
Open Peer Review on Qeios

RESEARCH ARTICLE

How to Build an IoT System with AI Models to Predict Forest
Fires in California

Jun Wang1

1 Arizona State University

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

Abstract

In this weather monitoring system, you will learn how to use the DHT22 and BMP180 sensors to collect temperature,

humidity, pressure, and altitude data. This data will be sent to a MySQL database for storage via AWS MQTT, allowing

for email notifications to users and enabling future research. The Raspberry Pi 4 is utilized in this project as a compact

and portable computer to connect the DHT22 and BMP180 sensors. The Raspberry Pi 4 will have AWS-IOT-MQTT

installed to transmit data from the Pi to a Restful server. The Restful server, built with FastAPI, will persist the data into

the MySQL database and send email notifications to users.

This guide will demonstrate the proper use of sensors to construct your IoT system. The cost of the project can be

influenced by the price of different sensors, and using reliable sensors can save time during debugging by helping you

identify errors in your code rather than in the hardware. The project also involves the use of several libraries on the

Raspberry Pi, including Adafruit_DHT, Adafruit_Python_DHT, Adafruit_CircuitPython, and Adafruit_Python_BMP.

These libraries are essential for retrieving data from the DHT22 and BMP180 sensors.

By following this guide, you will understand how to effectively build and manage an IoT weather monitoring system,

taking into consideration the cost and reliability of sensors, as well as the interaction of various software libraries.

Jun Wang

Arizona State University

Introduction

IoT weather monitoring systems leverage cutting-edge IT technologies, including advanced sensors, portable mini-

computers, AWS Cloud services, high-level programming languages, databases, and even AI, to create versatile systems

applicable in various scenarios. These systems can record data for climate change studies and support future research

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 1/46

https://www.qeios.com/read/DNC09I#reviews
https://www.qeios.com/profile/82035

through AI models like ANN (Artificial Neural Networks) or the Random Forest method, aiding in weather prediction and

natural disaster prevention.

For instance, an IoT weather monitoring system could be deployed in California to help prevent forest fires. Historical data

shows that the top seven worst wildfires in California each resulted in several billion dollars in insured losses. The 2018

Camp Fire alone caused estimated damages of $10 billion, or approximately $10.38 billion in 2020 value. Deploying an

IoT weather monitoring system in forests could enable early detection of high temperatures through sensors, which would

then alert fire stations or weather monitoring stations. These agencies could respond promptly to these alerts, potentially

preventing fires in their early stages.

This paper will guide you through the process of building an IoT weather monitoring system. You will learn how to select

appropriate sensors, connect them to a Raspberry Pi, test their functionality, and use Python code to read data from these

sensors. Additionally, you will learn how to transmit data to a server via MQTT and troubleshoot any errors that arise. By

the end of this paper, you will have a comprehensive understanding of IoT systems. The knowledge and experience

gained from this project can be applied to other IoT applications, such as smart lighting systems or air pollution monitoring

systems.

Design Process

Software and Hardware Preparation

Before we enter design process, the software and hardware requirement need to show first.

Software requirement
Hardware
requirement

Python Charm IDE Raspberry Pi 4

MySQL database DHT22 Sensor

Restful - fastAPI BMP180 Sensor

Python3 Breadboard

BMP180 and DHT22 library(adafruit) Jumper wires

Window/Linux/Raspbian

When building a weather IoT system, cost is a crucial factor. Different sensors come at varying prices, and using

unreliable sensors can lead to frequent replacements, increasing both time and budget costs. Poor-quality sensors can

also send inaccurate data to servers, affecting weather information accuracy and future research outcomes.

For purchasing reliable sensors and devices, Amazon is an excellent choice. You can read reviews from other users and

compare prices to make informed decisions. For instance, HiLetgo offers high-quality DHT22 and BMP180 sensors. You

can purchase 5 pieces of BMP280 sensors for $6 and 2 pieces of DHT22 sensors for $13. Additionally, AITRIP provides

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 2/46

10 pieces of BMP180 sensors for $8. All of these options are reliable.

For a powerful and portable mini-computer, the CanaKit Raspberry Pi 4 Extreme Kit is recommended. Currently, it is

challenging to find Raspberry Pi 3 on Amazon. If you need to buy a Raspberry Pi 3, you might have to visit the CanaKit

official website, where delivery may take a few weeks. To ensure timely project progress, Amazon's accurate and fast

delivery can be advantageous.

IoT Level

In this project, the IoT level 3 is chosen for building the weather monitor system. A level-3 IoT system has a single node.

Data is stored and analyzed in the cloud and the application is cloud-based. Level-3 IoT systems are suitable for solutions

where the data involved is big and the analysis requirements are computationally intensive. (Bahga, 2014) Based on

these characteristics, IoT level 3 is suitable for this IoT weather monitor system.

Figure 1. (Bahga, 2014)

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 3/46

Block diagram

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 4/46

Figure 2.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 5/46

Data flow charts

Figure 3.

Figure 4.

Interface design

Raspberry Pi 4 side:

Temp.py

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 6/46

Pressure.py

Weather.py

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 7/46

Restful servers’ side:

MessagePesistence.py

Main.py

QueryWeather.py

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 8/46

SendEmail.py

Development Process

In the figure below, you can see DHT22 installed on the breadboard. The DHT22 is a powerful sensor to record

temperature, humility. Some jumper wires are used to connect Raspberry PI 4.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 9/46

Figure 5.

For connection to Raspberry PI 4, as the below figure 6, the positive port in the DHT22 must connect to the 5V power

port. Negative port must connect to the ground port through jumper wires. Here, data out ports can connect to GPIO4.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 10/46

Figure 6.

To test whether the DHT22 is working or not, first, you need to install Adafruit_DHT. And then, you need to add below

code to Adafruit_DHT/platform_detect.py

elif match.group(1) == 'BCM2711':

 #Pi 4b

 return 3

You can write the code as below figure 7. The code means read data from DHT22 and GPIO4 return in variable humidity

and temperature.

humidity, temperature = Adafruit_DHT.read_retry(22,4)

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 11/46

Figure 7.

In the below figure 8, you can see BMP180 installed on the breadboard. The BMP180 is a powerful sensor to record

pressure, altitude, and temp. Some jumper wires are used to connect Raspberry PI 4.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 12/46

Figure 8.

For connection to Raspberry PI 4, as the below figure 9, the positive port in the BMP180 must connect to the 3V3 power

port. Negative port must connect to the ground port through jumper wires. Here, data out ports can connect to SCL and

SDA ports.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 13/46

Figure 9.

To test whether the BMP180 is working or not, first, you need to install Adafruit_BMP.

You can write the code as below figure 10. The code means to read data from BMP180 return in variable pressure and

altitude.

temp, pressure, altitude = bmpsensor.readBmp180()

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 14/46

Figure 10.

When you finish the previous work, you will get the IoT hardware like below figure 11.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 15/46

Figure 11.

Here, the Raspberry PI 4 needs to send data to AWS-IOT-MQTT. First, you need to install awsiotsdk. The below code will

send data from sensors to MQTT through mqtt_connect.publish() function.

publish_count = 1

while (publish_count <= message_count) or (message_count == 0):

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 16/46

 humidity, temperature = Adafruit_DHT.read_retry(22,4)

 temp, pressure, altitude = bmpsensor.readBmp180()

 message = "Temp={0:0.1f} Humidity={1:0.1f}".format(temperature, humidity, publish_count)

 message = message + " Pressure=" +str(pressure) + " Altitude=" + str(altitude)

 print("Publishing message to topic '{}': {}".format(message_topic, message))

 message_json = json.dumps(message)

 mqtt_connection.publish(

 topic=message_topic,

 payload=message_json,

 qos=mqtt.QoS.AT_LEAST_ONCE)

 time.sleep(1)

 publish_count += 1

When you finish the code, you can run command:

python3 weather.py --topic weather --ca_file ~/certs/AmazonRootCA1.pem --cert ~/certs/certificate.pem.crt --key

~/certs/private.pem.key --endpoint a38fdsv9in84d7-ats.iot.us-west-2.amazonaws.com

Now, you can see the data is sending to AWS-MQTT

Figure 12.

For the AWS-MQTT console, you need to subscribe to the topic: weather. And then you can see the data which comes

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 17/46

from IoT devices.

Figure 13.

In the below figure 14, it shows the Restful server reading data from MQTT. First, you need to put certificate.pem.crt,

private.pem.key and AmazonRootCA1.pem into the same folder with code. And then use

myAWSIoTMQTTClient.subscribe() to read data from MQTT.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 18/46

ENDPOINT = "a38fdsv9in84d7-ats.iot.us-west-2.amazonaws.com"

CLIENT_ID = "testDevice"

PATH_TO_CERTIFICATE = "certificate.pem.crt"

PATH_TO_PRIVATE_KEY = "private.pem.key"

PATH_TO_AMAZON_ROOT_CA_1 = "AmazonRootCA1.pem"

TOPIC = "weather"

RANGE = 20

myAWSIoTMQTTClient = AWSIoTPyMQTT.AWSIoTMQTTClient(CLIENT_ID)

myAWSIoTMQTTClient.configureEndpoint(ENDPOINT, 8883)

myAWSIoTMQTTClient.configureCredentials(PATH_TO_AMAZON_ROOT_CA_1, PATH_TO_PRIVATE_KEY, PATH_TO_CERTIFICATE)

myAWSIoTMQTTClient.connect()

myCallbackContainer = CallbackContainer(myAWSIoTMQTTClient)

myAWSIoTMQTTClient.subscribe(TOPIC, 1, myCallbackContainer.messagePersistence);

time.sleep(10)

myAWSIoTMQTTClient.disconnect()

When you get data from MQTT successfully, you can print them out in the Pycharm console as below figure 14.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 19/46

Figure 14.

To store the data into MySQL, you must use the callback function below code.

First, you need to parse the message. This is because the message cannot be directly used without format.

def messagePersistence(self, client, userdata, message):

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 20/46

 data = message.payload

 data = str(data)

 data = data[3:-2]

 print(data)

 x = data.split(" ")

 temp = x[0]

 temp = temp.replace("Temp=","")

 humidity = x[1]

 humidity = humidity.replace("Humidity=","")

 pressure = x[2]

 pressure = pressure.replace("Pressure=","")

 altitude = x[3]

 altitude = altitude.replace("Altitude=","")

 ts = time.time()

 reportTime = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')

 location = "300 E main street"

Then, you can use the below code to store data into MySQL database.

try:

 connection = mysql.connector.connect(host='localhost',

 database='ift598finalprojectweather',

 user='root',

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 21/46

 password='')

 cursor = connection.cursor()

 query = "INSERT INTO weather(temperature,

humidity, altitude, pressure, reportTime, location, city, country, state) " \

 "VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s)"

 args = (temp, humidity, pressure, altitude, reportTime, location, city, country, state)

 cursor.execute(query, args)

 connection.commit()

except mysql.connector.Error as e:

 print("Error reading data from MySQL table", e)

finally:

 if connection.is_connected():

 connection.close()

 cursor.close()

When you are successful, you can see the data in the weather table as below figure 15. Appendix includes Create

weather statement.

Figure 15.

In the figure below, you need to install fastAPI as a restful server. If you install successfully, you can use command:

uvicorn main:app to start the Restful server.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 22/46

Figure 16.

Open browser, Go to localhost:8000. You can see the index page as below figure 17.

Figure 17.

To send email to users, first we need to query data from MySQL, the below code will do this.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 23/46

connection = mysql.connector.connect(host='localhost',

 database='ift598finalprojectweather',

 user='root',

 password='cholt666')sql_select_Query = "SELECT * FROM weather"

cursor = connection.cursor()

cursor.execute(sql_select_Query)

get all records

records = cursor.fetchall()

And then, we can invoke the send email function as below code:

def __init__(self):

 self.port = 465

 self.smtp_server_domain_name = "smtp.gmail.com"

 self.sender_mail = "wj4507657@gmail.com"

 self.password = "zigfttbjyteetsro"

def send(self, emails, subject, content):

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 24/46

 ssl_context = ssl.create_default_context()

 service = smtplib.SMTP_SSL(self.smtp_server_domain_name, self.port, context=ssl_context)

 service.login(self.sender_mail, self.password)

 for email in emails:

 result = service.sendmail(self.sender_mail, email, f"Subject: {subject}\n{content}")

 service.quit()

The restful server code as below:

@app.get("/sendWeatherInfo")

def sendWeatherInfo():

 queryWeather = QueryWeather()

 queryWeather.queryWeather()

 print("sendWeatherInfo")

 return {"message": "Send weather info to you Email.Please check!"}

Open browser, Go to localhost:8000/sendWeatherInfo. You can see the return page as below figure 18.

Figure 18.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 25/46

For testing whether the email was sent successfully or not, open your Gmail account, you will see the email notification as

below Figure 19.

Figure 19.

Testing and Result

For test DHT22 and BMP180, the below code can be used as the test part. The sample way to test temperature and

humidity change. You can blow your breath to DHT22, as a result, you will see the change immediately.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 26/46

Login into AWS MQTT console, subscribe to the topic. You can test the data whether it is transfer successfully.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 27/46

Using MySQL Workbench can easily see the data whether it is stored successfully.

Open browser, Go to localhost:8000. It can test the restful server whether it is installed successfully.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 28/46

Open your Gmail account, you will see the email notification which test the email was sent successfully or not.

Weather monitor system Integration testing:

To test the performance of the IoT weather monitoring system, sensors can be placed in various locations. For instance,

the system can be set up indoors to measure temperature, humidity, and pressure. Initially, the system can be tested over

a 24-hour period, then extended to one week, one month, and so on, to assess its long-term reliability.

Testing should also include evaluating the portable power supply. If deploying the IoT system in a remote field, it is

essential to determine how long the system can operate without losing power and how long the portable power can

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 29/46

sustain the system. Additionally, it is crucial to test the system's scalability by deploying hundreds or thousands of sensors

to ensure it continues to function correctly under increased load.

The DHT22 sensor, with its wide temperature range of -40 to 80°C, can operate effectively in harsh environments, making

it suitable for testing in various conditions.

Summary and Conclusion

This project is designed and developed for IoT weather monitoring, utilizing weather parameters such as temperature,

humidity, pressure, and altitude. The IoT weather monitoring system collects real-time data and sends it to a server for

analysis and notification purposes.

During the design process, a list of requirements will help readers understand what is needed for the system. Block

diagrams and data flow charts provide a deeper understanding of the entire process. The project interface displays all

parameters and functions to developers, aiding them in easily building their own IoT system.

The development process details the core code of the IoT system, explaining how to send data from sensors and receive

data from RESTful servers. The testing and results section describes how to test the entire system to ensure it works

properly and provides strategies for troubleshooting errors.

This IoT weather monitoring system is designed and developed for weather prediction and forest fire prevention. In

California, accurate weather monitoring is crucial for residents' safety and preparedness.

Appendix

Table:

create table weather(

id int auto_increment primary key,

temperature double,

humidity double,

altitude double,

pressure double,

reportTime timestamp,

location varchar(32),

city varchar(32),

country varchar(32),

state varchar(32)

)

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 30/46

Temp.py

import sys

import Adafruit_DHT

import time

while True:

 humidity, temperature = Adafruit_DHT.read_retry(22,4)

 if humidity is not None and temperature is not None:

 print("Temp={0:0.1f} Humidity={1:0.1f}".format(temperature, humidity))

 else:

 print("PLease check");

 time.sleep(3)

Pressure.py

import bmpsensor

import time

while True:

 temp, pressure, altitude = bmpsensor.readBmp180()

 print("Temp is", temp)

 print("Pressure is", pressure)

 print("Altitude is", altitude)

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 31/46

 time.sleep(2)

Weather.py

from awscrt import mqtt

import sys

import threading

import time

from uuid import uuid4

import json

import bmpsensor

import Adafruit_DHT

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 32/46

import command_line_utils;

cmdUtils = command_line_utils.CommandLineUtils("PubSub - Send and recieve messages through an MQTT connection.")

cmdUtils.add_common_mqtt_commands()

cmdUtils.add_common_topic_message_commands()

cmdUtils.add_common_proxy_commands()

cmdUtils.add_common_logging_commands()

cmdUtils.register_command("key", "<path>", "Path to your key in PEM format.", True, str)

cmdUtils.register_command("cert", "<path>", "Path to your client certificate in PEM format.", True, str)

cmdUtils.register_command("port", "<int>", "Connection port. AWS IoT supports 443 and 8883 (optional, default=auto).", type=int)

cmdUtils.register_command("client_id", "<str>", "Client ID to use for MQTT connection (optional, default='test-*').", default="test-" + str(uuid4()))

cmdUtils.register_command("count", "<int>", "The number of messages to send (optional, default='10').", default=10, type=int)

cmdUtils.get_args()received_count = 0

received_all_event = threading.Event()

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 33/46

def on_connection_interrupted(connection, error, **kwargs):

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 34/46

def on_connection_interrupted(connection, error, **kwargs):

 print("Connection interrupted. error: {}".format(error))

def on_connection_resumed(connection, return_code, session_present, **kwargs):

 print("Connection resumed. return_code: {} session_present: {}".format(return_code, session_present))

 if return_code == mqtt.ConnectReturnCode.ACCEPTED and not session_present:

 print("Session did not persist. Resubscribing to existing topics...")

 resubscribe_future, _ = connection.resubscribe_existing_topics()

 resubscribe_future.add_done_callback(on_resubscribe_complete)

def on_resubscribe_complete(resubscribe_future):

 resubscribe_results = resubscribe_future.result()

 print("Resubscribe results: {}".format(resubscribe_results))

 for topic, qos in resubscribe_results['topics']:

 if qos is None:

 sys.exit("Server rejected resubscribe to topic: {}".format(topic))

def on_message_received(topic, payload, dup, qos, retain, **kwargs):

 print("Received message from topic '{}': {}".format(topic, payload))

 global received_count

 received_count += 1

 if received_count == cmdUtils.get_command("count"):

 received_all_event.set()

if __name__ == '__main__':

 mqtt_connection = cmdUtils.build_mqtt_connection(on_connection_interrupted, on_connection_resumed)

 print("Connecting to {} with client ID '{}'...".format(

 cmdUtils.get_command(cmdUtils.m_cmd_endpoint), cmdUtils.get_command("client_id")))

 connect_future = mqtt_connection.connect()

 connect_future.result()

 print("Connected!")

 message_count = cmdUtils.get_command("count")

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 35/46

 message_topic = cmdUtils.get_command(cmdUtils.m_cmd_topic)

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 36/46

 message_string = cmdUtils.get_command(cmdUtils.m_cmd_message)

 # Subscribe

 print("Subscribing to topic '{}'...".format(message_topic))

 subscribe_future, packet_id = mqtt_connection.subscribe(

 topic=message_topic,

 qos=mqtt.QoS.AT_LEAST_ONCE,

 callback=on_message_received)

 subscribe_result = subscribe_future.result()

 print("Subscribed with {}".format(str(subscribe_result['qos'])))

 if message_string:

 if message_count == 0:

 print ("Sending messages until program killed")

 else:

 print ("Sending {} message(s)".format(message_count))

 publish_count = 1

 while (publish_count <= message_count) or (message_count == 0):

 humidity, temperature = Adafruit_DHT.read_retry(22,4)

 temp, pressure, altitude = bmpsensor.readBmp180()

 message = "Temp={0:0.1f}

 Humidity={1:0.1f}".format(temperature, humidity, publish_count)

 message = message + " Pressure=" +str(pressure) + " Altitude=" + str(altitude)

 print("Publishing message to topic '{}': {}".format(message_topic, message))

 message_json = json.dumps(message)

 mqtt_connection.publish(

 topic=message_topic,

 payload=message_json,

 qos=mqtt.QoS.AT_LEAST_ONCE)

 time.sleep(1)

 publish_count += 1

 if message_count!= 0 and not received_all_event.is_set():

 print("Waiting for all messages to be received...")

 received_all_event.wait()

 print("{} message(s) received.".format(received_count))

 disconnect_future = mqtt_connection.disconnect()

 disconnect_future.result()

Part of this code is adapted from the AWS IoT Device SDK for Python (v2) repository available at

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 37/46

https://github.com/aws/aws-iot-device-sdk-python-v2, used under the Apache 2.0 License.

Run Command:

python3 weather.py --topic weather --ca_file ~/certs/AmazonRootCA1.pem --cert ~/certs/certificate.pem.crt --key

~/certs/private.pem.key --endpoint a38fdsv9in84d7-ats.iot.us-west-2.amazonaws.com

Restful server - fastAPI - main.py

from fastapi import FastAPI

from QueryWeather import QueryWeather

app = FastAPI()@app.get("/")

async def root():

 return {"message": "Welcome to IFT598 Intelligence Devices Final Project"}

@app.get("/sendWeatherInfo")

def sendWeatherInfo():

 queryWeather = QueryWeather()

 queryWeather.queryWeather()

 print("sendWeatherInfo")

 return {"message": "Send weather info to you Email.Please check!"}

MessagePersistence.py

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 38/46

https://urldefense.com/v3/__https://github.com/aws/aws-iot-device-sdk-python-v2__;!!IKRxdwAv5BmarQ!fx4E4Ewl4seLkW6c1uhLMb7IvrrKyXuzcDYf-QDVpJV-Y6h2aYh38KsCrT_ufqtY_t6qbqRKMBBQ_xek5-M$%22 %5Ct %22https://mail.google.com/mail/u/2/%22 %5Cl %22inbox/_blank

import time

import datetime

import AWSIoTPythonSDK.MQTTLib as AWSIoTPyMQTT

import mysql.connector

class CallbackContainer(object):

 def __init__(self, client):

 self._client = client

 def messagePersistence(self, client, userdata, message):

 data = message.payload

 data = str(data)

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 39/46

 data = data[3:-2]

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 40/46

 data = data[3:-2]

 print(data)

 x = data.split(" ")

 temp = x[0]

 temp = temp.replace("Temp=","")

 humidity = x[1]

 humidity = humidity.replace("Humidity=","")

 pressure = x[2]

 pressure = pressure.replace("Pressure=","")

 altitude = x[3]

 altitude = altitude.replace("Altitude=","")

 ts = time.time()

 reportTime = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')

 location = "300 E main street"

 city = "Mesa"

 country = "US"

 state = "Arizona"

 try:

 connection = mysql.connector.connect(host='localhost',

 database='ift598finalprojectweather',

 user='root',

 password='cholt666')

 cursor = connection.cursor()

 query = "INSERT INTO weather(temperature, humidity, altitude, pressure, reportTime, location, city, country, state) " \

 "VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s)"

 args = (temp, humidity, pressure, altitude, reportTime, location, city, country, state)

 cursor.execute(query, args)

 connection.commit()

 except mysql.connector.Error as e:

 print("Error reading data from MySQL table", e)

 finally:

 if connection.is_connected():

 connection.close()

 cursor.close()

ENDPOINT = "a38fdsv9in84d7-ats.iot.us-west-2.amazonaws.com"

CLIENT_ID = “testDevice”

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 41/46

PATH_TO_CERTIFICATE = "certificate.pem.crt"

PATH_TO_PRIVATE_KEY = "private.pem.key"

PATH_TO_AMAZON_ROOT_CA_1 = "AmazonRootCA1.pem"

TOPIC = "weather"

RANGE = 20

myAWSIoTMQTTClient = AWSIoTPyMQTT.AWSIoTMQTTClient(CLIENT_ID)

myAWSIoTMQTTClient.configureEndpoint(ENDPOINT, 8883)

myAWSIoTMQTTClient.configureCredentials(PATH_TO_AMAZON_ROOT_CA_1, PATH_TO_PRIVATE_KEY, PATH_TO_CERTIFICATE)

myAWSIoTMQTTClient.connect()

myCallbackContainer = CallbackContainer(myAWSIoTMQTTClient)

myAWSIoTMQTTClient.subscribe(TOPIC, 1, myCallbackContainer.messagePersistence);

time.sleep(10)

myAWSIoTMQTTClient.disconnect()

QueryWeather.py

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 42/46

import mysql.connector

import SendEmail

import datetime

import time

class QueryWeather:

 def queryWeather(self):

 try:

 connection = mysql.connector.connect(host='localhost',

 database='ift598finalprojectweather',

 user='root',

 password='cholt666')

 sql_select_Query = "SELECT * FROM weather"

 cursor = connection.cursor()

 cursor.execute(sql_select_Query)

 records = cursor.fetchall()

 mails = input("Enter emails: ").split()

 ts = time.time()

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 43/46

 reportTime = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')

 subject = "WeatherInfo" + reportTime

 mail = SendEmail.Mail()

 mail.send(mails, subject, records)

 except mysql.connector.Error as e:

 print("Error reading data from MySQL table", e)

 finally:

 if connection.is_connected():

 connection.close()

 cursor.close()

 print("MySQL connection is closed")

SendEmail.py

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 44/46

import smtplib, ssl

class Mail:

 def __init__(self):

 self.port = 465

 self.smtp_server_domain_name = "smtp.gmail.com"

 self.sender_mail = "wj4507657@gmail.com"

 self.password = ""

 def send(self, emails, subject, content):

 ssl_context = ssl.create_default_context()

 service = smtplib.SMTP_SSL(self.smtp_server_domain_name, self.port, context=ssl_context)

 service.login(self.sender_mail, self.password)

 for email in emails:

 result = service.sendmail(self.sender_mail, email, f"Subject: {subject}\n{content}")

 service.quit()

Reference

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 45/46

Bahga, A., & Madisetti, V. (2014). Internet of Things: A hands-on approach. Vpt.

Qeios, CC-BY 4.0 · Article, August 7, 2024

Qeios ID: DNC09I · https://doi.org/10.32388/DNC09I 46/46

	How to Build an IoT System with AI Models to Predict Forest Fires in California
	Abstract
	Introduction
	Design Process
	Development Process
	Testing and Result
	Summary and Conclusion
	Appendix
	Reference

