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Solving sparse linear systems lies at the core of numerous computational applications.

Consequently, understanding the performance of recently proposed alternatives to the established

IEEE 754 floating-point numbers, such as bfloat16 and the tapered-precision posit and takum

machine number formats, is of significant interest. This paper examines these formats in the

context of widely used solvers, namely LU, QR, and GMRES, with incomplete LU preconditioning and

mixed precision iterative refinement (MPIR). This contrasts with the prevailing emphasis on

designing specialized algorithms tailored to new arithmetic formats.

This paper presents an extensive and unprecedented evaluation based on the SuiteSparse Matrix

Collection—a dataset of real-world matrices with diverse sizes and condition numbers. A key

contribution is the faithful reproduction of SuiteSparse’s UMFPACK multifrontal LU factorization

and SPQR multifrontal QR factorization for machine number formats beyond single and double-

precision IEEE 754. Tapered-precision posit and takum formats show better accuracy in direct

solvers and reduced iteration counts in indirect solvers. Takum arithmetic, in particular, exhibits

exceptional stability, even at low precision.

I. Introduction

The numerical solution of sparse linear systems is a cornerstone problem in scientific computing,

with applications encompassing structural analysis, circuit simulation, fluid dynamics, and machine

learning. Historically, such computations have relied on the IEEE 754 floating-point standard[1],

which has become the default format for numerical representation. However, the landscape is shifting

towards low-precision formats to mitigate processor performance outpacing memory interconnect

bandwidth in modern high-performance computing (commonly referred to as the “memory wall”).
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Emerging number formats such as bfloat16[2], posit[3], and takum[4]  introduce opportunities to

improve computational performance and accuracy, particularly in low-precision arithmetic. Posits

and takums, for instance, employ a tapered precision scheme through variable-width exponent

encoding, which allocates higher precision to values near 1 while sacrificing precision for values

further from 1. Takum arithmetic represents a novel advancement over posits by offering an extensive

dynamic range even at very low precisions. This design is motivated by the principle that bit-string

length should primarily determine precision without imposing constraints on dynamic range—a

common limitation in other formats. This paper focuses on the linear takum variant, which is a

floating-point format, as opposed to the logarithmic representation in the standard takum format.

For the float8 format, which lacks standardization, we adopt the definition provided in[5]  (3

exponent bits and 4 fraction bits). Figure 1 illustrates the dynamic ranges of the formats evaluated in

this study.

Figure 1. Dynamic range relative to the bit string length   for linear takum, posit and a

selection of floating-point formats.
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Despite increasing interest in posits for numerical analysis[6][7], no prior work has examined takums

in this context, given their novelty. Moreover, a systematic, large-scale comparison of posits and

takums against bfloat16, another promising low-precision format, is currently lacking. A key question

in this domain is how the expansive constant dynamic range of takums compares to that of posits,

which, despite their potential, have faced adoption challenges and criticism for their limited dynamic

range[8].

In this paper, we evaluate the performance of these alternative number formats within a selection of

established solvers that underpin scientific computing software. Our analysis is based on a large,

diverse, sparse matrix test set, representing an unprecedented scale in such studies. To ensure

unbiased results, we avoid tailoring algorithms to any specific number format. Instead, we fully

reproduce the SuiteSparse library with respect to the UMFPACK LU solver and the SPQR QR solver. This

approach simulates a “blind” replacement of the underlying arithmetic in a computing environment,

offering a more realistic assessment than tailored implementations. Additionally, we evaluate GMRES

and mixed-precision iterative refinement methods, extending the latter to 8-bit precision—an

exploration that, to the best of our knowledge, is unprecedented.

The remainder of this paper is organized as follows. Section II outlines the experimental methods used

to benchmark the formats. Section  III presents the main results, including detailed analyses and

visualizations. Finally, Section IV summarizes our findings and offers conclusions.

II. Experimental Methods

We evaluate the performance of four fundamental approaches to solving sparse linear systems across

multiple numeric formats: LU decomposition and QR factorization as direct methods, and the

Generalized Minimal Residual (GMRES) method with incomplete LU preconditioning, alongside Mixed

Precision Iterative Refinement (MPIR), as iterative methods. These approaches encompass core

techniques in numerical linear algebra, each distinguished by unique trade-offs in computational

efficiency, memory consumption, and numerical stability.

The benchmarking framework presented in this work, named MuFoLAB (Multi-Format Linear Algebra

Benchmarks)[9], is designed to facilitate systematic and reproducible evaluations. It comprises three

key components: a test matrix generator, a unified experimental interface for solvers, and
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implementations of the four solver methods under consideration. The subsequent sections provide a

detailed description of these components and their roles in the benchmarking process.

A. Test Matrices Generation

The first step in the experimental setup involves preparing a comprehensive set of sparse test

matrices for benchmarking. To achieve this, we draw matrices from the SuiteSparse Matrix

Collection[10], a well-established repository containing matrices from diverse application domains,

including computational fluid dynamics, chemical simulation, materials science, optimal control,

structural mechanics, and 2D/3D sequencing. Initially, we filter out non-real matrices and those with

more than    non-zero entries, resulting in a preliminary dataset of 833 matrices. Further

refinement, limited to square matrices with full rank—criteria necessary for our benchmarks—

reduces the dataset to 295 matrices. The   condition numbers of these matrices span several orders

of magnitude, with a median value of approximately  , and around 25% of the matrices exhibit

condition numbers exceeding  , as illustrated in Figure 2.

Figure 2. Cumulative distribution of test matrix   condition numbers.

The established Julia package for accessing the SuiteSparse Matrix Collection (MatrixDepot.jl)

retrieves matrices on-demand via individual internet requests. While this approach is functional in

local setups with caching, it becomes unsuitable for cold-cache deployments on high-performance

computing (HPC) systems and containerized environments, especially given the scale of our
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benchmarks, which involve hundreds of matrices. Moreover, the metadata provided by the package is

frequently incomplete.

To address these challenges, we introduce a second processing step to streamline and enhance matrix

preparation. In this step, all filtered matrices are converted to sparse float64 format, and complete

metadata—including the number of non-zero entries, absolute minimum and maximum values, 

  condition number, rank, symmetry, and positive definiteness—is computed. The processed

matrices and their metadata are stored in a single compressed Julia Data File (JLD2). This self-

contained file significantly improves deployment efficiency by enabling rapid access to test matrices

with consistent metadata, without requiring an internet connection[9], src/TestMatricesGen-

erator.jl, src/TestMatrices.jl].

B. Common Solver Experiment Interface

With the test matrices prepared, the next step is to establish a standardized interface for evaluating

different numeric formats within a selection of solvers. Given only the matrix  , constructing a linear

test system   requires generating the solution vector   and the corresponding right-hand

side  .

Although a common approach is to set  , a more representative method, as outlined

in[11], involves generating    randomly such that    and computing the reference solution by

solving the system    in float128. Random generation is performed using a Xoshiro

pseudorandom number generator (PRNG) with a fixed seed to ensure reproducibility.

For each numeric format under evaluation, the matrix   and right-hand side   are converted to the

target type, denoted as   and  , respectively. If any entry in   or   underflows or overflows during

conversion, the experiment is aborted, and the failure is recorded in the results. For further discussion

on dynamic range and its implications in low-precision arithmetic, refer to[12].

The respective solver is applied to the linear system  , yielding an approximate solution  . This

solution, cast back to float128, is compared to the exact solution  , and the absolute and relative

errors are calculated. While it may seem counterintuitive, generating only one random sample for each

matrix is sufficient because the ensemble diversity is provided by the large number of matrices in the

test set. The same random seed also ensures each number format is tested with the same

pseudorandom outcome[9], src/Experiment.jl].
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C. LU Solver

Although the LU decomposition algorithm is relatively straightforward to implement, the primary

challenge lies in determining effective row and column permutations to minimize fill-in and enhance

numerical performance. One of the most widely used software packages for LU decompositions,

UMFPACK from SuiteSparse, is highly optimized in this regard. It employs a sophisticated rule set to

select an optimal pivoting strategy, which produces row and column permutations, as well as a row

scaling matrix[13].

However, a significant limitation is that UMFPACK is implemented exclusively for float32 and

float64 data types. To extend its capabilities to other numeric formats, we emulate UMFPACK’s

behavior by precomputing an LU decomposition in float64 for each test matrix. This computation

yields the row and column permutations, which depend solely on the structural properties of the

matrix and not on the specific type of its elements. The row scaling, however, must be computed

separately for each number format, as it depends on the numerical properties of the data type.

Once the precomputed permutations and scaling factors are determined, they are applied to the

matrix in the target numeric format. The system is then solved using a simple non-pivoting LU solver,

effectively replicating UMFPACK’s behavior. This approach ensures consistency in the decomposition

process across all tested numeric formats while maintaining parity with UMFPACK’s sophisticated

pivoting strategy.

D. QR Solver

Similar to the case of LU decomposition with UMFPACK, the core algorithm for QR decomposition,

which employs HOUSEHOLDER rotations, is relatively straightforward. However, determining optimal

row and column permutations to minimize fill-in during the decomposition is the primary challenge.

This challenge is addressed by SPQR, a highly optimized implementation that, like UMFPACK, is part

of the SuiteSparse library[14]. SPQR is designed to maximize numerical efficiency and reduce memory

requirements through sophisticated permutation strategies.

A significant limitation of SPQR is its exclusive implementation for the float64 and float32 data

types. To enable the use of other number formats, we leverage the fact that row and column

permutations are solely dependent on the structural properties of the matrix and not on the specific
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numeric type of its elements. Accordingly, we precompute a QR decomposition in float64 using SPQR

to extract the optimal row and column permutations.

Once the matrix is permuted according to these precomputed permutations, we collect all non-zero

entries below the diagonal and apply one HOUSEHOLDER rotation per column. For each rotation, we

store both the rotation vector and the vector of indices affected by it. This process effectively emulates

the behavior of SPQR while allowing for a broader range of number formats, ensuring consistency and

efficiency in the decomposition across all tested data types.

E. Mixed Precision Iterative Refinement (MPIR) Solver

The iterative refinement technique[15]  is a classical approach to improving an approximate solution 

 to a linear system  . The method iteratively refines   by solving a correction equation  ,

where    is the residual, and updating  . This process is repeated until a

convergence criterion is met, which, in our implementation, is based on the normwise backward

error[16]. However, iterative refinement may fail to converge if the low-precision arithmetic causes 

 to appear singular, thereby preventing the accurate computation of  .

Mixed-precision iterative refinement (MPIR) extends this method by employing different levels of

precision to optimize computational efficiency and solution accuracy[17]. Specifically, MPIR uses three

distinct precision levels:

1. Working precision ( ), where  ,  , and   are stored.

2. Low precision ( ) for the factorization of  , typically to reduce computational cost.

3. High precision ( ) for the residual calculation, ensuring accurate error correction.

These precision levels are collectively represented as a triple  .

We evaluated several precision configurations, including a novel    setup, alongside

established configurations such as  ,  , and  . These configurations were

tested across multiple number formats, including IEEE floating-point, bfloat16, linear takums, and

posits.

For each configuration, the error tolerance was adjusted to align with the precision levels:    for 

  and  ,    for  , and    for  . The maximum number of

iterations was set to   for all experiments.
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F. Incomplete LU Preconditioned GMRES Solver

We employ incomplete LU factorization to reduce fill-in and use the resulting factors as a

preconditioner in the Generalized Minimal Residual (GMRES) method. This combination balances

computational efficiency and accelerated convergence for sparse linear systems while keeping

memory requirements manageable.

Our implementation leverages the IterativeSolvers.jl package, adhering largely to the GMRES

default parameters. Specifically, we use a restart value of  , a maximum iteration count of  ,

and the modified Gram-Schmidt process for orthogonalization. For the relative tolerance, which

defaults to the square root of the machine epsilon of the working precision, we instead use the square

root of the machine precision of the corresponding reference float type. This approach ensures

fairness across all numeric formats. For example, float8 is used for all 8-bit types, float16 for all

16-bit types, float32 for all 32-bit types, and float64 for all 64-bit types. Without this adjustment,

numeric types with smaller machine epsilons than their IEEE 754 counterparts would be

disproportionately disadvantaged in terms of convergence criteria.

III. Results

The results for the LU solver are presented in Figure 3. As shown, both posit8 and, to an even greater

extent, takum_linear8 significantly outperform float8 in terms of solution accuracy. This pattern

persists across 16, 32, and 64 bits, with posits and takums consistently surpassing or at least matching

the corresponding IEEE 754 floating-point types.

min(20, n) n

qeios.com doi.org/10.32388/DLWJBJ 8

https://www.qeios.com/
https://doi.org/10.32388/DLWJBJ


Figure 3. Cumulative error distribution of the relative errors of the solutions of the linear systems via fully

pivoted LU decomposition using a range of machine number types. The symbol   denotes where the

conversion of the matrix to the target number type turned it singular,   denotes where the dynamic

range of the matrix entries exceeded the target number type.

An especially noteworthy observation is that takum_linear16 consistently outperforms bfloat16,

whereas posit16 exhibits reduced accuracy for the lower quartile of matrices. Interestingly, while

bfloat16 generally achieves higher accuracy than float16, it is less accurate for approximately 25%

of the test matrices. This behavior underscores the nuanced trade-offs among these numeric formats

and highlights the superior dependability of takums in challenging cases.

The results for the QR solver, shown in Figure  4, exhibit a similar overall trend. Both posits and

takums consistently outperform or match their corresponding IEEE 754 floating-point counterparts.

Notably, takum_linear16 consistently surpasses bfloat16, demonstrating superior accuracy across

all test cases.

∞σ

∞ω
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Figure 4. Cumulative error distribution of the relative errors of the solutions of the linear systems via QR

decomposition using a range of machine number types. The symbol   denotes where the conversion of

the matrix to the target number type turned it singular,   denotes where the dynamic range of the

matrix entries exceeded the target number type.

The mixed precision iterative refinement results are presented in Figure  5. Overall, both posits and

takums demonstrate significantly lower iteration counts and fewer occurrences of singularities or

maximum iteration limit exceedances compared to their respective IEEE 754 floating-point

counterparts. When comparing posits and takums, no clear advantage of one format over the other

emerges, as their performance appears comparable across the evaluated test cases.

∞σ

∞ω
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Figure 5. Cumulative error distribution of the MPIR iteration counts using a range of machine number

types. The symbol   denotes where the initial low-precision LU decomposition yielded a singular

system,   denotes where the maximum iteration count was reached without the residual going below

the desired relative tolerance.

For GMRES preconditioned with incomplete LU, the results displayed in Figure 6 highlight significant

differences in performance across numeric formats. While float8 frequently experiences overflows or

requires a high number of iterations, both posit8 and takum_linear8 exhibit much greater numerical

stability. Notably, takum_linear8 avoids overflow entirely for all test matrices.

∞σ

∞ω
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Figure 6. Cumulative error distribution of the GMRES iteration counts using a range of machine number

types. The symbol   denotes where the maximum iteration count was exceeded without reaching the

desired tolerance.

This trend persists at 16 bits, where takum_linear16 consistently achieves lower iteration counts

than bfloat16, in contrast to posit16, which occasionally lags behind. At 32 and 64 bits, posits and

takums demonstrate very similar performance, both achieving significantly fewer iterations

compared to float32 and float64. These results underscore the advantages of tapered-precision

formats in reducing computational effort and enhancing stability.

IV. Conclusion

We evaluated IEEE 754 floating-point numbers, bfloat16, posits, and takums across four widely used

direct and iterative solving algorithms. Our experiments demonstrate that tapered-precision

arithmetic consistently outperforms IEEE 754 floating-point numbers in all tested scenarios. Among

∞ω
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the tapered-precision formats, takums exhibited exceptional performance, outperforming bfloat16

in every case. While occasionally marginally less accurate than posits, takums delivered comparable

results overall and demonstrated superior numerical stability. Notably, we successfully introduced the

application of 8-bit posits and takums in mixed-precision iterative refinement, marking a possibly

significant milestone in numerical computing. Additionally, GMRES exhibited particular benefit from

tapered-precision formats, with takums delivering outstanding results, surpassing posits in all cases.

These findings are especially relevant as they position takums as a strong candidate to replace

bfloat16 as the state-of-the-art in 16-bit arithmetic, which posits were not able to given the lack of

dynamic range. Furthermore, the results address a critical question: despite having a much larger

dynamic range than other number formats, including posits (see Figure 1), takums exhibit comparable

and often superior behavior. This property is possibly transformative for mixed-precision workflows,

as the choice of the precision level    with takums becomes purely about precision, decoupled from

concerns about dynamic range.

Future research can explore further optimizations for MPIR using equilibrated matrices and

investigate GMRES-based iterative refinement employing more than three precision levels[18].
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