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Whether wave function collapses or not is a major remaining question in the theory of quantum

measurement. This difficulty stems from following two facts. First, it has not been recognized that

single-particle quantum mechanics and many-particle quantum mechanics must be treated

separately. Second, quantum jump (QJ) and wave function collapse (WFC) need clearer definitions. We

define a QJ as a process of selecting a set of system eigenvalues (SEVs) of an observable and a WFC as a

process of determining the probability distribution (PD) of SEVs, both from a single measurement. The

goal of quantum observation is to obtain the PD, which is determined from an ensemble of SEVs. The

wave function becomes an observable when the PD is determined. In single-particle quantum

mechanics, a single measurement results in only one set of SEVs and the PD is not observable.

Therefore the WFC does not happen. In many-particle quantum mechanics, we focus on the

occupation number of a singe quantum state. The wave function does not collapse in general, but there

are exceptions. The occupation number can be huge and macroscopic for photons or for Bose-Einstein

condensates. In such a case, the PD is determined from a single measurement of a real ensemble and

the WFC occurs. We call it a macroscopic quantum jump, which effectively is a measurement of a

classical observable.
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I. Introduction

Nearly a century has passed, since the birth of quantum mechanics, and yet the measurement problem

has not been fully solved. One major remaining question is whether wave function collapses or not.

In a previous paper (Paper I[1]), we have given an interpretation of single-particle quantum mechanics,

which elucidates a quantum jump (QJ) to be a jump from microscopic to microscopic. We call this process
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a microscopic quantum jump (MIJ). This MIJ interpretation better defines the QJ and allows clearer

distinction between QJ and wave function collapse (WFC). Until recently, the QJ and the WFC are treated

to be the same thing, but here we distinguish them clearly.

First, we define a QJ as a process of selecting a set of system eigenvalues (SEVs) of an observable. It is an

experimental entity determined from a single measurement. On the other hand, wave function (WF) is a

theoretical notion associated with a probability distribution (PD) of quantum states. Now we define a

WFC to be a phenomenon associated with a single measurement. For single-particle quantum mechanics,

the PD is obtained from repeated measurements. A single event does not tell anything about the PD, and

therefore WF does not collapse. In Section II, we present representative experiments of single-particle

quantum mechanics in which the WFC does not happen.

How about many-particle quantum mechanics? In general, the situation is the same as that for single-

particle quantum mechanics. However, there are some interesting exceptions, in which the WFC happens

due to a large occupation number of a quantum state. For these cases, quantum states are macroscopic

and the wave function is for a superposition of these macroscopic quantum states. Therefore a single

measurement yields a PD and WFC is realized. We discuss many-particle quantum mechanics in Section

III. Implication of our results is discussed in Section IV.

II. Singe-particle quantum mechanics

A. Summary of microscopic quantum jump interpretation

In a previous paper (Paper I), we have introduced a new interpretation of the measurement problem in

single-particle quantum mechanics. Here we briefly summarize this interpretation. Since von

Neumann[2], a single quantum system was implicitly supposed to interact with enormously many

degrees of freedom in an apparatus, but we do not think this is the case. We have shown that a single

quantum system interacts with only one particle in an apparatus at a time as a quantum jump (QJ). This

jump emits a microscopic particle (MIP) which carries the information of system eigenvalues (SEVs)

potentially. We call this process a microscopic quantum jump (MIJ). The MIJ is a decision[3], before which

quantum states interfere, but after which no interference occurs. After the MIJ, there are two possible

paths toward the SEVs becoming macroscopic. One path is amplification in which the MIP triggers

multiplication of secondary particles which eventually produces a macroscopic observable (MAO)

carrying the information of the SEVs in actuality. One measurement is complete when a MAO is obtained.
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The experiment continues until an ensemble of MAOs are collected and a probability distribution (PD) of

SEVs is obtained from statistics of MAOs. The other path is the accumulation of the MIPs to obtain the

statistics of the SEVs directly. In this case, an ensemble of the SEVs or MAOs are obtained without

forming a MAO from each event. The amplification is outside the domain of single-particle quantum

mechanics, because it occurs after the MIJ. Accumulation is also outside the domain of single-particle

quantum mechanics, because each MIP is generated as a result of one MIJ.

In Paper I, we did not ask the mechanism of the MIJ, since we cannot investigate it by experiments,

following the attitude of Dirac[4]. Although we still consider that the argument of Dirac is valid, now it

seems that we can be more specific about the MIJ in relation to the WFC. In this paper, we discuss the

distinction and relation between the MIJ and the WFC by focussing on the meaning of the PD. The MIJ is

strictly true for single-particle quantum mechanics and we will discuss many-particle quantum

mechanics later in Section III.

B. PD obtained from a virtual ensemble: Two-dimensional photon-counting detection

As we have already mentioned, a MIJ is a process of selecting a set of SEVs of an observable, but not a

collapse of wave function. We will clarify this point by introducing concrete examples.

Let us consider a double slit experiment using a two-dimensional photon-counting detector. At low light

levels, individual photons arrive at the detector surface sequentially. Details of this kind of experiment

are described in Paper I.

What we observe as a MAO for one photon event is a two-dimensional position   plus an arrival time 

.    are a set of SEVs related to an interference pattern, while    is not related to the interference

pattern. At this point, we have no information on the observed PD, P ). It is not clear if we should

interpret this MIJ as a collapse of wave function because a wave function    is a quantity related to a

theoretical PD P )= , which should be compared with an observed PD P ).

P ) becomes an observable from an ensemble of  s after integrating MAOs in time  . Individual

photon events follow the fixed PD P )., but we cannot tell anything about P ), only from one

event. An observed P ) and a theoretical P ) are to be compared by an experiment, which

collects an ensemble of SEVs. The simplest interpretation of this situation is that the theoretical PD P

) is the same for each MIJ, and also the WF    is the same for each MIJ, and they do not

collapse.
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This ensemble interpretation of    is a primitive form of second quantization[5], since 

 becomes an observable or q-number, where N  is the number of photon

events at   in the interference pattern and N . Since N  is obtained from

repeated measurements of MAOs, this ensemble is a virtual ensemble.

C. PD obtained from an integrated real ensemble: Photon detection by a CCD

Now we consider a double slit experiment using an integration-type detector such as a CCD, which is

described in detail in Paper I. In order to obtain an observed PD, P ), it is not always necessary to

count individual photon events as MAOs. Instead, one can accumulate photoelectrons as MIPs at each

pixel at   until the number of MIPs becomes macroscopic. A photon is absorbed at one pixel and a

photoelectron is generated as a MIP by internal photoelectric effect. However this MIP does not trigger

amplification and stays at that pixel. The MIJ is a selection of the pixel location   and this process

follows P ). After accumulating MIPs at pixel  , the number of MIPs, N  becomes a MAO. P

) becomes an observable from the MAOs at all pixels. N  at all pixels is obtained from a real

ensemble after the accumulation.

Is there any difference between photon counting detection and photon detection by a CCD in terms of a

MIJ? One MIJ is a selection of SEVs or   obeying the PD P ). All MIJs follow the same P )

and there is no point in assuming collapses of P ). Photon counting detection and photon detection

by a CCD are the same until a photoelectron which carries the information of SEVs is generated. Although

there is a difference between amplification and accumulation, they are outside the domain of single-

particle quantum mechanics, since quantum mechanics covers up to the stage of emission of a MIP.

P ) (perfect interference pattern) and P ) can be compared only after an ensemble of SEVs have

been obtained.   becomes a q-number only when we compare these PDs. There is no

point in considering a collapse of wave function for each MIJ.

III. Many particle quantum mechanics

We have seen that a QJ or a MIJ is not a WFC for single-particle quantum mechanics. The essential point

of the single-particle quantum mechanics is that the observed PD P   is not an observable for a single

measurement. Now we examine the situation in many-particle quantum mechanics by considering the

occupation number of a quantum state.
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A. Fermions

The occupation number for a fermion state N   is either 0 or 1. So ordinary fermions do not have

macroscopic N  and the observed PD P  cannot be obtained from a single measurement. The PD must be

obtained from repeated measurements or from an virtual ensemble. Formation of a macroscopic

quantum state is prohibited by the Pauli exclusion principle. For fermions in general, WFC does not

happen.

B. Bosons

The occupation number for a boson state N  is 0, 1, 2, ...,  . So light bosons can have macroscopic N  and

the observed PD P  can be an observable for a single measurement. Since photons are massless and their

chemical potential is zero, photons can condense into many photon states and effectively form classical

electromagnetic wave. Liquid He   condenses into superfluid at low temperatures[6][7], and  -on

condensation may occur in neutron stars[8]. These are Bose-Einstein condensates. For these bosons, a

superposition of macroscopic states can occur and the PD can be obtained from a single measurement.

Therefore WFC can happen.

There is an uncertainty relation,

where    is the phase fluctuation of a macroscopic quantum state. A boson state follows this relation

and becomes macroscopic for a large N .

C. Bosons composed of Cooper pairs of fermions

Exceptions of fermions are Cooper pairs in Bose-Einstein condensates. They are Cooper pairs of electrons

in superconductor[9], those of Liquid He   in superfluid[10], and possibly those of neutrons in superfluid

and those of protons in superconductor in neutron stars[11]. These Bose-Einstein condensates have

superpositions of macroscopic quantum states, and therefore WFC can occur.

IV. Discussion

Previously, theories of quantum measurement have focussed on explaining how SEVs become classical

and have not covered an ensemble of measurements. The MIJ interpretation made the measurement
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problem simple and allowed the analysis of an ensemble of measurements.

For single-particle quantum mechanics, a MIJ or a single measurement does not produce a PD and the

wave function does not collapse. We have given some concrete examples.

For many particle quantum mechanics, we have only presented a framework and did not present concrete

examples. However, thanks to the macroscopic nature of many-photon states and Bose-Einstein

condensates, we can comment on their measurements as follows. Many-photon states are effectively

classical electromagnetic waves, and they are amenable to ordinary measurements in a laboratory.

Superconductor is also routinely measured in a laboratory and in a sense, they are more easily measured

than single quantum systems. What we have found is an obvious fact that a measurement of a classical

system gives a classical result.

Without confusion we can introduce a new terminology, macroscopic quantum jump (MAJ), which is a QJ

from macroscopic to macroscopic. In short, a MIJ is not a WFC, but a MAJ is a WFC,

V. Conclusion

We have shown that the final goal of quantum measurements is the determination of probability

distribution from an ensemble of system eigenvalues. If we define the collapse of wave function to be the

measurement of probability distribution from a single measurement, wave function does not collapse in

single-particle quantum mechanics. In case of many-particle quantum mechanics, wave function

collapses for many photon states and Bose-Einstein condensates.
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