gaussian splatting". In: IEEE/CVF Confer

ence on Computer Vision and Pattern Recognition (CVPR). pp. 20051–20060.

41. ^Müller T, Evans A, Schied C, Keller A (2022). "Instant neural graphics primitives with a multiresolution hash enc

oding". ACM Transactions on Graphics (TOG). 41 (4): 1–15.

42. ^Wang J, Bleja T, Agapito L. "GO-Surf: Neural feature grid optimization for fast, high-fidelity RGB-D surface reco

nstruction." In: International Conference on 3D Vision (3DV). IEEE; 2022. p. 433-442.

43. a, bTakikawa T, Litalien J, Yin K, Kreis K, Loop C, Nowrouzezahrai D, Jacobson A, McGuire M, Fidler S (2021). "Neu

ral geometric level of detail: Real-time rendering with implicit 3D shapes". In: IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). pp. 11358–11367.

44. ^Li J, Wen Z, Zhang L, Hu J, Hou F, Zhang Z, He Y (2024). "GS-Octree: Octree-based 3D Gaussian splatting for robu

st object-level 3D reconstruction under strong lighting". Computer Graphics Forum (CGF). 43 (7): i--xxii.

45. a, bCaesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, Baldan G, Beijbom O. "nuScenes: A mu

ltimodal dataset for autonomous driving." In: IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR); 2020. p. 11621-11631.

46. a, bDai A, Chang AX, Savva M, Halber M, Funkhouser TA, Nießner M. "ScanNet: Richly-Annotated 3D Reconstructi

ons of Indoor Scenes." In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. p. 2432–24

43.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/D8Q0Y8 21

https://www.qeios.com/
https://doi.org/10.32388/D8Q0Y8

