
20 December 2024, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Continuous Video Process: Modeling

Videos as Continuous Multi-Dimensional

Processes for Video Prediction

Gaurav Shrivastava1, Abhinav Shrivastava1

1. University of Maryland, College Park, United States

Diffusion models have made significant strides in image generation, mastering tasks such as

unconditional image synthesis, text-image translation, and image-to-image conversions. However,

their capability falls short in the realm of video prediction, mainly because they treat videos as a

collection of independent images, relying on external constraints such as temporal attention

mechanisms to enforce temporal coherence. In our paper, we introduce a novel model class, that treats

video as a continuous multi-dimensional process rather than a series of discrete frames. We also report

a reduction of 75% sampling steps required to sample a new frame thus making our framework more

efficient during the inference time. Through extensive experimentation, we establish state-of-the-art

performance in video prediction, validated on benchmark datasets including KTH, BAIR, Human3.6M,

and UCF101.1
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1. Introduction

In the evolving landscape of machine learning and generative models, particularly in the domain of video

representation[1][2][3][4][5][6][7], there exists a pivotal challenge in adequately capturing the dynamic

transitions between consecutive frames. In this paper, we introduce a novel approach to video

representation that treats the video as a continuous process in multi-dimensions. This methodology is

anchored in the observation that transitions between consecutive frames in a video do not uniformly

contain the same amount of motion. Modeling these transitions with a single-step process often leads to

suboptimal quality in sampling. Our method, therefore, involves multiple predefined steps between two
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consecutive frames, drawing inspiration from recent advancements in diffusion models for image data.

This multi-step diffusion process has been instrumental in better modeling image data, and we aim to

extend this success to video data.

Previous efforts in video modeling with diffusion models have tended to approach videos as a series of

images, generating separate volumes of video frame sequences and applying external constraints such as

applying temporal attention to maintain the temporal coherence. We argue that this approach overlooks

the inherent continuity in video data, which can be more naturally conceptualized as a continuous multi-

dimensional process. Our proposed method[8]  defines this continuous process, beginning with two

consecutive frames from a video sequence as endpoints this can be observed in Fig. 1. We delineate the

forward process through interpolation between these endpoints, with a predefined number of steps

guiding the transition from one point to another. To ensure the existence of    at all points, we

introduce a novel noise schedule that applies zero noise at both endpoints.

Figure 1. The figure is divided into two parts. The top portion of the figure illustrates

the intermediate frames   between two consecutive frames.   represents

consecutive frames from a video sequence where   and  .   denotes

some frame at timestep   in the video sequence  .   denotes the white

noise. The lower portion of the figure represents the directed graphical model

considered in this work to represent the continuous video process.

We approximate each step between these endpoints using a Gaussian distribution, following the

assumptions made in diffusion models for images by the paper[9][10][11][12]. In defining this forward

p( )xt

xt x, y

y = xj+1 x = xj xj

j V = {xi}Ni=1 z

qeios.com doi.org/10.32388/DM98UZ 2

https://www.qeios.com/
https://doi.org/10.32388/DM98UZ


process, we also lay the groundwork for estimating a reverse process. This paper presents a novel lower

variational bound for estimating this reverse process.

To summarize, our contribution in this work is as follows:

We introduce a novel approach for representing videos as multi-dimensional continuous processes.

We introduce a novel approach for representing videos as multi-dimensional continuous processes.

We derive a novel variational bound that efficiently estimates the reverse process in our proposed

‘Continuous Video Process (CVP)’ model.

Our method employs a unique noise schedule for the continuous video process, characterized by zero

noise at both endpoints, ensuring the existence of   at all intermediate timesteps.

We demonstrate the efficacy of our approach through state-of-the-art results in video prediction tasks

across four different datasets namely, KTH action recognition, BAIR robot push, Human3.6M, and

UCF101 datasets. Additionally, our model requires 75% fewer sampling steps when sampling a frame

compared to a diffusion-based baseline.

2. Related Works

Understanding and predicting future states based on observed past data[13][14][15][16][17][18][19]  is a

cornerstone challenge in the domain of machine learning. It is crucial for video-based applications where

capturing the inherent multi-modality of future states is vital, such as in autonomous vehicles. Early

methods in this field, as noted by Yuen et al.[20] and Walker et al.[21], primarily focused on matching past

frames within datasets to extrapolate future states, although these predictions were constrained to either

symbolic trajectories or directly retrieved future frames. The advent of deep learning has significantly

propelled advancements in this area. One of the seminal works by Srivastava et al.[22]  leveraged a multi-

layer LSTM network for deterministic representation learning of video sequences. Subsequent studies[23]

[24][25][26][27][28][29], have expanded the scope of this research by constructing models that account for the

stochastic nature of future states, marking a notable shift from earlier deterministic approaches.

Recent research in this domain has explored both implicit and explicit probabilistic modeling approaches.

Implicit probabilistic modeling, typified by GAN[30]-based models, has a substantial history. Nonetheless,

these models[31][32][33]  often grapple with training stability issues and mode collapse(where model only

focuses on a few modes in the dataset) issues. On the other hand, explicit probabilistic modeling for video

prediction encompasses a range of methodologies, including Variational Autoencoders (VAEs)[34],

p( )xt
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Gaussian processes, and Diffusion models. VAE-based video prediction methods[35][36][31] tend to average

results to align with all potential future scenarios, which undermines the fidelity of predictions. Gaussian

process-based models[1][37]  exhibit proficiency with smaller datasets but encounter scalability issues

owing to matrix inversion limitations when calculating training likelihood. While workarounds exist, they

tend to compromise result fidelity.

Recent advancements in diffusion models[38][39][40][41]  have positioned them as the preferred choice for

video prediction tasks. These multi-step models offer superior sample quality and are resilient to mode

collapse. However, even with such lucrative advantages, modeling videos with these models tends to have

downsides. Majorly methods falling under this category enforce temporal consistency using artificial

external constraints such as the introduction of temporal attention blocks. This might be effective but

comes at a cost of significant computing power.

Another class of popular video prediction models is hierarchical prediction[42][43][44][45][2] models. These

models are multistage models that decompose the problems into two stages. They first predict a high-

level structure of a video, like a human pose, and then leverage that structure to make predictions at the

pixel level. These models generally require additional annotation for the high-level structure for training,

unlike ours that predicts future frames utilizing only the pixel-level information of context frames.

We also want to highlight some very recent works like InDI[46], and Cold diffusion[47]  that provide an

alternate approach to denoising diffusion models that is similar to our approach. However, their works

only explored such formulation for image-based computational photography and image generation tasks.

3. Method

Instead of introducing noise iteratively to the frames until they conform to a Gaussian distribution, and

adopting a reverse process such as denoising diffusion, a commonly employed technique for video

prediction, we introduce a novel model category designed to depict videos as continuous processes. This

section delves into the modeling of this continuous video process.

Suppose we have a video sequence denoted by    where    is the frame at the

timestep  . We represent this video sequence as a continuous process. The intermediate frames between 

 and   are given by the following equation.

V = {xj}N1 ∈xj
R
c×h×w

j

x = xj y = xj+1

= (1 − t)x + ty − zxt

t log(t)

2–√
(1)
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Here,    denotes the white noise. From the above Eqn, it can be seen that at  , we get the

frame    and at  , we get the frame  . We utilize this continuous process of evolving 

 given by Eqn.  1 and derive both the forward and reverse processes. For defining the forward

process, we take steps in the direction    instead of the other way, which happens in denoising

diffusion process[9]. The reason for this is we want the reverse process to start from past frame    and

according to the Eqn. 1   at  .

We can write the forward process, i.e., going from the start point   at   to endpoint   at  ,

From the above equation, we can write the posterior for the forward process as 

. Where  . The whole derivation is provided

in the appendix.

For modeling our video diffusion process, we like to model the likelihood function 

 and minimize the negative log-likelihood to obtain the best fit for our model.

Here,    is the probability of the reverse process, and it is defined as a Markov chain with learned

Gaussian transitions starting at  . Important note about the notations  , unless

specified consider   and   where   is the frame in the video sequence at   position and   is

the frame at    position. One important assumption about the continuous video process is we

assume the transition between the frames    and    to follow Markov chain, i.e., the current state at

timestep   only depends on the previous state at timestep  . Leveraging this assumption we can define

the reverse process as follows,

where,  . We are interested in learning the reverse

process to perform our video prediction task.

The forward process or the diffusion process is a fixed Markov chain that gradually transforms the frame 

 to frame  .

Training is performed by minimizing the variational bound on the negative log-likelihood.

z ∼ N (0, I) t = 0

xj t = 1 xj+1

→xj xj+1

t : T → 0

x

= xxt t = 0

y t = T x t = 0

= + (y − x)Δt − t log(t)zxt+Δt xt (2)

q( | , x, y) = N ( : ( , x, y), (t)I)xt+1 xt xt+1 μ~ xt g2 g(t) = −t log t

( ) := ∫ ( )dpθ xT pθ x0:T x0:T−1

( )pθ x0:T

p( ) = (x)x0 pdata ,x0 xT

= xx0 = yxT x jth y

(j + 1)th

x y

t t − 1

( ) := p( ) ( | )pθ x0:T x0 ∏
t=1

T

pθ xt xt−1 (3)

( | ) := N ( ; ( , t − 1), ( , t − 1))pθ xt−1 xt xt μθ xt−1 Σθ xt−1

y x

q( | ) := q( | ),x0:T−1 xT ∏
t=1

T

xt−1 xt (4)
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This variational bound can be simplified to the following (we refer the readers to the appendix to follow

the simplification of from Eqn. 7 to the following equation),

In the above Eqn, the KL divergence term utilizes the comparison of   with forward process

posterior term, which is tractable under the process given by Eqn. 2. The forward process posterior term is

given by

where,    and  . Consequently, all KL divergences in Eqn.  8 are

comparisons between Gaussians, so they can be calculated in a Rao-Blackwellized fashion with closed-

form expressions instead of high-variance Monte Carlo estimates. It is important to note while deriving

the Eqn. 8, we ignore some terms that purely involve the forward process posteriors as   has no learnable

parameters, so such terms are constants during training.

Now we discuss our choices in    for 

. First, we set   to untrained time dependent constants. Experimentally,

the choice of   works the best. This noise function has an interesting property that noise is

absent both at the start and end points, i.e.,  .

Second, to represent the mean  , we propose a specific parameterization motivated by the

forward process posterior given by Eqn. 9. With  , we can

write:

where    is a constant that does not depend on  . So, we see that the most straightforward

parameterization of   is a model that predicts  , the forward process posterior mean.

However, we can simplify Eqn. 10 further and obtain a very simple training loss objective by delving in the

term  . We further parameterize the term   as follows,

E[− log ( )]pθ xT ≤ [− log ] (5)Eq

( )pθ x0:T

q( | )x0:T−1 xT

≤ [− logp( ) − log ] (6)Eq x0 ∑
t≥1

( | )pθ xt xt−1

q( | )xt−1 xt

=: L(θ) (7)

L(θ) =: (q( | , x, y) ∥ ( | , x))∑
t≥1

DKL xt xt−1 pθ xt xt−1 (8)

( | , x)pθ xt xt−1

q( | , x, y) = N ( : ( , x, y), (t)I)xt xt−1 xt μ~ xt−1 g2 (9)

( , x, y) = + (y − x)μ~ xt xt g(t) = −t log(t)

q

( | , x) = N ( ; ( , t − 1, x), ( , t − 1, x))pθ xt xt−1 xt μθ xt−1 Σθ xt−1

1 < t ≤ T ( , t − 1) = (t)IΣθ xt−1 g2

g(t) = −t log(t)

g(t) = 0 ∀t = {0, 1}

( , t, x)μθ xt

( | , x) = N ( ; ( , t − 1, x), (t)I)pθ xt xt−1 xt μθ xt−1 g2

L(θ) := [ ∥ ( , x, y) − ( , t, x) ] + CEq
1

2 (t)g2
μ~ xt μθ xt ∥2 (10)

C θ

μθ μ~t

μ~ μθ

( , t, x) = + ( ( ) − x)μθ xt xt yθ xt (11)
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When we substitute this   parameterization in the Eqn. 10 we get the simplified version of the

loss   as follows,

For training the video prediction model utilizing the above Eqn. 12 we obtain the   as a function of   by

leveraging the Eqn. 1. The following equation gives a more generic form of the final loss function utilized

to train the video prediction model,

The whole training and sampling pipeline is described in the training Alg. 1, sampling Alg. 2 and depicted

in Fig. 2.

Figure 2. Fig. (a) demonstrates the methodology for estimating   in a single step, showcasing the specific

computational process involved. Fig. (b) details the training pipeline of our Continuous Video Process (CVP)

model, where   and   are fed as inputs to the U-Net architecture, and the anticipated output is  , with 

 in this scenario. Fig. (c) provides an overview of the sampling pipeline utilized in our CVP method,

illustrating the sequential steps to predict the next frame of the video sequence given the context frames.

( , t, x)μθ xt

L(θ)

(θ) := [ ∥y − ( , t) ]Lsimple Et,xt

1

2 (t)g2
yθ xt ∥2 (12)

xt t

[ ∥y − ((1 − t)x + ty + z, t) ]arg min
θ

Et,x,y
1

2 (t)g2
yθ

g(t)

2–√
∥2 (13)

xt

xt t ŷ

=ŷ x1:k+1
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4. Experiments

Video prediction task can be defined as given a few context frames, the model has to predict the

subsequent future frames. In this section, we empirically demonstrate that our approach yields superior

results in modeling the video prediction task.

4.1. Datasets

We chose 4 different types of datasets to demonstrate the efficacy of our approach. These are standard

benchmarks for video prediction tasks. Dataset lists include KTH action recognition dataset[15], BAIR

robot pushing dataset[19], Human3.6M[13]  and UCF101[16]  datasets. Training and architecture-specific

details about the approach are included in the appendix.

KTH Action Recognition Dataset. The KTH action dataset[15]  consists of video sequences of 25 people

performing six different actions: walking, jogging, running, boxing, hand-waving, and hand-clapping.

The background is uniform, and a single person is performing actions in the foreground. The foreground

motion of the person in the frame is fairly regular. The frames in the video for this dataset consist of a

single channel. The spatial resolution of the frames in the video is downsampled to the size of  .

BAIR pushing Dataset. The BAIR robot pushing dataset[19] contains the videos of table mounted sawyer

robotic arm pushing various objects around. The BAIR dataset consists of different actions given to the

robotic arm to perform. The spatial resolution of the frames in the video is kept to be  .

Human3.6M Dataset. Human3.6M[13] dataset consists of 10 subjects performing 15 different actions. The

pose information from the dataset was not used in predicting next frame. The background is uniform, and

a single person is performing actions in the foreground. The foreground motion of the person in the frame

64 × 64

64 × 64
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is fairly regular. The frames in the video for this dataset consist of ‘RGB’ channels. The spatial resolution of

the frames in the video is downsampled to the size of  .

UCF101 Dataset. This dataset[16]  consists of 13,320 videos belonging to 101 different action classes. The

video seems to have a variety of backgrounds and the frames of the video have three channels, namely

‘RGB’. We reshape the resolution of frames from the original size of   down to   for our

video prediction tasks. The downsampling is done utilizing the bicubic downsampling.

4.2. Metrics

We primarily use the FVD[48] metric to determine the best-performing baseline when evaluating a video

prediction task. FVD metric evaluates a baseline on both terms, the reconstruction quality and diversity of

the generated samples. FVD is calculated as the frechet distance between the I3D embeddings of generated

video samples and real samples. The I3D network used for obtaining the embeddings for real and

generated video is trained on the Kinetics-400 dataset.

5. Setup and Results

Below, we describe in detail how the setup for our experiment looks compared to baselines. We also

showcase our findings about the performance of our method and comparison to baselines in this section.

KTH action recognition dataset: For this dataset, we adhered to the baseline setup[38], which utilizes the

first 10 frames as context frames. In baseline setup, these 10 frames are utilized to predict the subsequent

30 and 40 frames. A notable aspect of our experiment is we only used the last 4 frames from this sequence

of 10 frames as context frames in our CVP model, while disregarding the information in the remaining 6

frames. This decision was taken to maintain consistency with the experimental setups used in prior

baseline methodologies. The outcomes of this evaluation are summarized in Table 1.

64 × 64

320 × 240 128 × 128
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KTH [10  ; trained on  ] FVD PSNR SSIM

SVG-LP[35] 10 30 377 28.1 0.844

SAVP[31] 10 30 374 26.5 0.756

MCVD[38] 5 30 323 27.5 0.835

SLAMP[49] 10 30 228 29.4 0.865

SRVP[50] 10 30 222 29.7 0.870

RIVER[39] 10 30 180 30.4 0.86

CVP (Ours) 1 30 140.6 29.8 0.872

Struct-vRNN[51] 10 40 395.0 24.29 0.766

SVG-LP[35] 10 40 157.9 23.91 0.800

MCVD[38] 5 40 276.7 26.40 0.812

SAVP-VAE[31] 10 40 145.7 26.00 0.806

Grid-keypoints[52] 10 40 144.2 27.11 0.837

RIVER[39] 10 40 170.5 29.0 0.82

CVP (Ours) 1 40 120.1 29.2 0.841

Table 1. Video prediction results on KTH ( ), predicting 30 and 40 frames using models trained to

predict   frames at a time. All models condition on 10 past frames on 256 test videos.

It can be observed from the Table 1, our model’s unique approach requires a significantly reduced number

of frames for training. Contrary to other methods that train on an additional set of   frames (10[context

frames]+k[future frames]), our model uses just one frame (effectively 4[context frames]+1[future frames]).

We employ the 4 context frames to predict the immediate next frame and then autoregressively generate

either 30 or 40 frames, depending on the evaluation requirement. This methodology is supported by our

model’s efficient handling of video sequences as continuous processes, which eliminates the need for

external artificial constraints, such as temporal attention mechanisms.

→ #pred k k #pred ↓ ↑ ↑

64 × 64

k

k

qeios.com doi.org/10.32388/DM98UZ 10

https://www.qeios.com/
https://doi.org/10.32388/DM98UZ


The results, as shown in Table 1, clearly indicate that our method delivers state-of-the-art performance

when compared to other baseline models. Additionally, the qualitative results for our CVP model on the

KTH dataset can be observed in Fig. 3.

Figure 3. Figure represents qualitative results of our CVP model on the KTH dataset. The

number of context frames used in the above setting is 4 for all three sequences. Every 

 predicted future frame is shown in the figure.

BAIR Robot Push dataset: The BAIR Robot Push dataset is characterized by highly stochastic video

sequences. In our study, we adhered to a baseline setup[38] with three main experimental settings: 1) using

only one context frame to predict the next 15 frames, 2) employing two context frames to predict 14 future

frames, and 3) utilizing two context frames to forecast the next 28 frames. The outcomes of these

approaches are summarized in Table 2.

As observed in Table 2, a trend emerges where increasing the number of frames predicted at a time

concurrently results in a degradation of prediction quality. This phenomenon is hypothesized to stem

from an augmented disparity between the blocks of context frames and predicted future frames.

Specifically, consider the scenario where two context frames are designated as  , corresponding to   in

the context of Eqn.1. Under the first experimental condition, where the model predicts a single frame at a

time, the future frame prediction block is represented as  , analogous to   in Eqn.1. Conversely, in the

second condition, where two frames are predicted simultaneously, the future frame block extends to  ,

4th

x0:2 x

x1:3 y

x2:4
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again paralleling    in the equation. This setup implies that in the former setting, interpolation occurs

between adjacent frames (i.e., the transition from   and  ), while in the latter, interpolation

spans a two-frame interval (i.e., the transition from   and from  ). The expanded interval in

the second scenario is posited as the causative factor for the observed reduction in predictive

performance, particularly in configurations where   and  .

The results, as shown in Table 2, clearly indicate that our method delivers state-of-the-art performance

compared to other baseline models. Additionally, the qualitative results for our CVP model on the BAIR

dataset can be observed in Fig. 4.

Figure 4. Figure represents qualitative results of our CVP model on the BAIR dataset. The

number of context frames used in the above setting is two for both sequences. Every 

 predicted future frame is shown in the figure.

y

→x0 x1 →x1 x2

→x0 x2 →x1 x3

k = 2 p = 2

6th
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BAIR ( ) FVD

LVT[53] 1 15 15 125.8

DVD-GAN-FP[32] 1 15 15 109.8

TrIVD-GAN-FP[33] 1 15 15 103.3

VideoGPT[54] 1 15 15 103.3

CCVS[55] 1 15 15 99.0

FitVid[56] 1 15 15 93.6

MCVD[38] 1 5 15 89.5

NÜWA[57] 1 15 15 86.9

RaMViD[41] 1 15 15 84.2

VDM[40] 1 15 15 66.9

RIVER[39] 1 15 15 73.5

CVP (Ours) 1 1 15 70.1

DVG[1] 2 14 14 120.0

SAVP[31] 2 14 14 116.4

MCVD[38] 2 5 14 87.9

CVP (Ours) 2 2 14 68.2

CVP (Ours) 2 1 14 65.1

SAVP[31] 2 10 28 143.4

Hier-vRNN[36] 2 10 28 143.4

MCVD[38] 2 5 28 118.4

CVP (Ours) 2 2 28 95.1

CVP (Ours) 2 1 28 85.1

Table 2. BAIR dataset evaluation. Video prediction results on BAIR ( ) conditioning on   past frames and

predicting   frames in the future, using models trained to predict   frames at at time.The common way to

64 × 64 p k #pred ↓

64 × 64 p

pred k
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compute the FVD is to compare 100 256 generated sequences to 256 randomly sampled test videos. Best

results are marked in bold.

Human3.6M dataset: Similar to the KTH dataset, the Human3.6M dataset features actors performing

distinct actions against a static background. However, the Human3.6M dataset distinguishes itself by

offering a greater variety of distinct actions within its videos and providing three-channel video frames,

in contrast to the single-channel frames of the KTH dataset. For evaluating the Human3.6M dataset, we

employed a similar setup to that used for the KTH dataset, where 5 frames are provided as context, and the

model predicts the subsequent 30 frames based on these context frames. The results of this evaluation are

summarized in Table 3.

An analysis of Table  3 reveals that our model, with its unique approach, requires a significantly lower

number of frames for training, needing only a total of 6 frames per block to yield results that are

considerably better than those of the baselines.

The results, as presented in Table 3, unequivocally demonstrate that our method outperforms other

baseline models, establishing a new state-of-the-art on the Human3.6M dataset. Furthermore, the

qualitative efficacy of our CVP model on the Human3.6M dataset is illustrated in Fig.  5, showcasing the

model’s ability to effectively capture and predict the dataset’s varied actions.

×
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Figure 5. Figure represents qualitative results of our CVP model on the Human3.6M dataset. The number of

context frames used in the above setting is 4 for all three sequences. Every   predicted future frame is shown

in the figure.

Human3.6M p FVD

SVG-LP[35] 5 10 30 718

Struct-VRNN[51] 5 10 30 523.4

DVG[1] 5 10 30 479.5

SRVP[50] 5 10 30 416.5

Grid keypoint[52] 8 8 30 166.1

CVP (Ours) 5 1 30 144.5

Table 3. Quantitative comparisons on the Human3.6M dataset. The best results under each metric are marked

in bold.

4th

k #pred ↓
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UCF101 dataset: The UCF101 dataset presents a greater level of complexity compared to the KTH or

Human3.6M datasets, owing to its substantially higher number of action categories, diverse backgrounds,

and significant camera movements. Notably, we only use information from the context frames for our

frame-conditional generation task. No extra information, like class labels, was used for the prediction

task. In evaluating the UCF101 dataset, we adopted an approach similar to that used for the Human3.6M

dataset, where 5 context frames are provided, and the model is tasked with predicting the next 16 frames

based on these. The outcomes of this evaluation are detailed in Table 4.

An examination of Table  4 reveals that our CVP model surpasses the performance of other baseline

models, thereby setting a new benchmark for the UCF101 dataset. Additionally, the qualitative

performance of our CVP model on the UCF101 dataset is depicted in Fig. 6. This illustration showcases the

model’s proficiency in accurately capturing and predicting the diverse range of actions featured in the

dataset.
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Figure 6. Figure represents qualitative results of our CVP model on the UCF dataset. The number of context

frames used in the above setting is 5 for all three sequences. Every   predicted future frame is shown in the

figure.

UCF101 [ ] FVD

SVG-LP[35] 5 10 16 1248

CCVS[55] 5 16 16 409

MCVD[38] 5 5 16 387

RaMViD[41] 5 4 16 356

CVP (Ours) 5 1 16 245.2

Table 4. Video prediction results on UCF ( ), predicting 16 frames. All models are conditioned on 5

past frames.

4th

5 → 16 p k #pred ↓

128 × 128
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6. Ablation Studies

In this section, we present a series of ablation studies conducted to ascertain the impact of various

components in our proposed methodology. These studies focus on three primary aspects: the

modification of the noise schedule denoted as  , the variation in the number of sampling steps, and the

exploration of different strategies for sampling the timestep  . Our experimental framework utilizes the

KTH dataset for these evaluations.

The outcomes of these experiments are systematically tabulated in Table 6, offering a comprehensive view

of the results. The key insights derived from these ablation studies are threefold. Firstly, our analysis

underscores the criticality of sampling the timestep   from a uniform square root distribution, specifically 

. This approach appears to significantly influence the model’s performance.

Secondly, regarding the noise schedule  , we find that the optimal formulation for the task of video

prediction is given by  . This particular noise schedule is characterized by a zero initial and

final noise level, with a peak near  . Such a configuration is advantageous for our application.

Thirdly, our results, as detailed in Table  6, indicate that an increase in the number of sampling steps

beyond 25 does not substantially improve the outcome. Our method outperforms MCVD by producing

higher-quality frames in just 25 sampling steps, a 75% reduction compared to its 100 steps. This efficiency

is attributed to our CVP method, which retains information from preceding frames, eliminating the need

for regeneration from a Gaussian noise vector. Refer to the Table 5 for more details.

In summary, these ablation studies provide valuable insights into the dynamics of our model under

varying conditions, highlighting the importance of specific parameter settings and offering guidance for

future research directions.

Method Sampling(Steps/Frame) Time Taken(hrs)

MCVD 100 2

RaMVID 500 7.2

Ours 25 0.45

Table 5. Comparison with baselines on sampling steps and sampling time required for BAIR robot push

dataset.

g(t)

t

t

t ∼ U[0, 1]
− −−−−

√

g(t)

g(t) =
−tlog (t)

2√

t = 0
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KTH

Noise Sampling

FVD

Schedule( ) steps Distrbution

CVP Model Ablations

- 25 348.2

25 278.2

25 237.7

25 240.7

25 208.4

25 209.6

25 187.8

25 190.4

25 140.6

5 165.7

10 144.3

50 139.4

Table 6. Ablation study: Video prediction results on KTH ( ), predicting 30 frames. All models condition

on 4 past frames on 256 test videos. The method with settings marked with   is reported in the main paper.

7. Limitation

While our method demonstrates promising results in video prediction, it is important to acknowledge its

limitations to guide future research and application development.

A primary limitation of our approach is its reliance on a limited context frame window for predicting the

next frame. Specifically, when a context vector, denoted as  , comprising 4 video frames is used, the

prediction of the subsequent frame is entirely dependent on this four-frame window. This model

architecture performs adequately in scenarios involving uniform video sequences. However, its efficacy

diminishes in a setting that requires more context to predict the future frame. Addressing this limitation

t

↓

g(t)2–√

U [0, 1]

sin(πt) U [0, 1]

sin(πt) U [0, 1]
− −−−−

√

tsin(πt) U [0, 1]

tsin(πt) U [0, 1]
− −−−−

√

t (1 − t)
− −−−−−−

√ U [0, 1]

t (1 − t)
− −−−−−−

√ U [0, 1]
− −−−−

√

−tlog(t) U [0, 1]

−t log(t)∗ ∗ ∗U [0, 1]
− −−−−

√ ∗

−tlog(t) U [0, 1]
− −−−−

√

−tlog(t) U [0, 1]
− −−−−

√

−tlog(t) U [0, 1]
− −−−−

√

64 × 64

∗

x0:4

qeios.com doi.org/10.32388/DM98UZ 19

https://www.qeios.com/
https://doi.org/10.32388/DM98UZ


requires a more adaptive approach that can handle varying contextual information, a challenge we have

earmarked for future research.

Another constraint lies in the computational efficiency of our model. Currently, it necessitates multiple

steps to sample a single frame, which could become a significant bottleneck, especially when a larger

number of frame predictions are required. Although our method is more efficient in terms of the number

of steps needed for frame sampling compared to diffusion-based counterparts, further optimization is

necessary to reduce the computational overhead associated with this process.

Additionally, our experimental setup was constrained by the computational resources available to us. The

model was developed and tested using just two A6000 GPUs. This limitation raises questions about the

potential improvements that could be achieved with a more powerful computational setup. A larger model

with an increased number of parameters, trained on more advanced hardware, could potentially unveil

further advancements in video prediction capabilities. We recognize this as an important area for

investigation and encourage labs with more substantial resources to explore this avenue.

In summary, while our model represents a significant step forward in video prediction, these limitations

highlight crucial areas for future research and development, paving the way for more robust and versatile

video prediction models.

8. Broader Impact

We used this method for video prediction; however, such modeling can make a major impact on many

computational photography tasks. Here, one end of the CVP can be a corrupted image and the other end be

a clean ground truth image. Additionally, a larger model with an increased number of parameters, trained

on more advanced hardware, could potentially have advanced video prediction capabilities. This can lead

to a significant increase in the creation of high-quality artificially generated content, further

compounding the problems of fake content. However, a positive contribution of this approach can help

with its application in autonomous driving.

9. Conclusion

In this work, we have presented a novel model class designed specifically for video representation,

marking a significant advancement in the field of video prediction tasks. Our comprehensive

experimental evaluations across various datasets, including KTH, BAIR, Human3.6M, and UCF101, have
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not only validated the effectiveness of our model but also established new benchmarks in state-of-the-art

performance for video prediction tasks.

A notable aspect of our approach is its efficiency in terms of the required number of context and future

frames for training. Moreover, our model’s continuous video process capability uniquely operates without

the need for additional constraints such as temporal attention, which are typically employed to ensure

temporal consistency. This aspect of our model underscores its inherent ability to maintain temporal

coherence, further simplifying the video prediction process while enhancing its effectiveness.

In conclusion, the innovations introduced in our model offer promising directions for future research in

video representation and prediction. The achievements demonstrated in this paper not only contribute to

the advancement of video prediction methodologies but also open avenues for exploring more efficient

and effective ways of video representation in various real-world applications.

Appendix A. Extended derivations of Eq. (8)

Below is a derivation of Eq. (8), the reduced variance variational bound for our CVP models.

L = [log ]Eq

( )pθ x0:T

q ( | )x0:T−1 xT

= [− logp ( ) − log ]Eq x0 ∑
t≥1

( | )pθ xt xt−1

q ( | )xt−1 xt

= [− logp ( )Eq x0

− log ⋅ ]∑
t≥1

( | )pθ xt xt−1

q ( | , , )xt xt−1 x0 xT

q ( | , )xt x0 xT

q ( | , )xt−1 x0 xT

= [− logp ( ) − logEq x0 ∑
t≥1

( | )pθ xt xt−1

q ( | , , )xt xt−1 x0 xT

− log ( | , )]
q ( | , )xT x0 xT

q
x0 x0 xT

= [− logp ( ) − log ]Eq x0 ∑
t≥1

( | )pθ xt xt−1

q ( | , , )xt xt−1 x0 xT

= [− logp ( )Eq x0

− log ⋅ ]∑
t≥1

( | , )pθ xt xt−1 x0

q ( | , , )xt xt−1 x0 xT

p ( | )x0 xt−1

p ( | )x0 xt

= [− logp ( ) − logEq x0 ∑
t≥1

( | , )pθ xt xt−1 x0

q ( | , , )xt xt−1 x0 xT

− log ]
p ( | )x0 x0

p ( | )x0 xT

= [− log − log ]Eq

p ( )x0

p ( | )x0 xT

∑
t≥1

( | , )pθ xt xt−1 x0

q ( | , , )xt xt−1 x0 xT
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Both   and   are observed variable hence, we ignore the first term in the RHS. We focus on the second

term for training the parameters for our CVP models. Therefore, the resulting loss function becomes,

Appendix B. Extended derivation for Eq. (2)

Using Eq. (2) we can write the term   as follows,

Considering the term   we simplify further,

if   is infinitesimally small we can write  . Using this property we can rewrite   as,

Now, Subtracting  (Eq. (16)) and  (Eq. (1)) we get,

Focusing on the term  . Here,  . Hence, we can write,

Substituting this result back to Eq. (17) we get the following,

Rearranging the terms we get the Eq. (2).

x0 xT

L(θ) =: (q ( | , x, y) ∥ ( | , )) .∑
t≥1

DKL xt xt−1 pθ xt xt−1 x0

xt+Δt

xt+Δt = (1 − (t + Δt))x + (t + Δt)y

−
(t + Δt) log(t + Δt)

2–√
zt+Δt

(t + Δt) log(t + Δt)

(t + Δt) log(t + Δt) = t(1 + ) log t(1 + ) .
Δt

t

Δt

t
(14)

Δt (1 + ) → 1Δt
t

xt+Δt

= (1 − (t + Δt)) x + (t + Δt) y −xt+Δt

t log(t)

2–√
zt+Δt (15)

xt+Δt xt

− = (y − x) Δt − ( − )xt+Δt xt

t log(t)

2–√
zt+Δt zt (17)

( − )zt+Δt zt , ∼ N (0, I)zt zt+Δt

( − ) = zwhere,~z ∼ N (0, I)zt+Δt zt 2–√ (18)

− = (y − x) Δt − t log(t)z.xt+Δt xt (19)
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Module Type Num Inputs Num Outputs

Conv2D 128

DownBlock2D 128 128

DownBlock2D 128 128

Encoder DownBlock2D 128 256

DownBlock2D 256 256

AttnDownBlock2D 256 512

ResnetDownsampleBlock2D 512 512

ResnetUpsampleBlock2D 512 512

AttnUpBlock2D 512 512

UpBlock2D 512 256

Decoder UpBlock2D 256 256

UpBlock2D 256 128

UpBlock2D 128 128

Conv2d 128

Table 7. U-NET: We utilize Hugging face diffusers library for our U-Net implementation. We utilize ‘positional’

type for timestep embeddings. We utilize 4 layers per block. The target resolution for KTH, BAIR and

Human3.6M is kept at   and   for UCF101 dataset. Additionally, we keep the number of

timesteps   as 100 given our compute resources.   denotes the number of channels present in the frame.   is

the number of initial context frames based on which next frame is predicted,i.e.,  .

Appendix C. Training Details

For the optimization of our model, we harnessed the compute of two Nvidia A6000 GPUs, each equipped

with 48GB of memory, to train our CVP model effectively. We adopted a batch size of 64 and conducted

training for a total of 500,000 iterations. To optimize the model parameters, we employed the AdamW

n × c

n × c

64 × 64 128 × 128

T c n

→x0:n x1:n+1
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optimizer. Additionally, we incorporated a cosine decay schedule for learning rate adjustment, with warm-

up steps set at 10,000 iterations. The maximum learning rate (Max LR) utilized during training was 5e-5.
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Footnotes

1 Navigate to the webpage for video results.
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