
30 January 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Which Gene Combination to Test in Wet
Lab? A Pedagogical Walkthrough of R
Code Mechanics of ML-Based Search
Engine for Biologists/Oncologists

Shriprakash Sinha1

1. Independent researcher

Background: In biology/oncology, one is faced with the problem of exploring relevant unknown

biological hypotheses in the form of a myriad of combinations of factors that might be a�ecting the

pathway under certain conditions. If discovered, these are potential breakthroughs that could help

understand the mechanism of cell biology, leading to scienti�c discoveries and therapeutic

interventions. Currently, a major persisting problem is to cherry-pick the combinations based on

expert advice, literature survey, or guesses for investigation. This entails investment in time,

energy, and expenses at various levels of research.

Results: To address these issues, a search engine design was recently published, which showed

promise by revealing existing con�rmatory published wet lab results. Additionally, and of import, an

adaptation of the published engine mined up a range of unexplored/untested/unknown

combinations of genetic factors in the cell signaling pathways that were a�ected by ETC-1922159

enantiomer, a PORCN-WNT inhibitor, after the colorectal cancer cells were treated with the drug.

Conclusions: Here, a pedagogical walkthrough of the R code of the machine learning-based search

engine is elucidated. This will help biologists/oncologists to locate gene combinations

ranked/revealed by using the advanced machine learning-based search engine, instead of wandering

in a vast combinatorial forest and later testing the combinations of choice in a wet lab. The article

ends with an example of a ranking of a order combination that has recently been established in

another wet lab experiment.

Qeios

3rd

qeios.com doi.org/10.32388/DPKY8G 1

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

1. Insight, innovation, and integration

Which gene combination to test in the wet lab? This is a fundamental problem that

biologists/oncologists face in their search for potential breakthroughs that could help understand the

mechanism of cell biology, leading to scienti�c discoveries and therapeutic interventions. To address

this issue, an elucidation of an adaptation of a machine learning-based search engine is provided. The

manuscript explains the R code using an example of static data generated from colorectal cancer (CRC)

cells that were treated with ETC-1922159.

2. Why use this code?

In my limited opinion, the following goals can be achieved using the published work -

1. Biologists/oncologists can download the available code in R (and with support from any

personnel having R programming experience) and apply it to their data sets to rank/prioritize

unknown combinations of genes/proteins which might be working synergistically in a pathway.

2. Because of 1, biologists/oncologists will not have to struggle to search for combinations of

interest. The rankings of the combinations shed light on how the combinations can be

searched/located. Probably, this work will make life easier.

3. Based on these rankings, the modi�cations of the work will help in writing grant proposals for

testing machine learning-based discoveries. This will also help biologists/oncologists get

�nancial support for their research.

4. Combinations of any order can be generated and ranked. However, computational resources

might be required, and the search engine might have to be �ne-tuned.

5. Finally, the work might help answer many questions in cell biology. Though experimental tests

need to be conducted on the discoveries made by applying the above machine learning-based

pipeline.

3. Introduction

I developed a search engine to rank/prioritize unknown/unexplored combinations of genes that might

be working synergistically in a signaling pathway[1]. Also, the foundation of this work is based on

sensitivity indices. The use of these indices to study when and which genetic factor will have a greater

in�uence on the pathway has been published in[2]. In order to understand the signi�cance of the

qeios.com doi.org/10.32388/DPKY8G 2

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

solution proposed to the problem of combinatorial search that biologists face in revealing unknown

biological search problems, these works are of importance.

This manuscript explains the sequence of the code in the pipeline that constitutes the search engine.

Note that the pipeline is generic in nature and can be modi�ed, and here we present a possible solution

to the combinatorial problem. This is to resolve the issue of �nding potential combinations which

might be working synergistically. These combinations are addressed as biological hypotheses. We will

also address the issues in the paper as we move through the code and point out openings where the

scienti�c community can work to re�ne the pipeline. Instead of considering these openings as

loopholes, interested parties could tune/re�ne the pipeline as per their requirement. Currently, the

code is broadly divided into three main parts that execute the following - preprocessing and

extraction of data generation of sensitivity indices on measurements from the data, and ranking of

the sensitivity indices. However, for a more professionalized version, the pipeline can be divided into

smaller independent modules. The schematic diagram of the pipeline is represented in �gure 1. Also,

the code in R is presented, and the coding is explained where necessary. Note that an explanation for

the working of any particular package that has been used in the pipeline will not be provided. Instead,

references will be provided for these packages or executable �les.

∙

∙ ∙

qeios.com doi.org/10.32388/DPKY8G 3

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Figure 1. Schematic view of the pipeline. Execution begins with preprocessing and extraction of data,

followed by generation of sensitivity indices and culminating in ranking and sorting of the indices and

the associated combinations. See steps 1., 2. and 3. Figure from Sinha[1]

4. Source of data

4.1. Description

Data used in this research work was released in a publication by[3]. The ETC-1922159 was released in

Singapore in July 2015 under the �agship of the Agency for Science, Technology and Research

(A*STAR) and Duke-National University of Singapore Graduate Medical School (Duke-NUS). Note that

the ETC-1922159 data show numerical point measurements that is as[3] quote - "List of di�erentially

expressed genes identi�ed at three days after the start of ETC-159 treatment of colorectal tumors.

Log2 fold-changes between untreated (vehicle, VEH) and ETC-159 treated (ETC) tumors are

reported." The numerical point measurements of di�erentially expressed genes were recorded using

the following formulation of fold changes in equation 1 (see[4][5] and[6]).

log2

V EHavg

ETCavg

qeios.com doi.org/10.32388/DPKY8G 4

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

4.2. Why choose this data?

The recordings of the gene regulations have been done by[3] in the supplementary table 1. These

recordings indicate (up and down) regulation of some 5000 genes which were made available after the

drug was tested on colorectal cancer (CRC) cells. Also, each recording is individual. But it is known to

everyone in the �eld of biology/oncology that genes/proteins work in combinations. This work does

nothing new or creative or modi�es the data, however, it reveals/ranks these gene combinations

(whether tested experimentally or yet to be explored/tested) that might be working synergistically,

using an adaptation of a published machine learning-based search engine (see[1]). Thus, it solves an

important problem of discovering which gene combinations to test in a wet lab, in a vast

combinatorial search forest, via the use of real-life data. These point to the e�cacy and potential of

the search engine. The engine is e�ective for ranking combinations of any gene of choice and any

order of interest.

I tested the modi�cation of the search engine (in[1]) and discovered various order combinations of

genes that might a�ect various pathways after the drug was administered. A few of the unpublished

results of the work were shared in the �rst Wnt Signaling: A Pathway Implicated in Animal

Development, Stem Cell Control and Cancer (Wnt Gordon Research Conference) in 2017, from 6-11

August, held in Stowe, Vermont 05672, USA.

5. Steps of execution via code elucidation

Fonts used for di�erent constituents of the code - variables in �le and arguments in italics; �le

names in sans serif; functions in bold; R code is in verbatim.

5.1. Preprocessing of ETC-1922159 data

We begin with the �rst step of the search engine by processing the data that has been provided in[3].

Note that the data had to be manually preprocessed in order to store it in a desired format in a �le

(here a .txt �le). Since the �le contained a list of both down and up regulated genes, it was necessary to

segregate them into two �les. A snapshot of the manually preprocessed �le is shown in Figure 2. In

this �le, the down regulated genes a�ected by ETC-1922159 have been stored. The orange boundary in

Figure 2 contains the �le header with di�erent columns separated by a delimiter, here, the "+" symbol

(see the magni�cation in blue). The columns include the titles GeneSymbol or the name of the

2nd

∙ ∙

∙ ∙

∙

qeios.com doi.org/10.32388/DPKY8G 5

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

abbreviated name of the gene, ENSEMBLgeneID (not used in this code), GeneDescription containing a

short detail of the gene, log2foldchange(VEH/ETC) which represents the numerical point

measurement, and BH-adjustedP-value which represents the changes in gene expression that were

considered signi�cant if the Benjamini-Hochberg adjusted P-value 0.0001 (not used in this code).

An instance of the tuple in the orange boundary is depicted by speci�c recorded values for the instance

tuple in the red boundary. So, of particular interest would be gene MCM4 and its recorded fold change

value of 3.03, from the red boundary; however, before we do that, we need to put the stored

information in the .txt �le in a particular format for further processing. After manual processing, we

stored the list of down and up regulated �les in the following two �les onc2015280x2-A.txt and

onc2015280x2-B.txt, respectively.

Figure 2. A snapshot of the manually processed �le. In this �le, the down regulated genes a�ected by ETC-

1922159 have been stored. The orange boundary contains the �le header with di�erent columns separated

by a delimiter, here, the ”+” symbol.

5.2. Extraction of ETC-1922159 data

Once the data has been stored in the required format after manual preprocessing, the next step

involves the extraction of data from these �les and the storage of the information in a requisite

format. This is done using the �le extractETCdata.R which contains the function extractETCdata. We

begin with the explanation of the code in a sequential manner below.

∙ ∙

∙

<

qeios.com doi.org/10.32388/DPKY8G 6

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

5.2.1. Description of extractETCdata.R

The function extractETCdata takes in the argument with the name data.type that is a numerical value.

Here, if the data type then the name of the �le containing down(up) regulated genes is stored in

the �lename. The if condition is used for assigning the �le name to �lename with the condition as

argument data.type (See lines 1-7 below).

Next, the total number of lines needs to be known once the �le to be worked on has been decided. This

is required in order to know the number of entries in the �le, which gives the list of genes. The

processing begins with the system command, which executes Unix utilities like wc or word count with

an option to count lines l. We use the option of intern to capture the output of the command wc in the

output (see line 9 below). The output from the command is stored in lineCnt. This output is in the form

of a string, and the goal is to know the line count from this string. To proceed, the strsplit function is

used in order to break up the string in lineCnt into atomic elements. Further, since the output of the

strsplit is in the form of a list, to simplify the data structure, unlist is used to produce a vector of

atomic elements with an argument strsplit(lineCnt, " "). So here, the output of strsplit(lineCnt, " ")

goes as an argument in the function unlist. The output of unlist, which is a vector, is stored in x (see

line 10 below). Next, to extract the numerical value of the number of lines in the �le, a for command is

run, where the iterator i takes in one element of the vector in x at a time (see line 11 below) and tests if

it is a numeric value. If a numeric value is found, the for loop breaks; else, it continues with the next

element of x in the iterator. So, for every value of x in i, if the value in i as numeric is not found to be

true or is missing/not available, the iterator moves to the next element of x. Else, if the value in i as

numeric is found to be true in the if condition, then this value is assigned to nLines, and the execution

breaks out of the for loop (see lines 11-14).

= 1(2)

== 1

qeios.com doi.org/10.32388/DPKY8G 7

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Once we know the number of lines in the �le, we proceed to extract the information in the �le, line by

line. Lines 20-84 below contain the part of the code that will extract the information from the �le.

However, due to the length of the code, the explanation is broken up into parts. The entire code for

extracting the information is contained in the block within the while loop, which starts from line 20.

The while runs until a condition is no longer true. Before that, the �le needs to be opened for

processing. This is done using the �le command, which takes in �lename as the argument for the

variable description and r to read, as the argument for the variable open. This opens the connection for

the �le of interest, and the connection to the �le is stored in a variable connecTion. We also set the

variable cnt to 0 as an iterator for the while loop that needs to execute as long as the condition cnt

 nLines as an argument to the while is met (see line 20). If the condition in line 20 is not met, the

execution exits the while loop block.

Once inside, the condition is satis�ed, and the counter is incremented by , stating that the �rst line is

being read. This is indicated by the updated cnt value in line 21. Next, the cnt line is read from the �le

using the function readLines, which takes as arguments the value in connecTion and n (as 1 to read

only one line). The output is the cnt line that is stored in sentence. For processing purposes, the

sentence is concatenated with a return character. However, if the cnt line is the �rst line, then the

loop just skips it and jumps to the next line in the �le (see lines 16-24).

≤

1

th

th

th

qeios.com doi.org/10.32388/DPKY8G 8

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

However, if the cnt line is the one in the �le, then we know that it contains the information on

column names. This needs to be extracted from the sentence variable in the second iteration of the

while loop, which extends from lines 25 to 59. Again, to explain the aspects of the code, we will break

this else if(cnt){...} block into parts. This block contains two for loop blocks. The �rst block is used

to retrieve the names of the columns that are delimited by a "+" sign (see lines 25-45). The second

block is to create corresponding variable names that match the retrieved names, followed by

initialization (see lines 46-58).

The else if block begins with a few initializations. The cnt sentence is split and stored in a simple

format in tempSentence. The length of the sentence in terms of the number of characters is stored in

tempSentenceLength. The position of the delimiter "+" within the sentence is also stored using the

which function. Finally, the names of the columns need to be stored in cnames, and an index indx is

used as a start position at a particular location in tempSentence for processing purposes. In the �rst for

loop, with the iterator i taking on values of the position of the delimiter (stored in delimPlusPos) one at

a time in every loop, a particular piece of code is executed depending on the value of the index position

in indx. In line 31, if the location of the indx is 1, i.e., the starting character of the sentence, then the

�rst name needs to be extracted that lies between position 1 and position (i-1). Note that at location i,

there is a "+" symbol. To execute this, the command capture.output is used, which converts the

concatenated elements of tempSentence[1:(i-1)] via the cat command (see line 33). capture.output

converts the input argument into a string and stores the retrieved name in tempName. Next, this

column name is stored in cnames in line 34. In case the indx is the position which contains the last

th 2nd

= 2

th

qeios.com doi.org/10.32388/DPKY8G 9

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

delimiter, i.e., length(delimPlusPos), then the last and the penultimate column names need to be

retrieved. The penultimate column name can be retrieved from the characters between the

penultimate delimiter and the last delimiter, i.e., delimPlusPos[indx-1]+1):(i-1) (see line 36). The last

column name can be retrieved after the last delimiter and the end of the sentence, i.e.,

delimPlusPos[indx]+1):tempSentenceLength (see line 38). Finally, if the iterator neither points to the

 nor the last length(delimPlusPos) delimiter position, then the column name can be retrieved from

characters lying between the position of the previous delimiter position and the current delimiter

position, i.e., (delimPlusPos[indx-1]+1):(i-1) (see line 41). Each of these are ranges that are encased in

the vector tempSentence and are concatenated via cat and captured in tempName, and later stored in

cnames. After the execution of the for loop ends, that is, the iterator i has covered all the delimiter

positions in delimPlusPos, cnames contains all the column names (see lines 31-45).

1st

qeios.com doi.org/10.32388/DPKY8G 10

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Once the names of the columns have been stored, the corresponding variables need to be created and

initialized. This is done in the second block as described above. The second for loop iterates through

the list of column names. In each iteration of the for loop, a condition is checked which tests whether a

particular pattern exists within the column name under consideration. If the condition is satis�ed, as

above, the corresponding variable is created and initialized. We use the grep function to �nd the

pattern in the column name i, as i iterates through cnames in the for loop. If there is a match and the

pattern exists in column name i, then the length of this match will not be equal to 0, like

(length(grep(pattern = "sym", x = i)) != 0) on line 47. When this happens, the creation and

initialization of a variable follows. In the above example, Genesymbol is created and initialized. Finally,

the block for else if is completed, if one is dealing with the line of the �le (see lines 46-58).2nd

qeios.com doi.org/10.32388/DPKY8G 11

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Next, for all cnt lines of the �le that are neither nor , the last part of the else block for the while

loop in line 20 is executed. This block is encoded in lines 59-82. Most of the code is similar to the

preceding block with a few changes. Line 60 contains the same command to store the sentence read at

cnt line of the �le, and line 61 is used to �nd the positions where the delimiter is positioned. In the

next step, if there is an error in the positioning of the delimiter due to a manual preprocessing error,

the command shows that correction needs to be done at line cnt. From lines 64 to 83, the coding is

similar to the foregoing piece of code, except that if the index indx is , now the name of the gene is

stored in Genesymbol; if the index indx is length(delimPlusPos), then fold change values are stored

in logTwoFC from the left side of the delimiter and adjusted P-values are stored in BHadjustedPvalue

from the right side of the delimiter; if indx is 2, then the ENSEMBLgeneID value is stored in

ENSEMBLgeneID, and �nally, if indx is 3, then the Genedescription is stored in Genedescription. Lines

starting with # are commented and used only for testing purposes and do not give any value (see lines

59-84). Note that as each line is read, information is stored using the rbind function that keeps

attaching or binding the current value to the existing vector in a variable. For example, Genesymbol

 rbind(Genesymbol, tempName) will append Genesymbol with the current tempName, thus

th 1st 2nd

th

1

log2

< −

qeios.com doi.org/10.32388/DPKY8G 12

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

increasing the size of the vector in Genesymbol by 1. This procedure gets repeated. Thus ends the

storage of information from the �le in the variables.

qeios.com doi.org/10.32388/DPKY8G 13

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Next, we close the open �le using the command close with an argument connecTion. And �nally, we

combine the variable names in a data frame, a kind of data structure, using data.frame and arguments

Genesymbol, ENSEMBLgeneID, Genedescription, logTwoFC, and BHadjustedPvalue. The data frame is

stored in the variable oncETC. Finally, the return command returns this data frame as output using the

function return and oncETC (see lines 85-89).

qeios.com doi.org/10.32388/DPKY8G 14

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Note that the preprocessing and extraction of data can have di�erent �avours depending on the type

of data and experiment one is dealing with. However, the output of the extraction should be a data

frame (a kind of variable in R) containing the extracted data that needs to be used in sensitivity

analysis. This is explained next.

5.2.2. Exercise

As an exercise, the readers are encouraged to build their own preprocessed �le manually, from the

data given in[3] and see if they can reproduce the results in the form of a data frame using the function

extractETCdata.

5.3. Computing the sensitivity indices

We move on to the next stage of the pipeline where the sensitivity indices need to be generated. Why

we are generating these indices and how it helps in ranking up a set of factors and its combinations

involved in the pathway have been discussed in[7] and[8]. Here we concentrate on the implementation

of the pipeline and explanation of the code only. The code has been saved in the �le named

manuscript-2-2.R, and one of the authors has been lazy enough not to change the name of the code.

However, it also points to the fact that the author is not concerned with the show of expertise in the

nomenclature of �le names, and neither does he wish to earn a PhD in the nomenclature of �le names.

Moving to the main topic, the code begins with the de�nitions of some functions and the inclusion of

packages from which speci�c functions can be used during programming.

5.3.1. Description of manuscript-2-2.R

Here, the library function is used to call the package "sensitivity," which has been implemented in R

and goes as an argument into the function library. Details of the package can be found in[9]. Next, we

de�ne a function using the function function and give this function a name new.name. The function

takes in as an argument a two-dimensional matrix X. k is the number of genes under consideration out

of a set of genes. The new.name implements the g-function (a model) that is used to assign weights to

each of the genes, with a random weight. For this, the runif function is used. b is updated as each gene

is considered one at a time in the for loop. At the end of the function, the value in b is returned

implicitly. What happens is as the loop iterates length(a) times, where the expression shows the

number of genes the user has selected. Note that the length of a is computed using the value of k. This

qeios.com doi.org/10.32388/DPKY8G 15

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

function is read within lines 3-10. Also, genSampleComb is a function that returns a two-dimensional

matrix with a speci�c number of columns de�ned in yCol. More about this function will be talked

about at a later stage. Here, de�nitions of the functions are provided (see lines 1-14).

Since the code can be adapted for di�erent data sets, a query is asked of the user regarding the

generation of distribution around point measurements, if they exist in the data under consideration.

To query the user, the function readline is employed. The user has to type in the option provided in the

query for a particular functionality to take e�ect. Here, the response to the query is stored in the

variable DISTRIBUTION. Next, if the response in DISTRIBUTION is yes, that is, the user typed in "y",

then the ensuing block within the if command will get executed; else, it will be skipped. Again, the

block under consideration de�nes a new function gdfetppv which takes in arguments n and yt, where n

contains the number of points which a user might want to generate for a distribution around a

numerical point estimate. The measured numerical point estimates for each gene under consideration

are assorted in a vector yt. The length of yt shows the number of genes involved in the study of

sensitivity analysis. As the for iterates through each gene, for the corresponding numerical point

estimate for a particular gene, a distribution around the point estimate is generated with the mean

qeios.com doi.org/10.32388/DPKY8G 16

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

value being yt[i] (i is the iterator) and a standard deviation of . Along with the distribution, a

minor jitter or noise is added. Thus, the whole distribution is stored in a vector. Note that the output of

the jitter function is a vector and R stores vectors in column format. Consequently, as the for loop

iterates from one gene to another, the columns are bound together using a column binding function

cbind. Thus, randyt keeps on increasing column-wise, till all genes have been covered. Once out of the

loop, the row vector yt is appended with the distribution matrix randyt using the row binding function

rbind. The output of the function is a two-dimensional matrix containing the point estimate in the

�rst row and the corresponding distribution in the rows below (see lines 20-28).

After the functions have been de�ned, the main execution begins. The code starts with the extraction

of the data using the readline argument and provides an option to the user to choose a �le that

contains data regarding down-regulated genes or up-regulated genes. Once the response is recorded,

it is stored in the variable DATATYPE. If the user enters a wrong number, then a while loop is run which

asks to enter the right response. This feedback continues until the user enters the right response (see

lines 30-33). After the correct response is recorded, we use the function extractETCdata to extract the

information from the particular �le associated with the response in DATATYPE. This is done using the

command extractETCdata(DATATYPE) and the output of the function is stored in oncETCmain. We keep

0.005

qeios.com doi.org/10.32388/DPKY8G 17

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

a copy of the stored information in oncETCmain and make a second copy in the subsequent line in

oncETC (see lines 34-35). This manuscript explains the code for retrieving order combinations,

only so as to set a platform for many who would be reading the article. Note, before the use of the

function, i.e., the instantiation of the function, the function needs to be de�ned and initialized. We

de�ned the function and named it. After that, an instance of the function is used to get a certain result.

One instance is extractETCdata(1) and another instance is extractETCdata(2).

Of interest is the column containing the fold change numerical point estimates that are stored in

the variable oncETC. Since the information under this column is stored in the data frame, it needs to be

converted into a matrix for further processing by the sensitivity analysis package. For this, the

as.matrix function is used, which takes in the object in x along with arguments ncol, which asks for the

number of columns into which the information needs to be divided, and byrow, being false, stating

that the information will not be lined up row-wise, but column-wise. The result of the transformation

is stored in y. Next, respective column elements in y are allotted their gene names. This is achieved

using oncETC$Genesymbol. The row names of y, which depict the gene names, are thus assigned. We

also save the names of the genes in the factor.names variable. The dimension or the size of y in terms of

the number of rows and the number of columns is recorded using the function dim, and the

measurements are stored in dim.y. dim.y[1] contains the number of rows, which implicitly de�nes the

2nd

log2

qeios.com doi.org/10.32388/DPKY8G 18

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

number of genes (stored in no.genes). The whole list of genes can be shown on the command prompt

during the execution of the code via cat(rownames(y)) (see lines 35-40).

Next, the user is asked which gene they would like to investigate, and the response is stored in

geneName. Also, since the pipeline is about investigating combinations, we need to input the number

of combinations we are interested in. For this, a similar query is asked, and the value is stored in the

variable k. Since it is in character format, it needs to be converted into numerical format, and that is

done using the as.numeric function. The cat function helps in displaying messages to ease the user's

understanding of what is happening during the execution of the program. The combinations that can

be generated from k genes, out of the total number of genes no.genes, are computed using combn. This

returns a two-dimensional matrix to geneComb, whose number of columns represents the total

number of combinations, i.e., dim(geneComb[2]) (see lines 41-47).

Next, initialization of the variables needs to be done for processing the data. A series of list data

structures is initialized, and names are assigned to each new list as shown from lines 49 to 60. These

are the variables where the sensitivity indices will be stored. siNames contains the names of the indices

which the search engine uses, and the user can pick any one of them for computation. Line 63 prompts

qeios.com doi.org/10.32388/DPKY8G 19

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

the user to enter the name of the sensitivity index after looking at the displayed list in the command

on line 62. This name is stored in the variable varName. Next, we search for the pattern (stored in

varName) in some of the Sobol index names, and if the user has chosen a Sobol sensitivity index, then

ISSOBOL is assigned to a true value. This will be used and explained later on (see lines 49-66).

Regarding the generation of a distribution of numerical point measurements, it is important to specify

the number of samples. The user is usually given a choice, as shown in line 67 (here commented).

However, for exercise purposes, we set the value of the number of samples to be . Next, the

function for generating a distribution of size per gene measurement is used, and the output is

converted into a data frame using the function data.frame. This data frame is then stored in the

n = 10

9

qeios.com doi.org/10.32388/DPKY8G 20

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

variable disty or distribution of y. We again save the number of samples as an extra using the dim

function, in a variable no.Samples (see lines 67-71).

The apply function is one of the important functions in R language and is widely used for vector

programming. It is important here in the sense that we need to compute the indices for combinations

of factors. The arguments for apply take in a matrix, the indicator for a vector in a matrix over which a

function will be applied. Here we see that geneComb is the matrix containing the combinations of

genes; MARGIN with an indicator 2 means the columns of geneComb will be worked upon by the

function genSampleComb in the variable FUN. Thus, the function apply will apply the function

genSampleComb to the columns of the matrix geneComb. The function genSampleComb in line 12

takes in a column of the matrix geneComb and returns the k distributions that are stored in the matrix

disty. So, if k is 2, then the number of rows in geneComb will be 2. These 2 elements associated with a

particular column in geneComb will contain the gene numbers in a list of genes. During the application

of the apply function, yCol stores a column of geneComb and uses genSampleComb to generate

disty[,yCol], a matrix, where is the number of samples and is the number of elements in the

combination. The procedure is applied to all columns of geneComb for this (see line 72).

Next, the combinatorial distributions stored in distyN are processed to segregate the gene

combinations that contain the particular gene of interest de�ned by the user from a list of genes in

geneName. List variables are de�ned, and to �nd combinations containing geneName, a for loop is

executed where the iterator iterates through the total number of combinations. For each of the

combinations contained in names(distyN[i]), if geneName is found to exist, then the distribution

containing geneName and another gene in distyN[i] is stored in x.S, a list. For every such identi�cation,

n × k n k

Cn
k

qeios.com doi.org/10.32388/DPKY8G 21

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

a counter cnt is incremented. Finally, after all combinations have been found which contain geneName,

the �nal is assigned to the number of selected gene combinations no.slgeneComb (see lines 73-85).

Usually, a user will be asked about the total number of iterations for which the sensitivity indices will

be generated. This is done to get an average sensitivity index score, which is then used for the ranking

of the combinations. For demonstration purposes, we set the iteration number to itrNo . The for

loop iterates the iterator for iterations. Every iteration, the number of iterations is displayed at

the start of the for loop. The samples need to be shu�ed every time in order to have variation so that

the mean of the sensitivity indices can be generated. This can be done by using the function sample,

which takes a range of values from to no.Samples, and the size of the sample is set to no.Samples. The

shu�ed samples are stored in sample.index. idx.fh and idx.sh are used to divide the sample into two

halves in case one is using the Sobol method for generating sensitivity indices. Next, if the method

used is Sobol or a variant of the same, as indicated by , then shu�ing of the samples in

combination happens. This shu�ing is done in lines 99-100, for all combinations, i.e., from 1 to

no.slgeneComb. For non-Sobol-based methods, the shu�ing is simple, as shown in line 104.

cnt

= 50

itr 50

1

ISSOBOL

j

qeios.com doi.org/10.32388/DPKY8G 22

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Once the samples for the combinations have been stored in x.S, it is time to generate the sensitivity

indices. To generate a sensitivity index of a particular type, the user has to specify the name of the

sensitivity index. This has already been done earlier, and the name is stored in varName. What follows

is a series of condition tests using the if ... else to know which type of sensitivity method needs to be

taken into account and which necessary method to be initiated to generate the indices. One of the

approaches would be to use the grep function, which searches for a pattern in varName. If the pattern

exists, then the length of the �nding would not be zero. When this condition holds, then a particular

index associated with the pattern is initiated. So, if "TV" is the pattern and it is found to be in the

varName, then the f-divergence method[10] with a Total variation distance needs to be initiated.

The short explanation of the theoretical principles of density and variance-based methods has been

explained in[2]. Here we concentrate on the �ow of the code. In line 109, we de�ne and initialize a new

variable FdivTV. After some displays on the screen, lapply is used on x.S. lapply returns a list of the

|t − 1|

qeios.com doi.org/10.32388/DPKY8G 23

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

same length as x.S, each element of which is the result of applying the function sensiFdiv to the

corresponding element of x.S. Additionally, since the sensitivity method uses a model function, we use

extra arguments in the lapply function, like model = new.fun; nboot = 0; and conf = 0.95. This new.fun

has earlier been de�ned at the beginning of the code. So, lapply generates sensitivity indices for each

of the matrices containing a speci�c gene combination using the new.fun via sensiFdiv. The result is

stored in a variable h. Since we know that lapply will generate sensitivity indices for each of the

matrices in x.S, thus each combination has an associated sensitivity that is stored in h[[p]]Soriginal.

We bind this to the variable FdivTV (see lines 108-113).

Next, since the for loop in line 89 works for many iterations, we need to store the sensitivity index

computed in this iteration in a certain variable. This is done in sensiFdiv.TV[[itr]], the de�nition of

which was done in line 49. Also, if this is the �rst iteration, then we de�ne the �le name based on the

data that is being used and the iteration (see lines 115-117).

qeios.com doi.org/10.32388/DPKY8G 24

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

The next series of conditions deals with the di�erent methods in a similar manner as explained for

lines 108-117. Lines 118-130 talk about the f-divergence method[10] with a Kullback-Leibler

divergence .

Lines 131-144 talk about the f-divergence method[10] with a distance .

− (t)loge

χ2 − 1t2

qeios.com doi.org/10.32388/DPKY8G 25

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Lines 145-158 talk about the f-divergence method[10] with a Hellinger distance .(t) − 1(√)2

qeios.com doi.org/10.32388/DPKY8G 26

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

[11] recently proposed a new set of dependence measures using kernel methods. These have also been

implemented in[9]. The following contains variants of di�erent kernels involved in computing the

sensitivity indices. Lines 159-172 show similar execution code as above with changes in some of the

arguments in the lapply function. Here, the "rbf" or radial basis function is used within sensiHSIC.

qeios.com doi.org/10.32388/DPKY8G 27

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Lines 173-186 show similar execution code as above with changes in some of the arguments in the

lapply function. Here, the linear function is used.

qeios.com doi.org/10.32388/DPKY8G 28

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Lines 187-200 show similar execution code as above with changes in some of the arguments in the

lapply function. Here, the Laplace function is used.

qeios.com doi.org/10.32388/DPKY8G 29

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Finally, we come to the section where variants of the Sobol function have been encoded. It is here that

the use of divided samples X.Sfh and X.Ssh comes into play. We do not use the lapply function. Instead,

the[12] variants are encoded using name-speci�c functions (see below). Lines 201-214 show similar

execution code as above, but using soboljansen.

qeios.com doi.org/10.32388/DPKY8G 30

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Lines 215-228 show similar execution code as above, but using sobol2002.

Lines 229-242 show similar execution code as above, but using sobol2007.

qeios.com doi.org/10.32388/DPKY8G 31

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Lines 243-256 show similar execution code as above, but using sobolmartinez.

qeios.com doi.org/10.32388/DPKY8G 32

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Lines 257-272 show similar execution code as above, but using sobol.

qeios.com doi.org/10.32388/DPKY8G 33

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Once the indices have been generated, they need to be stored in a �le for further processing. The

following set of lines helps in saving the work, where the function save is used and variables

no.slgeneComb, x.S, and the respective sensitivity indices related to varName are stored in the �lename.

qeios.com doi.org/10.32388/DPKY8G 34

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

This ends the coding part of estimating sensitivity indices. Once the indices are ready, they can be used

in various ways for the evaluation of the combinations. Here, we use one of the ways to rank these

scores. However, note that there is no one de�nite rule to say that one has to rank in this way only. It

depends on the research to decide what method one is employing for ranking. We use the

 algorithm by[13]. Though complex in nature, it does a fair job of ranking the scores. The use

of a machine learning approach is also made available to see how the learning algorithms play a

SVM Rank

qeios.com doi.org/10.32388/DPKY8G 35

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

critical role in revealing unknown/untested combinatorial hypotheses. Other reasons for using these

will be stated later on.

5.3.2. Exercise

At this stage, it would be great to see how the two codes on extracting data and generating indices

work out. The readers are requested to generate the di�erent types of indices based on their choice and

see what comparisons can be made using the di�erent indices. Also, try the following exercises -

1. Generate HSIC rbf indices for order combinations for downregulated AXIN2. What does the

combination of AXIN2 with another factor that has the lowest score mean?

2. Generate FDiv KL indices for order combinations for downregulated MYC. What does the

combination of MYC with another factor that has the highest score mean?

3. Generate HSIC laplace indices for order combinations for downregulated NKD1. What does the

combination of NKD1 with another factor that has a score in the middle mean?

4. Generate FDiv TV indices for order combinations for downregulated CDAN1. What does the

combination of CDAN1 with another factor that has a score at the 100 position in ascending order

mean?

5. Generate Sobol indices for order combinations for downregulated MINA. How many kinds of

indices can you generate? Compare them for a particular combination!

6. Generate Sobol jansen indices for order combinations for downregulated MINA. How many

kinds of indices can you generate? Compare them for two di�erent combinations!

7. Generate Sobol martinez indices for order combinations for downregulated MINA. How many

kinds of indices can you generate? Compare them for 20 di�erent combinations!

8. Generate Sobol 2002 and 2007 indices for order combinations for downregulated MINA. How

many kinds of indices can you generate? Compare Sobol 2002 vs Sobol 2007.

9. Compare HSIC rbf, HSIC laplace, FDiv TV, FDiv KL, Sobol, Sobol jansen, Sobol martinez, Sobol

2002, and 2007 indices for downregulated LGR5-RNF43.

2nd

2nd

2nd

2nd

2nd

2nd

2nd

2nd

qeios.com doi.org/10.32388/DPKY8G 36

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

5.4. Ranking & Sorting

5.4.1. Description of SVM-Results-S-mean.R

This part of the code is the last in the pipeline that works on the generated sensitivity indices. The

code is in the �le SVMRank-Results-S-mean.R. It ranks the sensitivity indices using a machine

learning algorithm. We go through this part of the code and will then come back to the why’s and why

not’s. Lines 1-16 are basic data processing techniques and some formalities that need to be done

before we begin on the ranking part. So, by now, it should be expected that the reader is able to work

through the lines and understand what is happening if a following line is being executed, at least,

theoretically.

qeios.com doi.org/10.32388/DPKY8G 37

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

We stored the sensitivity indices in di�erent �les. These �les need to be accessed in order for the

procedure of ranking to be initiated. The following lines help retrieve the �le names, which can then

be loaded into the R workspace from where they can be accessed easily. To retrieve the �le name, the

function paste is employed. Readers are encouraged to �nd out how the paste function works. After

the �le name is constructed, the contents of the �le are loaded using the load function, followed by the

assignment of the stored data into a variable h. Lines 17-113 show the code for various kinds of indices

that a user can access after using paste and load.

qeios.com doi.org/10.32388/DPKY8G 38

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

qeios.com doi.org/10.32388/DPKY8G 39

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

qeios.com doi.org/10.32388/DPKY8G 40

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

qeios.com doi.org/10.32388/DPKY8G 41

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Once the indices that have to be worked on have been put in h, the indices need to be averaged. For

demonstration purposes, we average only 2 iterations and see how things turn out. However, we need

to understand how the data is stored in h. Figure 3 shows a screenshot of how an element of h looks.

h[[25]] is the element and is a matrix of size . is the number of elements in a

combination under consideration and are the total number of distinct order combinations.

We exploit this view of h to compute the means for all elements of a combination and over all distinct

25th 2 × 2743 2

2743 2nd

qeios.com doi.org/10.32388/DPKY8G 42

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

combinations. This is done in the for loops below in which p iterates over elements of the combination

and itr iterates over the total number of iterations. Thus h[[itr]][p,] between the two nested for loops

considers the p row of the itr matrix in h. Then, r binds all the h[[1]][p,], h[[2]][p,], ..., h[[itrNo]][p,],

using rbind. After exiting the inner loop, we use the apply function to the r matrix over the columns

(i.e., the distinct combinations) with a function mean. Thus we get a vector of mean values of the

sensitivity index for each distinct combination over all iterations, for the p element. This process is

again repeated for the next p value. Finally, the vector of means is stacked in SAmean. Lines 114-124

show this coding below.

Figure 3. Screenshot of data loaded using the load function and the assignment of the stored sensitivity

indices to the variable .

th th

th

h

qeios.com doi.org/10.32388/DPKY8G 43

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Figure 4. Screenshot of data after transformation in lines 125-136. This is an example of a 3rd

order combination.

Next, we format the data in the form that is suitable for the machine. The output of the next

block of code can be depicted in �gure 1. Note that it is a screenshot of how the data is saved for a

 order combination. I invite readers to decode the following block by themselves as an exercise.

SVM rank

3rd

qeios.com doi.org/10.32388/DPKY8G 44

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Next, the �le names for training, testing, model, and prediction are built using paste (see lines 137-

140). And �nally, data is concatenated to the training and the testing �les (see lines 141-142).

We now come to the main part of the code, which involves using the support vector ranking algorithm.

Since it is a compiled executable �le, it needs to be executed using a system command. However,

before that, the command that needs to be executed must be prepared in the right format. For this, the

paste command is used (see line 144). In the paste command, takes in the value in

the form of ; to terminate svm-light QP subproblem optimization if no progress is made

after this number of iterations; is the number of new variables entering the working set in each

svm-light iteration (default) : Set to prevent zig-zagging : We set to considering the

number of samples generated from the distribution; the training �le and the model �le. Finally, we

use the built-up command in the system function (see line 145).

svm_rank_learn C

−c20 −#100

−n9

n = q n < q n 9

qeios.com doi.org/10.32388/DPKY8G 45

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

A similar format is used to classify the test �le once the model has been prepared using the

. This is achieved using the . Note that when there is only one

instance of each training data, then after the model is built on it for ranking purposes, we use the same

training as the testing �le. This might sound strange at �rst view; however, the model should be able

to rank the scores based on the original data. It is not a hard and fast rule to rank through SVMs, but

here we show an example of the same. One can use a completely di�erent algorithm also for the same

set of training data. Ranking is done in the next lines 146-148.

Once the ranking is done, the data in the prediction �le is stored in a variable via the read.table

function and later stored in an appropriate �le. Again, the �le name needs to be constructed. See lines

149-156.

svm_rank_learn svm_rank_classify

qeios.com doi.org/10.32388/DPKY8G 46

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Figure 5. Screenshot of ranked combinations.

qeios.com doi.org/10.32388/DPKY8G 47

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

5.4.2. Exercise

Please download the and, as instructed on the website of[13], compile the same to get

executable �les.

5.4.3. Sorting

Finally, we sort the predicted results. These are expressed in the last block from lines 157-172.

dataScore, which contained the predictions, is sorted using the sort function, and the indices of the

sorted values are also returned (see line 159). Next, using the for loop, we arrange the names of the

SVM rank

qeios.com doi.org/10.32388/DPKY8G 48

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

combinations in a sorted order using the sorted index from line 159. These sorted combinations are

appended to sortedGenecomb (see lines 161-167). Finally, we store these results according to the type of

data we are dealing with.

The sorted combinations look like those in �gure 2. This �nishes the general framework of the

pipeline.

6. Code surgery via browser scalpel

R provides a browser function which can help one to see the contents of the variables and intermediate

outputs once the execution of the code has begun. The function is like a scalpel which helps dissect the

entire code as the execution proceeds one step at a time. Various functionalities exist to use the

browser function. These can be seen by typing ?browser at the command prompt. Brie�y - c exits the

browser and continues execution at the next statement. f �nishes execution of the current loop or

function and helps print this list of commands. n evaluates the next statement, stepping over

∙

∙

∙

qeios.com doi.org/10.32388/DPKY8G 49

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

function calls. For byte-compiled functions interrupted by browser calls, n is equivalent to c. s

evaluates the next statement, stepping into function calls. Again, byte-compiled functions make s

equivalent to c. where prints a stack trace of all active function calls. r invokes a "resume" restart if

one is available; interpreted as an R expression otherwise. Typically, "resume" restarts are established

for continuing from user interrupts. Q exits the browser and the current evaluation and returns to

the top-level prompt.

As a small example, using the browser function on the extractETCdata function is depicted in the

snapshot in �gure 6. Especially note the output of the browser function in the white patch in the above

�gure. What we �nd is that at each press of the "return" or "enter" button on the computer, a

following line appears (an instance shown here is where the execution of the browser had reached in

the code in extractETCdata.R)-

What is happening is that we inserted a browser function in extractETCdata.R just after extractETCdata

 function(data.type){. After compiling extractETCdata.R using the source function and executing

extractETCdata(1) at the R prompt , the browser function comes into e�ect. This is shown with an

additional Browser[] . Evidence of this is provided by the line stating the following - "Called from:

extractETCdata(1)". Next, on pressing "return", the execution moves to the next command that it

needs to execute. This is denoted by the debug function, and the line reads as "debug at

extractETCdata.R#3:", meaning that the execution is waiting at command 3 in the code. Along with it,

the whole command that needs to be executed in one go is also presented. Here it is the if(data.type ==

1) {...} else {...} command. Since the data.type == 1 is true, the command �lename

 ../data/onc2015280x2-A.txt" is executed. This is shown in the next line that the browser has to

execute when the above condition holds true. See �gure 6.

∙

∙ ∙

∙

< −

>

>

< −

qeios.com doi.org/10.32388/DPKY8G 50

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

6.1. Exercise

Please use the browser function to inspect the values in the variables and see how the code executes

for extractETCdata.R and manuscript-2-2.R.

Results from the search engine can be found in the recently unpublished preprint in[14].

7. MYC-HOXB8-EZH2

EZH2 encodes enhancer of zeste homolog 2 and is involved in transcriptional repression via epigenetic

modi�cations. It has been found to be either mutated or over-expressed in many forms of cancer.

Overexpression of EZH2 leads to the silencing of various tumor suppressor genes, thus implicating it

in potential roles in tumorigenesis[15]. EZH2 is a subunit of the highly conserved Polycomb repressive

complex 2 (PRC2), which executes the methylation of the histone H3 at lysine-27[16]. Thus, targeting

EZH2 has become a major research domain for cancer therapeutics[17]. In colon cancer, it has been

shown that depletion of EZH2 has led to the blocking of proliferation of the cancer[18]. This indicates

the fact that tumor suppressor genes get activated and lead to the subsequent blocking of the cancer.

Also, EZH2 is recruited by PAF to bind with -catenin transcriptional complex for further Wnt target

gene activation, independent of the EZH2 epigenetic modi�cation activities[19].

Consistent with this, ETC-15922159 treatment led to downregulation of EZH2 in colorectal cancer

samples[3]. This would have activated a lot of tumor suppressor genes that led to subsequent

suppression of regrowth in treated cancer samples. More importantly, MYC directly upregulates core

components of PRC2, EZH2 being one of them, in embryonic stem cells[20].[20] This shows that

silencing of c-MYC and N-MYC[21] led to a reduction in the expression of PRC2 and thus EZH2.

Furthermore, in colorectal cancer cases,[22], it was shown that knockdown of MYC led to a decrease in

EZH2 levels. Similar �ndings have been observed in[23],[24] &[25]. Our in silico �ndings show

consistent results with respect to this downregulation after assigning a low rank of 54 along with

MYC-HOXB8.

More speci�cally, our in silico pipeline is able to approximate the value of the order combination of

MYC-HOXB8-EZH2 by assigning a rank that is consistent with wet lab �ndings of dual combinatorial

behaviour of MYC-EZH2 and MYC-HOXB8. However, since the mechanism of combination of MYC-

HOXB8 is not known hitherto, it would be interesting to con�rm the behaviour of MYC-HOXB8-EZH2

β

3rd

qeios.com doi.org/10.32388/DPKY8G 51

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

at order to reveal a portion of the Wnt pathway’s modus operandi in colorectal cancer. Further wet

lab tests on these in silico �ndings will con�rm the e�cacy of the search engine.

Availability and requirements

Project name - R Code for Machine learning search engine: Ranks/reveals combination of

genes/proteins using ETC-1922159 treated CRC static data

Project home page - https://zenodo.org/records/14636112

Operating system(s) - Platform independent

Programming language - R statistical language[26]

Other requirements - (1) from

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html and (2) Sensitivity package in R

from https://cran.r-project.org/web/packages/sensitivity/index.html

License - Creative Commons Attribution 4.0 International

Statements and Declarations

Funding - No institute/university/NGO/company (private/public)/government organization was

involved. The project was carried out on personal funds.

Con�ict of interest/Competing interests - There are no con�icts/competing interests to declare.

Ethics approval and consent to participate - Not applicable.

Consent for publication - Not applicable.

Data availability - Data used in this research work has been released online publicly, in a

publication[3]. This data was made available in the form of a supplementary table. Related to this

data, on the NCBI Gene Expression Omnibus (GEO) Series GSE69687

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69687, click on the Download RNA-seq

counts button; it opens a page that contains the Human gene annotation table (at the bottom of

the page). The �le Human.GRCh38.p13.annot.tsv.gz contains the range of genes with

EnsemblGeneID, all starting with ENSG. This ENSG identi�er is used to index the recording of the

regulated genes in the data made available in the supplementary table in[3]. The data itself is

available as supplementary material in the journal; however, the indexing of the genes used in the

supplementary material is available on the NCBI NIH database.

3rd

SVM Rank

qeios.com doi.org/10.32388/DPKY8G 52

https://zenodo.org/records/14636112
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://cran.r-project.org/web/packages/sensitivity/index.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69687
https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

Code availability - The code of the search engine used to generate the rankings has been made

available on CERN-based Zenodo at https://zenodo.org/records/14636112.

Author contribution - (1) Concept, design, in silico implementation. (2) Analysis and interpretation

of results. (3) Manuscript writing/revision/approval.

Acknowledgement - Special thanks to Mrs. Rita Sinha and the late Mr. Prabhat Sinha for supporting

the author �nancially, without which this work could not have been made possible.

References

1. a, b, c, dSinha S. (2024). "Machine learning ranking of plausible (un)explored synergistic gene combinat

ions using sensitivity indices of time series measurements of wnt signaling pathway." Integrative Biolog

y. Available from: https://doi.org/10.1093/intbio/zyae020.

2. a, bSinha S. (2017). "Hilbert-schmidt and sobol sensitivity indices for static and time series wnt signalin

g measurements in colorectal cancer-part a." BMC systems biology. 11(1):120.

3. a, b, c, d, e, f, g, hMadan B, Ke Z, Harmston N, Ho SY, Frois AO, et al. (2016). "Wnt addiction of genetically

de�ned cancers reversed by PORCN inhibition." Oncogene. 35(17):2197.

4. ^Tusher VG, Tibshirani R, Chu G. (2001). "Signi�cance analysis of microarrays applied to the ionizing ra

diation response." Proceedings of the National Academy of Sciences. 98(9):5116–5121.

5. ^Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS. (2005). "Preferred analysis methods for af

fymetrix GeneChips revealed by a wholly de�ned control dataset." Genome biology. 6(2):R16.

6. ^Witten D, Tibshirani R. (2007). "A comparison of fold-change and the t-statistic for microarray data a

nalysis." Analysis. 1776:58–85.

7. ^Sinha S. (2017). "Prioritizing 2nd order interactions via support vector ranking using sensitivity indices

on time series wnt measurements." bioRxiv. :060228.

8. ^Sinha S. (2017). "Sensitivity analysis based ranking reveals unknown biological hypotheses for down r

egulated genes in time bu�er during administration of PORCN-WNT inhibitor ETC-1922159 in CRC." bi

oRxiv. :180927.

9. a, bPujol G, Iooss B, Janon A, Boumhaout K, Da Veiga S, et al. (2016). "Sensitivity: Global sensitivity anal

ysis of model outputs." R package version. 1(1).

10. a, b, c, dCsiszár I, et al. (1967). "Information-type measures of di�erence of probability distributions and

indirect observations." Studia Sci Math Hungar. 2:299–318.

qeios.com doi.org/10.32388/DPKY8G 53

https://zenodo.org/records/14636112
https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

11. ^Da Veiga S. (2015). "Global sensitivity analysis with dependence measures." Journal of Statistical Com

putation and Simulation. 85(7):1283–1305.

12. ^Sobol’ IM. (1990). "On sensitivity estimation for nonlinear mathematical models." Matematicheskoe

Modelirovanie. 2(1):112–118.

13. a, bJoachims T. (2006). "Training linear SVMs in linear time." In: Proceedings of the 12th ACM SIGKDD i

nternational conference on knowledge discovery and data mining.: ACM pp. 217–226.

14. ^Sinha S. (2023). "A glimpse of ocean of abundant discoveries: Two-way cross family analysis of in-sili

co ranked 2nd order unexplored, ETC-1922159 a�ected, synergistic combinations in CRC cells." Preprint

s. doi:10.20944/preprints202302.0123.v1.

15. ^Simon JA, Lange CA. (2008). "Roles of the EZH2 histone methyltransferase in cancer epigenetics." Mut

ation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 647(1):21–29.

16. ^O’Meara MM, Simon JA. (2012). "Inner workings and regulatory inputs that control polycomb repressi

ve complex 2." Chromosoma. 121(3):221–234.

17. ^Kim KH, Roberts CWM. (2016). "Targeting EZH2 in cancer." Nature medicine. 22(2):128–134.

18. ^Fussbroich B, Wagener N, Macher-Goeppinger S, Benner A, Fälth M, et al. (2011). "EZH2 depletion bloc

ks the proliferation of colon cancer cells." PloS one. 6(7):e21651.

19. ^Jung HY, Jun S, Lee M, Kim HC, Wang X, et al. (2013). "PAF and EZH2 induce wnt/β-catenin signaling

hyperactivation." Molecular cell. 52(2):193–205.

20. a, bNeri F, Zippo A, Krepelova A, Cherubini A, Rocchigiani M, et al. (2012). "Myc regulates the transcripti

on of the PRC2 gene to control the expression of developmental genes in embryonic stem cells." Molecul

ar and cellular biology. 32(4):840–851.

21. ^Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, et al. (2016). "N-myc induces an EZH2-mediat

ed transcriptional program driving neuroendocrine prostate cancer." Cancer Cell. 30(4):563–577.

22. ^Satoh K, Yachida S, Sugimoto M, Oshima M, Nakagawa T, et al. (2017). "Global metabolic reprogramm

ing of colorectal cancer occurs at adenoma stage and is induced by MYC." Proceedings of the National A

cademy of Sciences. 114(37):E7697–E7706.

23. ^Yamaguchi H, Hung MC. (2014). "Regulation and role of EZH2 in cancer." Cancer research and treatm

ent: o�cial journal of Korean Cancer Association. 46(3):209.

24. ^Chen JF, Luo X, Xiang LS, Li HT, Zha L, et al. (2016). "EZH2 promotes colorectal cancer stem-like cell e

xpansion by activating p21cip1-wnt/β-catenin signaling." Oncotarget. 7(27):41540.

qeios.com doi.org/10.32388/DPKY8G 54

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

25. ^Fluge Ø, Gravdal K, Carlsen E, Vonen B, Kjellevold K, et al. (2009). "Expression of EZH2 and ki-67 in co

lorectal cancer and associations with treatment response and prognosis." British journal of cancer. 101

(8):1282–1289.

26. ^R Development Core Team. (2008). "R: A language and environment for statistical computing." Vienn

a, Austria: R Foundation for Statistical Computing. Available from: http://www.R-project.org.

Declarations

Funding: Special thanks to Mrs. Rita Sinha and late Mr. Prabhat Sinha for supporting the author

�nancially, without which this work could not have been made possible.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/DPKY8G 55

https://www.qeios.com/
https://doi.org/10.32388/DPKY8G

