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A new two-point Taylor series expansion is proposed. The expansion is slightly

different than the classical definition. The coefficients are calculated as recursive

relations in a general form. The two-point Taylor expansion is applied to several

functions which are odd, even, neither odd nor even. Functions having finite

interval of convergence or infinite interval of convergence are investigated. The

conditions for convergence are derived and the results are compared with the

results of single-point Taylor expansions as well as two-point Taylor expansions

reported in the literature. It is found that for a finite radius of convergence, two-

point Taylor expansions can have a single convergence interval as well as two

separate convergence intervals. Generally speaking, two-point Taylor expansions

better represent the real function when the series is truncated. The new two-point

expansion and the classical two-point expansion produced identical results for all

the problems treated. Based on the results of this analysis, the asymmetric two-

point Taylor expansion presented here does not have an advantage compared to the

classical symmetric expansion. An application of the series to solution of a variable

coefficient differential equation is also treated.
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1. Introduction

Taylor and MacLaurin series are one of the fundamental

topics in mathematics. A continuous and infinitely

differentiable function may be expressed in terms of a

polynomial series, the coefficient of which is determined

by the derivatives at a given point. The series expansion

may be convergent over the whole domain or may have a

limited convergence interval which is determined by the

radius of convergence. In order to better approximate the

functions, instead of the single-point Taylor expansions,

two-point Taylor expansions were also proposed in the

literature. Rotational symmetric lens profiles were

described by the two-point Taylor polynomials. It is

shown that the two-point Taylor expansions better

approximates the mapping functions [1]. Two-point Taylor

expansions were employed in the area of finance to

determine density and option price expansions  [2]. Such

expansions were considered in the complex domain also.

Singular one dimensional boundary value problems were

treated  [3]. Another complex domain treatment of two-

point Taylor expansions is presented in [4]. The two-point

series solutions were applied to nonlinear partial

differential equations  [5]. Finally, elliptic boundary value

problems were also analyzed  [6]. For Taylor expansions

and their link to perturbation solutions, see  [7]. A

nonlinear curve equation with constant acceleration

components were examined by numerical, single-point

Taylor expansion and perturbation methods  [8]. An

interesting recent paper discusses the properties of blends

which can be used to approximate functions with two-

point Taylor series [9].

In this work, a slightly different new version of the two-

point Taylor expansions is proposed for the first time. The

new version is compared with the single point Taylor

expansion as well as the classical two-point Taylor

expansion. Several functions which are odd, even or

neither odd nor even are considered. Functions having

finite radius of convergence as well as infinite radius of

convergence are treated. The new asymmetric expansion

and the classical symmetric two-point expansion

produced identical results for all the problems considered.

For the two-point expansions, the convergence interval is

widened compared to a Taylor series with respect to the
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single-point expansion of the lower reference point

whereas it is narrower with respect to the higher reference

point of the single-point expansion. If the two reference

points are sufficiently far away from each other, then the

convergence intervals double with appearance of a

divergent intermediate interval. For problems with

infinite radius of convergence, the best results are

obtained in the vicinity of the reference points and the

error for truncated series may increase in between the

reference points if the reference points are widely spaced.

The criterion for convergence intervals is derived as well

as for the doubling of convergence intervals for a specific

problem. It is shown that two-point Taylor expansions

can represent the solution between both sides of a vertical

asymptote whereas the solutions of single-point

expansions cannot cross the vertical asymptote. Finally,

the new series solution is applied to a variable coefficient

ordinary differential equation also.

2. Two-Point Taylor Series

Expansions

The new proposed two-point Taylor series expression is

given first.

Theorem 1. Given an analytical function    and the

convergent polynomial approximation defined with

respect to two reference points   and 

the coefficients    and    are uniquely determined

by the equations

  , where    with the coefficients

being calculated from the recursive relations

f(x)

x = x0 x = x1
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∞
m=0 a2m(x − )x0
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+ ,a2m+1 (x − )x0
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∑

∞
m=0 a2m(x − )x0
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Proof

A straightforward calculation of the m’th derivatives at

points   and   yield

  − ( ) (m − i)!( k) − m!∑
i=1

⌊ ⌋m+1

2 m

m − i
∏

k=m−2i+2

m−i+1

( − )x1 x0
m−2i+1

a2m−2i+1 ( − )x1 x0
m
a2m

⎤

⎦

⎥⎥

/m! . (5)( − )x1 x0
m+1

x = x0 x = x1
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( ) = ( )m!f (m) x0 a2m
m

0
( − )x0 x1

m

+ ( ) (m − 1)!(m − 1) + ⋯a2m−2
m

1
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(6)
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Solving    from (6) and    from (7), and using the

summation and multiplication signs, the recursive

relations (4) and (5) are obtained. The first twelve

coefficients in explicit form are

To prove the uniqueness of the coefficients, assume that

there are some other   and   coefficients to express

the same function

Subtracting (20) from (21)

But the Wronskian of    and 

 is

which dictates that the different powers are linearly

independent functions of each other. Therefore, in order

(22) to identically equal to zero for each x, the coefficients

should vanish leading to    which

proves the uniqueness of the coefficients

The classical symmetric version (with respect to reference

points) of the two-point Taylor expansion used in the

literature

is slightly different from the asymmetric expansion (1)

leading to different coefficients

( ) = ( )m!f (m) x1 a2m
m

m
( − )x1 x0

m

+ ( ) (m − 1)!(m − 1) + ⋯a2m−2
m

m − 1
( − )x1 x0

m−2

+ ( ) (m − i)!(m − i)(m − i − 1)a2m−2i
m

i

… (m − 2i + 1)( − )x1 x0
m−2i

+ ( )m! + ( )m(ma2m+1
m

m
( − )x1 x0

m+1
a2m−1

m

m − 1

− 1)! + ⋯( − )x1 x0
m−1

+ ( ) (m − i)!(m − i + 1)(m − i)a2m−2i+1
m

m − i

… (m − 2i + 2) .( − )x1 x0
m−2i+1

(7)

a2m a2m+1

= f( ) (8)a0 x0

= (9)a1
f( )−x1 a0

−x1 x0

= (10)a2
( )−f

′
x0 a1

−x0 x1

= (11)a3
( )− − ) −f

′
x1 (x1 x0 a2 a1

− )(x1 x0
2

= (12)a4
( ) − ) −2f

′′
x0 −2(x0 x1 a3 a2

− )2(x0 x1
2

= (13)a5
( ) − ) −2f

′′
x1 −2 −4(x( − )x1 x0

2a4 1 x0 a3 a2

− )2(x1 x0
3

= (14)a6
( )−6 − )f

′′′
x0 −12(x( − )x0 x1

2a5 0 x1 a4−6a3

− )6(x0 x1
3

= (15)a7
( )−6 − )f

′′′
x1 −18 −12(x( − )x1 x0

3a6 ( − )x1 x0
2a5 1 x0 a4−6a3

− )6(x1 x0
4

= (16)a8
( )−24 − ) −24f (4) x0 −72 −48(x( − )x0 x1

3a7 ( − )x0 x1
2a6 0 x1 a5 a4

− )24(x0 x1
4

=a9
( )−24 − )f (4) x1 −96 −72 −72(x( − )x1 x0

4a8 ( − )x1 x0
3a7 ( − )x1 x0

2a6 1 x0 a5−24a4

− )24(x1 x0
5

(17)

=a10
( )−120 − ) −120f (5) x0 −480 −360 −360(x( − )x0 x1

4a9 ( − )x0 x1
3a8 ( − )x0 x1

2a7 0 x1 a6 a5

− )120(x0 x1
5

(18)

=a11

( )−120f (5) x1 −600 −480 −720 −360(x( − )x1 x0
5a10 ( − )x1 x0

4a9 ( − )x1 x0
3a8 ( − )x1 x0

2a7 1

− )x0 a6−120a5

− )120(x1 x0
6

(19)

b2m b2m+1

f(x) = + (x − ) + (x − ) (x − )a0 a1 x0 a2 x0 x1

+ (x − ) + …a3(x − )x0
2

x1

(20)

f(x) = + (x − ) + (x − ) (x − )b0 b1 x0 b2 x0 x1

+ (x − ) + …b3(x − )x0
2

x1

(21)

− + ( − ) (x − ) + ( − ) (x − ) (x − )a0 b0 a1 b1 x0 a2 b2 x0 x1

+ (x − )(a3− ) (x − )b3 x0
2

x1

       + … = 0. (22)

(x − )x0
m(x − )x1

m

(x − )x0
n(x − )x1

n

W(x) =
∣

∣
∣

(x − )x0
m(x − )x1

m

[ ]d

dx
(x − )x0

m(x − )x1
m

(x − )x0
n(x − )x1

n

[d

dx
(x − )x0

n(x − )x1
n

= (n − m)(2x − a − b)(x − )x0
m+n−1(x − )x1

m+n−1

≠ 0 for m ≠ n, (23)

,  i = 0, 1, 2 …= bai i

f(x) = [ (x − ) + (x − )]∑
∞
m=0 bm x0 cm x1

[ , (24)(x − )(x − )]x0 x1
m

= (25)b0
f( )x1

−x1 x0

= (26)c0
f( )x0

−x0 x1

= (27)b1
( )− −f

′
x1 b0 c0

( − )x1 x0
2

= (28)c1
( )− −f

′
x0 b0 c0

( − )x0 x1
2

= (29)b2
( )−2( + )( − )f

′′
x1 2b1 c1 x1 x0

2( − )x1 x0
3

qeios.com doi.org/10.32388/DFKJ12.2 5

https://www.qeios.com/
https://doi.org/10.32388/DFKJ12.2


It can be proven that this representation is a unique way of

expressing an analytical convergent function, that is there

exist only unique polynomial coefficients   and   for a

given function.

It is well known that the single-point Taylor expression in

the vicinity of   is

where

Numerical comparisons of the two-point Taylor

expansions and the single-point expansion will be given

in the next section.

3. Functional Approximations

In this section, two functions will be approximately

expressed in terms of two-point Taylor series. The two-

point Taylor series and the single-point Taylor series will

be compared with the exact solution. All Figures are

generated by the Matlab software.

3.1. The function y=1/(1+x)

The two point Taylor expression of

is derived for arbitrary two points   and   ( . A

straightforward calculation of (4) and (5) yields

For the classical two-point Taylor expression
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1
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the coefficients are

Finally the single point Taylor expression about   is

where

Using the ratio test for convergence of series, i.e. 

,    being the n’th term of the

polynomial expression, the convergence criterion for both

of the two-point Taylor expansions turns out to be

and for the single point expansion

All expansions cease to be valid at the singular point of the

function  , no matter what the values of   is.

Condition (45) may lead to a single convergence interval as

well as double convergence intervals. To the best of the

author’s knowledge, double convergence intervals were

not discussed previously in the literature. Using the

properties of the quadratic functions, the criterion for a

single convergence interval turns out to be

If the criterion is not satisfied, then the convergence

interval splits into two. The above criterion is special to

this function. For other functions with finite radius of

convergences, the criterion for single convergence region

should be derived based on the specific form of the

relevant coefficients. The convergence intervals are given

in Table 1 for a number of specific numerical values of the

reference points.

f(x) = [ (x − ) + (x − )][ ,∑
m=0

∞

bm x0 cm x1 (x − )(x − )]x0 x1
m (41)

= ,   =bm
1

( − )(1 + )x0
m(1 + )x1

m+1
x1 x0

cm

− .
1

( − )(1 + )x0
m+1(1 + )x1

m
x1 x0

(42)

x2

f(x) = ,∑
m=0

∞

dm(x − )x2
m (43)

= .dm
(−1)m

(1 + )x2
m+1

(44)

< 1limn→∞
∣
∣
pn+1

pn

∣
∣ pn

|(x − )(x − )| < |1 + | |1 + | ,x0 x1 x0 x1 (45)

|(x − )| < |1 + | .x2 x2 (46)

x = −1 x0−2

< 3 + 2 + 2 ( + 1),  ( > ).x1 x0 2–√ x0 x1 x0 (47)
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Convergence Interval Criterion (47)

0 2 (-1,3) Satisfied

0 6 (-1,1.58) and (4.41,7) Not Satisfied

1 4 (-1,6) Satisfied

1 9 (-1,11) Satisfied

1 19 (-1,3.59) and (16.40,21) Not satisfied

3 4 (-1,8) Satisfied

18 19 (-1,38) Satisfied

-2 2 (- ,-1) and (1,  ) Not satisfied

Table 1. Convergence intervals for some reference points

In Figure 1, the two-point Taylor expansions are

contrasted with the exact solution for the case of 

  and  . Table 1 predicts two convergence

regions for this case. As the number of terms increase, the

intervals which predict the exact function closely widen

converging to the intervals predicted by Table 1. Outside

the convergence regions however, the predictions are

worse as the number of terms increase.

x0 x1

7–√ 7–√

= 0x0 = 6x1
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Figure 1. Two-point Taylor approximations of function y=1/(1+x) for  , 

Note that, although the formulations and coefficients are

somewhat different, both two-point Taylor expansions

produced identical results even for the finite truncations

of the series.

In the case of single-point expansions, the convergence

interval is (-1,1) for  , and

(-1,13) for  . That is, the two point Taylor expansion

has a wider convergence region compared to the single

point expansion in the vicinity of lower reference value

and possesses a narrower convergence region compared

to the single point expansion in the vicinity of higher

reference value.

Another case in which there is only one convergence

interval is shown in Figure 2. Four terms are taken in all

expansions. It is obvious that two-point Taylor expansion

has a wider convergence region compared to the single-

point expansion in the vicinity of  , and a narrower

convergence region compared to the single-point

expansion about    as predicted by the theory. Note

that for finite number of truncations, the two-point Taylor

expansion  ,    is better at the left than the

single point expansion about    and better at the

right than the single point expansion about  .

= 0x0 = 6x1

= 0x2

= 6x2

= 1x2

= 4x2

( = 1x0 = 4)x1

= 4x2

= 1x2
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Figure 2. Comparison of two-point Taylor approximations  ,   and single-point

approximations  ,   of function y=1/(1+x)

One of the advantages of the two-point Taylor expansions

is that they can produce solutions at the right and left-

hand sides of the singular point, i.e.    for this

specific case. Single-point Taylor expansion solutions

cannot cross the singularity points because they have only

one convergence interval and the function ceases to be

analytic at the singular point. Figure 3 is such an example

in which the two reference points are  ,  .

Table 1 predicts two convergence intervals i.e., (- ,-1)

and (1,  ) which can be visualized from Figure 3 with 22

terms taken in the expansion.

( = 1x0 = 4)x1

( = 1x2 = 4)x2

= −1xs

= −2x0 = 2x1

7–√
7–√
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Figure 3. Comparison of the two-point Taylor approximation  ,   (dashed) and

the exact function y=1/(1+x) (solid) about the singular point

3.2. The function y=exp(x)

This is a characteristic example where the convergence

interval is infinity. The first twelve terms are taken in all

the expansions. The performance of the two-point Taylor

expansion about    and    is slightly better

than the performance of the single expansion about 

 and much better than the single expansion about 

  (Figure 4). As the number of terms increases, all

the solutions will converge to the real solution. However,

there are differences between the performances of the

extensions for finite mode truncations.

( = −2x0 = 2)x1

= −2x0 = 2x1

= 0x2

= 2x2
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Figure 4. Comparison of the two-point Taylor approximation, single-point Taylor

approximations and the exact function y=exp(x)

4. Further Examples And

Comparisons

The two examples in the previous section are neither odd

nor even functions. As mentioned earlier, results of the

two variants of the two-point expansions are identical to

each other. Two additional functions one being odd and

the other even are used to further compare the

performance of the different variants of the two-point

Taylor expansions with the exact solutions.

4.1. The function y=sin(x)

The function sin(x) is an odd function and the aim is to

test if the proposed asymmetric series has any advantage

over the classical symmetric series for odd functions. The

lower reference point is fixed to    and the higher

reference point is increased from 2 up to 8 in Figure 5. The

first twelve terms are considered in both approximations.

As the higher reference point is increased, the truncated

series represents the function better in a wider region.

Note that, the two variants produce exactly the same

results as can be seen from the coincidence of the dashed

and the dotted lines.

= 0x0

qeios.com doi.org/10.32388/DFKJ12.2 12

https://www.qeios.com/
https://doi.org/10.32388/DFKJ12.2


Figure 5. Comparison of the new two-point Taylor approximation (dashed), classical two-

point Taylor approximation (dotted) and the exact function y=sin(x) (solid) for various right-

hand side reference points 

The absolute error is defined as

where    stands for the exact solution and    for the

approximate solution. Figure 6 is a comparison of the

absolute errors of both methods.

( = 0)x0

err = | − | ,ye ya (48)

ye ya
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Figure 6. The absolute errors of the new two-point Taylor approximation (dashed) and the

classical two-point Taylor approximation (dotted) for sine function 

The errors are minimized in the vicinity of the two

reference points. Both approximations perform the same.

4.2. The function y=cos(x)

The analysis is repeated for the well-known even function

cos(x). The lower reference point is fixed to   and the

higher reference point is increased from 4 to 8 in Figure 7.

With an increase in the higher reference point, the

truncated approximations (12 terms) have a wider range of

validity. The two variants produce exactly the same

results.

( = 0,   = 8)x0 x1

= 0x0
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Figure 7. Comparison of the new two-point Taylor approximation (dashed), classical two-

point Taylor approximation (dotted) and the exact function y=cos(x) (solid) for various right-

hand side reference points 

The absolute error is given in Figure 8. The errors are the

same over the whole domain of interest.

( = 0)x0
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Figure 8. The absolute errors of the new two-point Taylor approximation (dashed) and the

classical two-point Taylor approximation (dotted) for cosine function 

5. Differential Equations

One of the common analytical solution methods of

differential equations is the Taylor series solutions. Two-

point Taylor expansions can also be employed in search of

approximate solutions. Consider the first order differential

equation

which has an exact solution

Assuming a two point series solution of the form

substituting into (49) and grouping the terms, one finally

has the recursive relations

The general form of the coefficients is then

leading to the approximate two-point series solution

The success in achieving the above simple elegant

solution may stem from the nature of the problem as the

exact solution can be represented approximately as a two-

point Taylor expansion. If the two reference points are not

determined appropriately, there may be inconsistencies in

deriving the recursive relations for coefficients. This topic

needs further detailed investigation which is left as a

potential area of research. The exact and approximate

series solutions are contrasted in Figure 9. As the number

of terms in the series solution increases, the approximate

solution converges to the real solution.

( = 0,   = 8)x0 x1

+ (1 − 2x)y = 0,  y(0) = 1,y
′

(49)

= exp[x(x − 1)].ye (50)

y(x) = + ,∑
m=0

∞

amx
m(x − 1)m bmx

m+1(x − 1)m (51)

= ,   = 0.am+1
am

m + 1
bm (52)

= ,am
1

m!
(53)

y(x) = .∑
m=0

∞ 1

m!
xm(x − 1)m (54)
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Figure 9. Comparison of the two-point series approximation with the exact solution of the

differential equation

For variable coefficient equations as well as non-

homogenous functions in the equation, the first step

would be to expand the functions in a two-point Taylor

expansion consistent with the assumed solution series.

The coefficients are determined then by substituting the

solution to the original differential equation. If

inconsistencies appear in the recursive relations, then the

assumed form may not be appropriate for the solution.

The application of the two-point series to nonlinear

equations needs further investigation. It has to be noted

that the algebra involved in a single-point series solution

is much less compared to the two-point series solution.

The recursive relations and their solutions are not simple

in the case of the two-point expansions. One should have

a rational justification to resort to multiple-point

solutions such as the nature of the equation, a wider range

of validity etc.

6. Concluding Remarks

A new version of the two-point Taylor expansion is given.

The new version produces identical results with the

classical version reported in the literature. For problems

with finite radius of convergence, two-point Taylor

expansions may possess two different convergence

intervals or a single convergence interval. When the

selected two points are distant to each other, the single

convergence interval may separate into two. A worked

example is treated in detail. For problems of infinite radius

of convergence, there is no separation of the convergence

intervals. The two-point and the single-point expansions

are compared with each other. For functions with finite

radius of convergences, the two-point expansion is

definitely advantageous compared to the single-point

expansion about the lower reference point. However, the

single-point expansion about the higher reference point

may possess a wider convergence interval depending on

the problem investigated. Despite the narrowing of the

convergence interval, finite number of truncations of the

series may produce better results compared to the single-

point expansions. The two-point Taylor series can

approximate the function at opposite sides of a singular

point with two convergence intervals lying at the left and

right of the singular point whereas single-point

expansions cannot be valid at both sides. Based on the

examples treated, the asymmetric new version does not

have an advantage over the classical version. The point is

that, unlike single-point expansions, there is no unique
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representation of the two-point expansions, that is they

can vary in form. The proposed two-point expansion may

be applied to solve approximately the differential

equations. A variable coefficient linear differential

equation with an exact solution is treated to demonstrate

the application of the method. Although a wider range of

validity for solutions can be achieved, the algebra is much

more involved in the case of two-point expansions. The

applications to non-homogenous equations, higher order

equations and nonlinear equations may be a topic of

further research.
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