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Effectively designing molecular geometries is essential to advancing pharmaceutical innovations, a domain, which

has experienced great attention through the success of generative models and, in particular, diffusion models.

However, current molecular diffusion models are tailored towards a specific downstream task and lack adaptability.

We introduce UniGuide, a framework for controlled geometric guidance of unconditional diffusion models that

allows flexible conditioning during inference without the requirement of extra training or networks. We show how

applications such as structure-based, fragment-based, and ligand-based drug design are formulated in the

UniGuide framework and demonstrate on-par or superior performance compared to specialised models. Offering a

more versatile approach, UniGuide has the potential to streamline the development of molecular generative models,

allowing them to be readily used in diverse application scenarios.

1. Introduction

Diffusion models have emerged as an important class of generative models in various domains, including computer

vision[1], signal processing[2], computational chemistry, and drug discovery[3][4][5][6][7][8]. By gradually adding noise

to data samples and learning the reverse process of removing noise, diffusion models effectively transform noisy

samples into structured data[9][10]. In the context of drug discovery, it is essential to effectively address downstream

tasks, which often pose specific geometric conditions. Examples of this include (i) Structure-based drug design

(SBDD) that aims to create small ligands that fit given receptor binding sites[11], (ii) Fragment-based drug design

(FBDD) that designs molecules by elaborating known scaffolds[12][13], or (iii) Ligand-based drug design (LBDD) which

generates molecules that fit a certain shape[14]. Recent works address these tasks by either incorporating specialised

models or focusing on conditions that directly resemble molecular structures. In both cases, this narrow focus restricts

their adaptability to new or slightly altered settings.

We address the challenge of adaptability by introducing UniGuide, a method that unifies guidance for geometry-

conditioned molecular generation, see Fig. 1. The key element for achieving this unification is the condition map, which

transforms complex geometric conditions to match the diffusion model’s configuration space, thereby enabling self-

guidance without the need for external models. Like other guidance-based approaches, UniGuide does not constrain

the generality of the underlying model. Moreover, our method is the most versatile, extending beyond guiding
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molecular structures to leveraging complex geometric conditions such as volumes, surfaces, and densities, thereby

enabling the unified tackling of diverse drug discovery tasks. For complex conditions specifically, previous works

primarily rely on conditional diffusion models for effective condition encoding[12][13][14]. With our method, we are able

to tackle the same tasks, while overcoming major drawbacks: UniGuide  eliminates the need for additional training

and, more importantly, avoids constraining the model to specific tasks.

Figure 1. UniGuide handles diverse conditioning modalities for guidance, including: (i) a target receptor for SBDD, (ii)

additional molecular fragments for FBDD, or (iii) a predefined 3D shape for LBDD. It combines a source condition   and

the unconditional model   within its condition map to enable self-guidance. The flexible formulation of our approach

can be generalised to new geometric tasks, for example, conditioning on atomic densities.

We demonstrate the wide applicability of UniGuide by tackling a variety of geometry-constrained drug discovery tasks.

With performance either on par with or superior to tailored models, we conclude that UniGuide  offers advantages

beyond its unification. Firstly, while the novelty of conditional models often stems from the condition incorporation,

our method redirects focus to advancing unconditional generation, which directly benefits multiple applications.

Furthermore, this separation of model training and conditioning allows us to tackle tasks with minimal data, a

common scenario in the biological domain.

In summary, our contributions are as follows:

We present UniGuide: A unified guidance method for generating geometry-conditoned molecular structures,

requiring neither additional training nor external networks used to guide the generation.

We demonstrate UniGuide’s wide applicability by tackling various conditioning scenarios in structure-based,

fragment-based, and ligand-based drug design.

We show UniGuide’s favourable performance over task-specific baselines, highlighting the practical relevance of

our approach.

s ∈ S

( , t)ϵθ zt
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2. Related work

Diffusion models and controllable generation

Diffusion models[9][10]  are generative models achieving state-of-the-art performance across various domains,

including the generation of images[1][9], text[15], or point clouds[16]. Conditional diffusion models[17][18][19][20][21] are

based on the same principle but incorporate a particular condition in their training, allowing for the controlled

generation. Alternatively, classifier guidance[22][23] relies on external models for controllable generation. Prior works

in this context primarily focused on global properties[22][24], lacking the capacity to condition on the geometric

conditions central to our work. For instance,[24]  demonstrate control over molecule generation based on desired

quantum properties.

De novo molecule generation

Research on de novo molecule generation focused extensively on generating molecules using their chemical graph

representations[7][25][26][27][28][29][30][31][32][33][34]. However, these methods are limited in modelling the molecules’

conformation information and are, therefore, not ideally suited for several drug-discovery settings, such as target-

aware drug design. Recently, attention has shifted towards generating molecules in 3D space, utilising variational

autoencoders[35], autoregressive models[36][37][38], flow-based models[39][40], and diffusion-based approaches[20]

[41][42][43][44][45][46][47].

Conditional generation of molecules

Downstream applications of molecular generation can be categorised by their condition modality. In the case of

SBDD[38][48][49],[11]  and[50], for example, introduce models that simultaneously operate on protein pockets and

ligands. In the conditional case, the pocket context is fixed throughout the generation. Moreover, FBDD imposes

(multiple) scaffolds as a constraint[11][12][51][52][53]. [13] expand given scaffolds by generating the molecule around the

fixed scaffolds. In a related task of FBDD, linker design with pose estimation, as discussed in[54], further generate the

rotation of the given scaffolds. SBDD and FBDD rely on the availability of high-quality data of protein pockets, which is

often scarce. For this reason, LBDD aims to generate molecules that match the same 3D volume of reference ligands

that are known to bind to the target of interest[55][56]. [14] specifically train a shape encoder to capture the molecular

shape of a reference ligand and use the resulting embedding to train a conditional diffusion model.

3. Controlling the generation of diffusion models

Diffusion Models[9][57]  learn a Markov Chain that involves a forward process to perturb data from a distribution 

  and learn to reverse the process to generate new samples from a tractable prior, for example, a normal

distribution. Given a data point sampled from the true underlying distribution,  , the forward process 

 gradually adds Gaussian noise:

q(z)

∼ q(z)zdata

q( | )zt zt−1
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where    defines a variance schedule. Defining the forward process this way, one can readily sample

from  :

with   and  . Since the time-reverse process   depends on  , which is not available

at generation time, it is approximated by modelling  :

where the mean   is parameterised by a noise-predicting neural network   in the form of:

The model   is trained to optimise the variational lower bound through the simplified training objective:

Self-guiding diffusion models

Using Bayes’ rule, the conditional probability   given a condition   can be expressed as

This allows us to decompose the score function as follows:

where the second term is used for guiding the unconditional generation, with   controlling the guidance strength.

Using that    [22], we can rewrite the score function from Eq. (7) and identify the

modified noise predictor  :

The modified mean function    then follows from the modified version of Eq. (4), enabling us to sample from 

:

where   balances the conditional update. Eq. (9) requires sampling from   to which we do

not have access. Assuming the condition    lies in the same space as  , we can follow  [58]  and approximate 

 as a multivariate Gaussian distribution:

q( | ) = N ( | , I),zt zt−1 zt 1 − βt
− −−−−

√ zt−1 βt (1)

{ ∈ (0, 1)βt }Tt=1

q( | )zt zdata

= + ϵ, ϵ ∼ N (0, I),zt ᾱ̄̄t
−−

√ zdata 1 − ᾱ̄̄t
− −−−−

√ (2)

= 1 −αt βt =ᾱ̄̄t ∏t
i=1 αi q( | )zt−1 zt zdata

( | )pθ zt−1 zt

( | ) = N ( | ( , t), I),pθ zt−1 zt zt−1 μθ zt σt (3)

μθ ϵθ

( , t) = ( − ( , t)) .μθ zt
1

αt
−−√

zt
βt

1 − ᾱ̄̄t
− −−−−√

ϵθ zt (4)

ϵθ

= ∥ϵ − ( , t) .Ltrain
1

2
ϵθ zt ∥2

2 (5)

( |c)pθ zt c

( |c) ∝ ( ) (c| ).pθ zt pθ zt pθ zt (6)

log ( |c) = log ( ) + S log (c| ),∇zt pθ zt ∇zt pθ zt ∇zt pθ zt (7)

S > 0

log ( ) = −(1 − ( , t)∇zt pθ zt ᾱ̄̄t)
− 1

2 ϵθ zt

ϵ̂θ

log ( |c) = −∇zt pθ zt
1

1 − ᾱ̄̄t
− −−−−√

⎡

⎣

⎢
⎢ ( , t) − S log (c| )ϵθ zt 1 − ᾱ̄̄t

− −−−−
√ ∇zt pθ zt

  
=: ( ,t,c)ϵ̂ θ zt

⎤

⎦

⎥
⎥ (8)

μ̂θ

( | , c) ∼ N ( ( , t, c), I)pθ zt−1 zt μ̂θ zt σt

( , t, c) = ( − ( , t, c)) = ( , t) + λ(t) log (c| ),μ̂θ zt
1

αt
−−√

zt
βt

1 − ᾱ̄̄t
− −−−−√

ϵ̂θ zt μθ zt ∇zt pθ zt (9)

λ(t) = ( Sαt)
− 1

2 βt log (c| )pθ zt

c zt

log (c| )pθ zt

(c| ) = N (c| ( , t), I),pθ zt fθ zt (10)
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where   approximates the clean data point, enabling to estimate the condition in data space. Using Eq. (2), we

can readily predict the clean data point given the noisy sample   via

With this, the guiding term becomes a direct differentiation of the squared error with respect to the noisy sample  :

By directly leveraging the prediction of the unconditional model  , Eq. (12) establishes our self-guiding conditioning,

thereby defining the self-guided noise predictor  :

4. UniGuide

To enable the application of unconditional molecular diffusion models    to geometric downstream tasks in drug

discovery, we aim to develop a unified guidance framework, UniGuide, see Fig. 1. Importantly, we seek to enable

guidance from arbitrary geometric conditions  , where   denotes a general space of source conditions. However,

the source conditions    cannot be directly used for the loss computation in Eq. (12) when they do not match the

configuration space  .

To address this challenge, we introduce condition maps  , which bridge the gap between arbitrary source conditions 

 and target conditions   suitable for guidance. In Sec. 4.1, we start with its general formulation and continue to derive

a condition map    for the special case where  . This will be useful when discussing the application of

UniGuide to various drug discovery tasks in Sec. 4.2. We also demonstrate how to derive a task-specific condition map 

 for ligand-based drug design.

Notation

In 3D space, the configuration of molecules, including proteins, can be represented by a set of tuples 

, where    and    refer to coordinates and features of a node  ,

respectively. The space of configurations is denoted by    and includes configurations of varying size  . We

distinguish between different configuration entities via superscripts, i.e. refer to molecules    and proteins 

  through    and  , respectively. The collection of coordinates    defines the

conformation of a molecule   or protein  . We represent arbitrary geometric conditions with the variable  , and

conditions that can be used for guidance with the variables  .

4.1. Unified self-guidance from geometric conditions 

The concept of a condition map    is essential to our method, enabling guidance from conditions    in a unified

fashion, where    represents a space of general geometric objects such as structures, densities, or surfaces. These

( , t)fθ zt

zt

( , t)fθ zt = =: .
− ( , t)zt 1 − ᾱ̄̄t

− −−−−√ ϵθ zt

ᾱ̄̄t
−−√

ẑ0 (11)

zt

log (c| ) = − ∥ ( , t) − c .∇zt pθ zt
1

2
∇zt fθ zt ∥2

2 (12)

ϵθ

ϵ̂θ

( , t, c) = ( , t) + ∥ − c .ϵ̂θ zt ϵθ zt
S1 − ᾱ̄̄t

− −−−−√

2
∇zt ẑ0 ∥2

2 (13)

ϵθ
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geometric objects do not necessarily match the configuration space  , i.e.  , preventing the computation of the

guiding score function from Eq. (12). We overcome this challenge by defining   as a transformation that maps   to a

suitable target condition  , which is then utilised for self-guidance.

In the most general case,   takes the form of

where the source condition    together with a configuration    are mapped to a target condition  . Including the

condition map   in the guidance, we obtain our guidance signal:

where    is the estimate of    given the unconditional model    obtained according to Eq. (11) and 

  is the target condition produced by the condition map. In this formulation,   can also be understood as

guidance target of the unconditional model.

It is important to highlight that Eq. (15) should not destroy the underlying properties of the unconditional generative

process. In particular, if the unconditional model    is equivariant to a set of transformations  , e.g. rotations and

translations, as is common in the molecular domain, we want to retain equivariance also in the guidance signal.

Hence, the self-guided model   should satisfy

for all transformations   to which   is equivariant.

Theorem 4.1. Consider a function  . If    is invariant to rigid transformations    in the first argument

and equivariant in the second argument, then the gradient    of the vector    is equivariant to

transformations of  .

Proof. We prove Theorem 4.1 in App. B. 

Using Theorem 4.1, we can guarantee equivariant guidance signals if the condition maps    are invariant and

equivariant under rigid transformations concerning the source condition   and configuration  , respectively.

Guidance in the special case of 

In the case where the source condition   directly defines subset   of   nodes of the configuration, i.e.  , we

can fully specify the condition map. This is feasible because the condition map no longer needs to bridge different

spaces; it only needs to ensure equivariance, as the loss computation between    and the configuration is already

possible. To distinguish this special case from the general setting, we denote   and refer to the defined

subset within the configuration   by  .

In order to satisfy the requirements on    as stated by Theorem 4.1, we align    with    by using the Kabsch

algorithm[59][60]. Denoting the resulting transformation with  , we get an  -equivariant condition map:

Z S ≠ Z

C s

c ∈ Z

C

C : S × Z → Z

s × z ↦ c ,
(14)

s z c ∈ Z

C

log (c| ) = − ∥ − C(s, ) = − L( , s) ,∇zt pθ zt
1

2
∇zt ẑ0 ẑ0 ∥2

2 ∇zt ẑ0 (15)

= ( , t)ẑ0 fθ zt z0 ( , t)ϵθ zt

c = C(s, )ẑ0 c

ϵθ G

ϵ̂θ

(G( ), t, c) = G( ( , t, c)),ϵ̂θ zt ϵ̂θ zt (16)

G ϵθ

C : S × Z → Z C(s, z) G

∥v∇z ∥2
2 v = z − C(s, z)

z

□
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ẑ0

qeios.com doi.org/10.32388/DQ3Y3T 6

https://www.qeios.com/
https://doi.org/10.32388/DQ3Y3T


Taken together, we can compute the guidance signal based on the following loss  :

We emphasise that although the loss    is computed on the subset  , the gradient, as presented in Eq. (15), is

still computed with respect the full configuration  .

In summary, our method requires only an unconditionally trained model    and a suitable condition map  ,

eliminating the need for additional networks or training. Together, this facilitates unified self-guidance from

arbitrary geometric sources. Importantly, the separation of model training and conditioning enables us to tackle tasks

even with minimal data, which is crucial in practical scenarios. In the following section, we discuss the wide

applicability of UniGuide by illustrating its application to multiple drug discovery tasks.

4.2. UniGuide for drug discovery

Having introduced both the guidance framework and the condition map, we will continue to discuss how to tackle a set

of drug discovery tasks within the UniGuide  framework. We start with its application to ligand-based drug design

(LBDD), which aims to generate a ligand that satisfies a predefined molecular shape.

Ligand-based drug design

LBDD aims to generate novel ligands with a similar 3D shape as a reference ligand  . In this setting, one operates

on the molecule level only since the protein information is assumed to be unknown. However, to still generate active

ligands that bind to a protein pocket, one leverages the 3D shape information of a reference molecule. Specifically, the

goal is to modify the generative process    to generate a ligand    with a similar 3D shape but different molecular

structure than  . With Sec. 4.1 introducing all required concepts, we can readily formulate a surface condition map 

 suitable to tackle the task of LBDD, see Fig. 2:

To represent  ’s 3D shape, we identify our source condition   with a set of   points   sampled uniformly from the

reference ligand’s surface  ,  . As no features are guided, we formulate    with respect to the

conformation space  :

where   denotes the conformation of the clean data point estimation   as computed by Eq. (11). To satisfy Theorem

4.1,     first aligns    with    by a rotation    resulting from the ICP algorithm[61]. For every atom

coordinate  ,   subsequently computes the mean   over  ’s   closest surface points:

Finally, the individual components   of the target condition compute as follows:

: ×CZ R
m×(3+d)

R
m×(3+d)

×z~ ẑ
A
0

→ R
m×(3+d)

↦ .T
ẑ

A
0
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(17)
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ẑ
A
0

z~∥2
2 (18)

L( , )ẑ
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Figure 2. Surface condition map  :

For each atom coordinate  , the

closest surface points   are

computed. The target condition   is

the projection along the mean of

neighbours   to the inside of the

volume by a margin  , where 

.

where    denotes the distance to the surface,  , and    the

required distance to the surface. Note that the target condition   represents a

valid conformation inside the surface  , and that    effectively bridges

spaces from    to  . Consequently, when using  , the guidance signal is

derived from 15 with the loss function  . The full algorithm for

guidance using   is presented in App. D.1.

Structure-based drug design

The goal of SBDD is to design a ligand that binds to a target protein pocket  .

In this setting, one operates on both the molecule and protein level.

Technically, we are interested in generating a ligand    conditioned on the

protein configuration  . With the unconditional diffusion model  , 

, approximating the joint distribution of ligand-protein pairs 

, one can readily see that the source condition directly

corresponds to the configuration of the protein pocket. Hence, we can use 

 from Sec. 4.1 and identify   with  . The guidance signal then follows from

the loss   with   as defined in Eq. (18). We describe the

sampling algorithm for the SBDD task in App. E.1.

Fragment-based drug design

FBDD aims to design a ligand by optimising a molecule around fragments   that bind weakly to a receptor. Similarly

to SBDD, one operates on both the molecule and protein level. Technically, we are interested in generating a ligand 

 conditioned on both the protein and the fragment configuration,   and  , respectively. Considering the same

kind of unconditional model    as in SBDD, we can use    from Sec. 4.1. Only now, we identify    with both 

 and   and write   with  . Using Eq. (18), the guidance signal directly follows from   with 

. The sampling algorithm is similar to the one described in App. E.1.

Several tasks exist within the FBDD setting[62][63][64][65]. Examples are scaffold hopping[64], where the core structure

of   has to be generated, but functional groups that interact with the receptor are fixed, or linker design[65], where

the connection between separated fragments has to be optimised through the generative process, see Fig. 5. Note that

these tasks differ primarily in their application and can be treated identically from a technical perspective within

UniGuide. In addition, one can also consider variations where the protein information    is discarded. This usually

aligns with switching to an unconditional model    that solely models the distribution over molecules. We present

results for this configuration in Sec. 5.3.
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Furthermore, we would like to highlight that it is possible to combine guidance strategies within UniGuide. For

example, one could incorporate a version of the surface condition map    for FBDD to provide an additional

geometric guidance signal for the atoms not included in  .

Limitations

Drug discovery also involves tasks beyond purely geometric conditions, encompassing global graph properties[24].

These are excluded from the UniGuide  framework. Additionally, UniGuide  requires the unconditional model to be

trained on a matching configuration space. We discuss the broader impact of our work in App. A.

5. Results

In this section, we compare UniGuide to state-of-the-art models across various drug discovery tasks. To highlight the

wide range of tasks to which unconditional models can be adapted through UniGuide, we conduct experiments on

ligand-based (Sec. 5.1), structure-based (Sec. 5.2) and fragment-based (Sec. 5.3) drug design. We demonstrate that

UniGuide performs competitively or even surpasses specialised baseline models, underscoring its practical relevance

and transferability to diverse drug discovery scenarios.

5.1. Ligand-based drug design

Figure 3. Examples of the two shape-conditioned ligands generated by

UniGuide. The goal is to have low molecular graph similarity and high shape

similarity.

C∂V

F
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Dataset

Following[14], we employ the MOSES dataset for the ligand-based drug design task[66]. We evaluate on a test set

consisting of    reference ligands, from which the 3D shape conditions are extracted. For every shape condition 

,   samples are generated. We refer to D.1 for further details on the evaluation setup.

Baselines

For the LBDD task, we compare UniGuide to ShapeMol, a conditional diffusion model that is trained by conditioning on

learned latent embeddings of the molecular surfaces[14]. [14] also propose a correction technique that adjusts the atom

positions based on their distance to the reference ligand’s nodes, which is refered to as ShapeMol+g. Additionally, we

include as baselines Virtual Screening (VS)[14], a shape-based virtual screening tool, and SQUID[55], a variational

autoencoder that decodes molecules by sequentially attaching fragments with fixed bond lengths and angles. For this

task, we evaluate UniGuide  equipped with the surface condition map    from (21) in conjunction with two

unconditionally trained diffusion models, ShapeMol [U] and EDM[14][20] as well as the conditional model ShapeMol[14].

The “only shape” column in Table 1 indicates whether a method uses solely the reference ligand’s shape or also

incorporates its atom positions.

  Method onlyshape
( ) ( ) ( ) ( )

Ratio 

( )

Diversity 

( )

Non-diffusion

based

VS∗ [14] ✗ 0.729   0.04 0.807   0.04 0.226   0.04 0.241   0.09 3.226 0.759   0.02

SQUID∗ [55]

( )
✗ 0.717   0.08 0.904   0.07 0.349   0.09 0.549   0.24 2.054 0.687   0.07

SQUID∗ [55]

( )
✗ 0.670   0.07 0.842   0.06 0.235   0.05 0.271   0.09 2.851 0.744   0.05

Diffusion-based

ShapeMol [14]
✓ 0.677   0.04 0.797   0.04 0.239   0.05 0.240   0.07 2.834 0.714   0.05

ShapeMol+g [14] ✗ 0.744   0.03 0.849   0.03 0.242   0.04 0.245   0.05 3.074 0.708   0.05

UniGuide

(ShapeMol [U])
✓ 0.726   0.04 0.827   0.05 0.248   0.05 0.239   0.05 2.927 0.651   0.05

UniGuide

(ShapeMol)
✓ 0.760   0.05 0.857   0.06 0.240   0.04 0.237  0.06 3.167 0.705   0.04

UniGuide

(EDM)
✓ 0.749   0.04 0.860   0.04 0.212   0.04 0.206   0.06 3.536 0.736   0.04

Table 1. Ligand-Based Drug Design. Results taken from[14] are indicated with  . We highlight the best conditioning

approach for the ShapeMol backbone in bold and underline the best approach across all methods.
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We compare UniGuide with an alternative guidance approach adapted from[67] in App. D.4 and refer to App. C and App.

D.3 for further information on the unconditional models and the guidance parameters, respectively. In addition,

inspired by the performance of UniGuide on the LBDD task, we further motivate its applicability for the generation of

molecules given atom densities, see App. G.

Evaluation

The goal of LBDD is to discover novel molecules that fit within a given 3D shape. This can be quantified by a high 3D

shape similarity and low graph similarity compared to the reference ligand, as illustrated in Fig. 3 as well as App. D.2.

We highlight this trade-off by reporting the ratio of these similarities in Table 1 as  , which constitutes the

most important metric for this task. We follow[14]  and further evaluate the mean and maximum shape similarities 

  and  , respectively, per reference ligand, measured via the volume overlap between the two aligned

molecules. Additionally, we report the graph similarity    defined as the Tanimoto similarity between the

generated and reference ligand, and the graph similarity    of the generated molecule with the maximum

shape similarity. Further metrics concerning the quality of the generated ligands are provided in App. D.2.

Both in terms of shape similarity and graph similarity, guiding the generation of EDM with UniGuide  outperforms

other task-specific conditioning mechanisms and even the Virtual Screening baseline. Emphasised by the Ratio metric

across all evaluated methods, UniGuide  demonstrates that it is able to generate diverse molecules with very similar

shapes compared to the reference ligand. Remarkably, UniGuide achieves higher shape similarity than ShapeMol+g,

even though the conditional model is explicitly guided towards the position of the reference ligand through the

position correction technique. UniGuide, on the other hand, does not require information about the reference’s atom

positions at all to generate novel, high-quality ligands. This highlights how UniGuide  and the design of condition

maps enables unconditional models like EDM, that have not been tailored or trained for the LBDD task, to achieve

state-of-the-art performance on new tasks.

5.2. Structure-based drug design

Datasets

Following[11], we evaluate UniGuide  on two protein-ligand datasets: the CrossDocked dataset[68]  and the Binding

MOAD dataset[69]. For the CrossDocked dataset, we follow the preprocessing as described by[38]  and conduct the

evaluation on    test protein pockets. The Binding MOAD dataset is preprocessed as discussed in[11], resulting in 

 test proteins. Per target pocket,   ligands are generated. We evaluate the generation of ligands on models that

are trained on the full-atom context of the pockets in Table 2 and results of models trained on the   representation of

the pockets are provided in App. E.5.

/SimS SimG

SimS max SimS

SimG

max SimG

100

130 100

Cα
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    Method Vina Score ( ) Vina Min ( ) Vina Dock ( )
QED (

)
SA ( )

CrossDocked

  Test Set 6.362   3.14 6.707   2.50 7.450   2.33 0.48 0.73

Non-Diff.
3D-SBDD∗[38] 5.754   3.25 6.180   2.42

6.746 

 4.02
0.51 0.63

Pocket2Mol∗[48] 5.139   3.17 6.415   2.93 7.152   4.90 0.56 0.74

Diffusion-

based

DecompDiff∗(No

Drift) [67]
4.750      6.170     

TargetDiff∗[50] 5.466   8.32 6.643   4.94 7.802   3.62 0.48 0.58

DiffSBDD-cond [11] 3.684   11.3
4.670 

 6.06
6.941   4.33 0.47 0.58

DiffSBDD [11] 4.097   11.3 6.306   5.00 7.889   2.61 0.57 0.64

UniGuide 5.103   8.39 6.610   4.20 7.921   2.43 0.57 0.64

Binding

MOAD

Diffusion-

based

Test Set 6.748   2.77 7.563   2.53 8.297   2.03 0.60 0.64

DiffSBDD-cond [11] 4.466   2.63 6.309   2.52 7.482   1.84 0.43 0.56

DiffSBDD [11] 4.744   7.70 6.586   2.59 7.767   2.06 0.55 0.62

UniGuide
5.074 

 6.75
6.622   2.57 7.911   1.97 0.56 0.61

Table 2. Structure-Based Drug Design. Quantitative comparison of generated ligands for target pockets from the

CrossDocked and Binding MOAD test sets. Results taken from the respective works are indicated with (∗). We highlight the

best conditioning approach for the DiffSBDD backbone in bold and underline the best approach over all methods.

Baselines

We compare UniGuide to two autoregressive models designed for the SBDD task: 3D-SBDD[38] and Pocket2Mol[48]. We

further include TargetDiff[50] and DecompDiff[67], conditional diffusion models for SBDD that fix the protein pocket

context during every step of the diffusion process. We exclude approaches with explicit drift terms

like[67] and[70]  from the comparison, as UniGuide’s SBDD condition map does not include drift terms currently, but

can be readily extended to do so.[11] present two techniques for controlled structure-based generation: (i) DiffSBDD-

cond, a conditional diffusion model similar to[50] and (ii) DiffSBDD, an inpainting-inspired technique that modifies

the generative process of an unconditional diffusion model that jointly generates protein-ligand pairs. Across

datasets, both UniGuide  and DiffSBDD control the same unconditional ligand-protein diffusion model. We provide

↓ ↓ ↓
↑

↑

− ± − ± − ±

− ± − ±
−

±

− ± − ± − ±

− ± − − ± − − − −
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more information and further evaluation regarding this base model in App. E.2 and App. E.3 and investigate the

influence of the guidance scale   as well as the resampling trick[71], a technique that modifies the generative process

to better harmonise the generated ligand with the controlled pockets, in App. E.4 and App. E.5.

Evaluation

As the task of SBDD is to generate ligands that bind well to a given protein pocket, we assess generated ligands based

on affinity-related metrics (Vina Score, Vina Min and Vina Dock), which estimate the binding affinity between the

generated ligands and a given test receptor[72]. Additionally, we measure the quality of the generated ligands using

two chemical properties: the drug-likeness (QED) and the synthetic accessibility (SA)[66][73].

Table 2 demonstrates that, without additional training or external networks, UniGuide  performs competitively with

even the highly specialised conditional models like TargetDiff and DecompDiff. Our results indicate that not fully

converging to the target protein pocket due to soft guidance, compared to, for example, DiffSBDD’s inpainting-

inspired technique, is not a limitation in practice. Rather, it suggests that utilising self-guidance in combination with

a suitable condition map generates well-harmonised ligand-protein pairs. This is also reflected in the properties of

the generated ligands, where UniGuide achieves good drug-likeness (QED) and synthetic accessibility (SA) scores. We

provide additional qualitative examples for the SBDD task in Fig. 4, which showcase that UniGuide not only generates

drug-like ligands but is even able to improve over the VINA Dock metric of the reference ligand.

Figure 4. Qualitative example of a test protein pocket (6c0b) from the Binding MOAD

dataset. We show the reference ligand (grey) and samples generated by UniGuide (blue).

S
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5.3. Fragment-based drug design

Datasets & Baselines

In the following, we investigate linker design, a subfield of fragment-based drug design. We follow [13] and decompose

ligands from the ZINC dataset [74] with the MMPA algorithm [75]. Note that the ZINC dataset does not contain pocket

information, and the evaluated approaches operate solely at the molecular level. We compare UniGuide  to

DiffLinker  [13], a diffusion-based conditional model that fixes fragments in space. Additionally, we evaluate the

variational autoencoder-based methods DeLinker [53] and 3DLinker [52], adapted as described in [13]. We provide more

information on the experimental setup as well as the unconditionally trained EDM model in F.1 and C.

Evaluation

Following  [13], we evaluate the generated linkers and ligands with respect to their properties (SA, QED, Number of

Rings and 2D Filters). We additionally measure (i) the uniqueness of the generated samples, (ii) the recovery of the

reference ligands, and (iii) the validity, which combines the chemical validity and the successful linking of the

fragments.

Using UniGuide to control the EDM generation enables the successful combination of the condition fragments and the

generation of diverse linkers. Even compared to task-specific models, UniGuide  is able to perform competitively

across different metrics. Importantly, UniGuide enables the same unconditional model (EDM) to tackle both the linker

design task as presented in Table 3 as well as the LBDD task as presented in Table 1 without additional training. Note

that, while DiffLinker is specifically designed to generate linkers, UniGuide readily generalises to other tasks within

the FBDD setting, such as fragment growing and scaffolding, see Fig. 5. Additionally, UniGuide  is agnostic to the

fragmentation procedure used to obtain the condition scaffolds, meaning that UniGuide  will generalise to unseen

fragments as long as the underlying molecule fits within the training distribution. In Sec. F.2, we demonstrate how the

same unconditional model can be adapted for these tasks. Our quantitative evaluation highlights the benefits achieved

through the unification of controlled generation provided by UniGuide.
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Figure 5. For various pocket-conditioned FBDD tasks, we show reference

ligands (grey), desired fragments (magenta), and ligands generated by

UniGuide (blue).
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  Method
QED

( )

SA

( )

No. Rings

( )

Valid 

( )

Unique 

( )

2D

Filters 

( )

Recovery

( )

Non-diffusion

based

DeLinker + ConfVAE + MMFF 

[53]∗

0.64 

0.16

3.11 

0.68
0.21  0.42 98.3 44.2 84.8 80.2

3DLinker [52]∗
0.65 

0.16

3.14 

0.68

0.24 

0.43
71.5 29.2 83.7 93.5

3DLinker (given anchors) [52]∗
0.65 

0.16
3.11  0.67

0.23 

0.42
99.3 29.0 84.2 94.0

Diffusion-based

DiffLinker [13]∗
0.65 

0.15

3.19 

0.77

0.32 

0.54
90.6 51.4 87.9 70.7

DiffLinker (given anchors) [13]∗
0.65 

0.15

3.24 

0.81

0.36 

0.59
94.8 50.9 84.7 77.5

UniGuide (EDM)
0.64 

0.16

3.63 

1.08

0.49 

0.62
89.1 72.1 87.9 58.8

Table 3. Linker Design. Results taken from [13] are indicated with  . We underline the best method overall.

6. Conclusion

In this work, we present UniGuide, a unified way of controlling the generation of molecular diffusion models towards

geometric constraints. UniGuide generalises to a multitude of drug discovery tasks without the need for conditioning

networks or specialised training protocols, enabling UniGuide to find applicability also in scenarios where little data is

available. By demonstrating that specialisation is not a necessity and that a more flexible, unified method outperforms

specialised approaches across tasks and datasets, we open up new avenues for streamlined and flexible generative

models with wide-ranging applications.

Appendix A. Impact Statement

Our research holds the promise of significant contributions to the advancement of drug discovery, possibly assisting in

the discovery of novel pharmaceutical compounds. Nevertheless, because of its applications in drug discovery, this

strategy is not without its hazards. The ability to produce various molecules with desired properties may not only serve

the purpose of beneficial drug development but may also unintentionally result in the creation of dangerous

substances or compounds with unexpected effects. These concerns underline the critical need for careful handling

when working with the structures this method can generate.
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Appendix B. Proof of Theorem 4.1

First, recall Theorem 4.1 that we provide in Sec. 4:

Theorem 1. Consider a function  . If   is invariant to rigid transformations   in the first argument and

equivariant in the second argument, then the gradient    of the vector    is equivariant to

transformations of  .

Proof. We start the proof by showing that   is invariant to transformations of both   and  .

1.  is invariant to transformations in  :

2.  is invariant to transformations   follows immediately:

In a second step, we make use of the fact that for a group of transformations  , it holds that if   is a  -invariant

function,   is  -equivariant[76]. From the invariance of  , it follows immediately that   is

equivariant to transformations of  . 

Appendix C. Unconditional Equivariant Diffusion Model

UniGuide  guides an unconditional diffusion model given an arbitrary condition and a natural choice for a model

operating only on the molecule level is the EDM model as proposed in[20].

We adapt this model for two tasks presented in this work, namely the LBDD task discussed in Sec. 5.1 and the Linker

Design task as presented in Sec. 5.3. For these tasks, we train an unconditional EDM model both on the MOSES

dataset[66] in the configuration as described in[14] and on the ZINC dataset[74] as described in[13]. For both trainings,

we employ the hyperparameter configuration for the GEOM dataset as described in[20]. We run multi-GPU trainings on

4 NVIDIA A100 GPUs until convergence, however, a single NVIDIA A100 GPU is sufficient for this training and will only

increase the training time. For inference, we employ the Resampling trick as discussed in[71] with   resampling

steps and   timesteps. EDM is available under the MIT License.

Appendix D. Ligand-based drug design

D.1. Implementation details

We train two unconditional diffusion models, ShapeMol [U] and EDM, to generate 3D molecules on the MOSES

dataset[66], licensed under the MIT License, for which we generate 3D conformers with RDKit[73], available under the

BSD 3-Clause License. We use   training samples and randomly select   samples for validation. The model

architecture of ShapeMol[U] is an unconditional version of the ShapeMol model proposed in[14], and it is trained with 

C : S × Z → Z C(s, z) G

∥v∇z ∥2
2 v = z − C(s, z)

z

∥v∥2 z s

∥z − C(s, z)∥2 z

∥Gz − C(s,Gz)∥2 = ∥Gz − GC(s, z)∥2

= ∥G(z − C(s, z))∥2

= ∥z − C(s, z)∥2

[C is equivariant in z]

[G is a rigid transformation ]

(22)

∥z − C(s, z)∥2 s

∥z − C(Gs, z) = ∥z − C(s, z) [C is invariant in s]∥2 ∥2 (23)

G L(⋅, ⋅) G

L(⋅,x)∇x G ∥v∥2 ∥z − C(s, z)∇z ∥2
2

z □

R = 10

T = 100

1, 593, 653 1000
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 diffusion steps. ShapeMol [U] is trained with a batch size of   on two NVIDIA A100 GPUs for   epochs. Unlike

ShapeMol, we do not concatenate the molecular surface embedding of the ligands to the features. For the shape-

conditioned generation with position correction (ShapeMol+g), we follow the scheme proposed in[14]. It provides

further guidance to the conditional generation by sampling    query points from a Gaussian distribution centred

around every atom in the reference ligand. The position correction adjusts the coordinates of the predicted atom

positions during every generation step by pushing the coordinates close to the query points as follows:

where    is the Euclidean distance,    is the set of    nearest neighbors of    in    and    is a distance

threshold. We follow the implementation of [2] for the position correction method by setting   and only guiding

during the first   denoising steps.

For the shape-conditioned generation with UniGuide, we extract the mesh of the condition ligand using the Open Drug

Discovery Toolkit [77], which is available under the BSD 3-Clause revised License. The query points we use for guidance

are   points sampled uniformly on the mesh surface. For the evaluation, we measure the shape similarity   as

the volume overlap between the aligned generated ligand and the condition ligand. For the alignment, we utilise the

ShaEP tool [78].

We provide a detailed description of the LBDD sampling algorithm in Algorithm 1.

D.2. Additional results

For completeness, we report additional quantitative evaluation of the generated ligands’ properties in Table 4. We also

provide further qualitative results of the generated ligands for the LBDD task in Fig. 6. UniGuide generates ligands with

1000 32 500

20

= (1 − σ) + σ z/n, if d( , z)/n > γ,x̂ x̂ ∑
z∈n( ,Q)x̂

∑
z∈n( ,Q)x̂

x̂ (24)

d( , z)x̂ n( , Q)x̂ n x̂ Q γ > 0

γ = 0.2

700

512 SimS
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better shape similarity to the reference ligands compared to the conditional model ShapeMol with the position

correction technique.

Figure 6. Examples of the ligands generated by ShapeMol, Pos-Correct and UniGuide. Pos-Correct is the position correction

technique proposed by [14]. Both Pos-Correct and UniGuide are combined with the unconditionally trained model ShapeMol

[U]. We plot the reference ligand as well as the generated ligands with their shapes.

method Connect. ( ) Unique ( ) QED SA ( ) LogP ( ) Lipinski ( )

ShapeMol 98.8% 99.9% 0.753 0.640   0.104 2.001   1.360 4.979   0.156

ShapeMol+g 97.0% 99.8% 0.751 0.630   0.110 1.908   1.508 4.874   0.170

UniGuide+ ShapeMol[U] 98.0% 100% 0.736 0.625   0.103 1.828   1.463 4.974   0.186

UniGuide (ShapeMol) 99.0% 100% 0.750 0.641   0.107 2.002   1.374 4.982   0.152

UniGuide+ EDM 99.8% 99.99% 0.742 0.636   0.088 1.833   1.221 4.994   0.082

Table 4. Additional ligand property results for the methods discussed in Sec. 5.1. We report mean and standard deviation and

highlight the best result in bold.
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D.3. Guidance parameters

For the LBDD task, the guidance strength   is weighted by an exponentially decreasing function  . For the guided

generation using the unconditional ShapeMol [U] model under the UniGuide framework, we define a scale scheduler

that increases with an exponent of   and weight it with   and guide from the diffusion step   to the diffusion

step  . For the guided generation using the EDM model, we use a linear scale function that increases from   to  .

The guidance is applied from the diffusion step   to the last timestep  .

D.4. Comparison of UniGuide with an alternative loss formulation

We adapt the validity guidance loss from  [50]  to the LBDD setting. The proposed loss is grounded in the smooth

distance function   from [79], which computes as:

This function provides an alternative approach to shape-based generation by deriving an appropriate loss function 

, rather than modifying the condition map as proposed by UniGuide. Here,    implicitly defines a surface

through   and points   inside satisfy  .

On a technical level, the gradient for validity guidance computes as follows:

This gradient formulation is quite similar (up to the weighting) to UniGuide’s special case  , as it computes an 

  loss on a given conformation ( ), see Eq. (18), meaning that it does not generalise to arbitrary geometric

conditions.

We emphasise that UniGuide  is more broadly applicable because it separates surface computation from gradient

computation, offering two key benefits. First, since the condition map does not require differentiability, there is

greater flexibility in computing surface points. Second, the precise geometric intuition behind the condition map

makes it easier to adapt to new scenarios, as demonstrated by our application to generating density-guided molecules.

For the empirical comparison, we selected the hyperparameters   and   in the surface loss computation to achieve a

high DICE score between the implicitly defined surface and the meshes UniGuide utilises for LBDD ( ,  , DICE 

). Our surface calculations use the Open Drug Discovery Toolkit (ODDT), which assigns specific radii to individual

atom types and employs the marching cubes algorithm to generate meshes[80].

We performed several runs around the above-specified hyperparameter configuration. The runs performed similarly,

and we report the best result in Table 5. Although validity guidance for LBDD yields low graph similarity, the shape

S
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similarity remains suboptimal compared to UniGuide. Additionally, we frequently encounter numerical instability

when computing the guidance term, an issue not present with UniGuide’s formulation of LBDD. One possible

explanation for this numerical instability is that the surface is defined implicitly, unlike UniGuide where it is explicitly

defined. The explicit definition in UniGuide allows for relating the gradient updates directly to the surface, as shown in

Eq. (21).

  Ratio  Connect.  Unique.  Diversity  QED 

Validity Guidance 0.59 0.76 0.20 0.20 2.96 97% 100% 0.76 0.69

UniGuide (EDM) 0.74 0.86 0.21 0.20 3.53 99% 99% 0.73 0.74

Table 5. Comparison of UniGuide with validity guidance for shape-based generation. We highlight the ratio metric as the

most critical indicator, reflecting the balance between shape similarity and graph dissimilarity.

Appendix E. Structure-based drug design

E.1. SBDD sampling algorithm

We provide the algorithm for inference in the SBDD task scenario in Algorithm 2.

E.2. Ligand-protein generative joint model

SBDD aims to generate a ligand given a protein pocket:  . We adopt DiffSBDD[11], an unconditional joint

diffusion model that approximates the joint distribution   of generating ligand-protein pairs, where the

noise predictor   is parametrised by EGNN. DiffSBDD is available under the MIT License. To process ligand

(↑)SimS (↑)maxSimS (↓)SimG (↓)maxSimG (↑) (↑) (↑) (↑) (↑)

( | , t)pθ zM zP
test

p( , )zM
data zP

data

( , , t)ϵθ zM
t zP

t
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and pocket nodes with a single GNN, atom types and residue types are embedded jointly. Atom and residue features are

then decoded separately using atom decoder and residue decoder to   and  [11].

For the unconditional sampling with the joint model, the number of ligand and pocket nodes is sampled from the joint

node distribution  , measured across a training set of   pairs. During the modified generative process

with the inpainting-inspired technique or with UniGuide  the number of pocket nodes is set to be equal to the number

of nodes in  , while the size of the ligand is generated from a conditional distribution  . Since this

sampling procedure leads to ligands that are much smaller compared to the reference ligands found in the test set, the

mean size of sampled ligands is increased by   for Binding MOAD and   for CrossDocked during ligand generation[11].

We utilize the unconditional base models from[11], which are trained on either the   or full-atom context from the

Binding MOAD or CrossDocked datasets. However, we retrain the DiffSBDD model specifically on the full-atom context

of the CrossDocked data, as we were unable to reproduce the reported results in this configuration from[11]. We find

that contrary to what is reported in[11], the model converges early and does not need a full 1000 epochs to fully train.

We employ this checkpoint to evaluate both the DiffSBDD inpainting-inspired approach as well as UniGuide. We train

the model on four NVIDIA A100 GPU with a batch size of  . 8 training epochs take approximately   hours.

Representing ligands and proteins as graphs

Proteins consist of amino acids, where every amino acid is a set of amino  , carboxyl  ,  -carbon atom and a

side chain   that is specific to every amino acid type[81]. The  -representation of a protein pocket is a residue-level

graph, in which the node features of the protein are represented as one-hot encodings of the amino acid type. The

full-atom representation of the receptor is an atom-level graph and represents the full context of the protein pocket.

Details on processed graphs of the join model   are provided in Table 6. We refer the reader to[11]  for more

information on the hyperparameters of the joint model.

 

CrossDocked Binding Moad

joint   model joint full-atom model joint   model joint full-atom model

Edges (ligand-ligand) fully connected fully connected fully connected fully connected

Edges (ligand-pocket)   Å   Å   Å   Å

Edges (pocket-pocket)   Å   Å   Å   Å

Table 6. Hyperparameters of ligand and proteins graphs in joint models

( , , t)ϵM
θ

zM
t zP

t ( , , t)ϵP
θ

zM
t zP

t
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2 24
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Dataset QED ( ) SA ( ) Lipinski ( ) Diversity ( ) Connectivity ( ) Validity ( )

C.D. ( ) 1 500 0.535 0.660 4.741 0.772 0.893 0.986

C.D. ( ) 10 50 0.578 0.752 4.836 0.774 0.994 0.986

B.M. ( ) 1 500 0.471 0.608 4.783 0.824 0.839 0.985

B.M. ( ) 10 50 0.544 0.665 4.883 0.823 0.961 0.992

Table 7. Quantitative evaluation of samples generated by the unconditional joint models[11] trained on Crossdocked (C.D.)

and Binding MOAD (B.M). We report the mean over all generated ligands.

E.3. Further Comparison to DiffSBDD

In addition to Table 2, we follow the experimental setup as utilised in[11] to compare UniGuideto DiffSBDD, which uses

the same base model, in particular. In Table 8, we further investigate the advantages of using self-guidance in

combinations with UniGuide  over both the conditional DiffSBDD model (DiffSBDD-cond) as well as the inpainting-

inspired technique (DiffSBDD). UniGuide  reliably achieves superior VINA Dock scores compared to both DiffSBDD

models and performs competitively with the conditional TargetDiff model. In E.4 and E.5, we expand on this

experimental comparison with further analysis of the effects of Resampling as well as the guidance strength.

R T ↑ ↑ ↑ ↑ ↑ ↑

Cα

Cα

Cα

Cα
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Vina

( )

Vina Top 10%

( )

QED

( )

SA

( )

Lipinski 

( )

Diversity 

( )

RMSD

( )

CrossDocked

Test Set
6.865 

 2.35
- 0.476   0.20 0.728   0.14 4.340   1.14 - -

3D-SBDD∗[38]
5.888 

 1.91

7.289 

 2.34
0.502   0.17 0.675   0.14 4.787   0.51 0.742   0.09 -

Pocket2Mol∗[48]
7.058 

 2.80
8.712   3.18 0.572   0.16 0.752   0.12 4.936   0.27 0.735   0.15 -

Graph-BP∗[49]
4.719 

 4.03

7.165 

 1.40
0.502   0.12 0.307   0.09 4.883   0.37 0.844   0.01 -

TargetDiff∗[50]
7.318 

 2.47

9.669 

 2.55
0.483   0.20 0.584   0.13 4.594   0.83 0.718   0.09

0.000 

0.00

DiffSBDD-

cond∗

6.950 

 2.06

9.120 

 2.16
0.469   0.21 0.578   0.13 4.562   0.89 0.728   0.07

0.000 

0.00

DiffSBDD
7.216 

 2.54

9.490 

 2.00
0.571   0.19 0.639   0.14 4.808   0.50 0.707   0.09

0.045 

0.01

UniGuide
7.320 

 2.27

9.514 

 2.04
0.571   0.19 0.638   0.14 4.822   0.47 0.705   0.08

0.047 

0.01

Bind. MOAD

Test Set
8.331 

 2.05
- 0.602   0.15 0.636   0.08 4.838   0.37 - -

Graph-BP∗[49]
4.843 

 2.24

6.629

 0.95
0.512   0.11 0.310   0.09 4.945   0.27 0.826   0.01

0.000 

0.00

DiffSBDD-cond
7.172 

 1.88
9.174   2.13 0.430   0.20 0.564   0.12 4.526   0.80 0.711   0.08

0.000 

0.00

DiffSBDD
7.263 

 4.19

9.776 

 2.25
0.546   0.21 0.618   0.12 4.777   0.54 0.740   0.05 53   31

UniGuide
7.661 

 2.99

9.864 

 2.13
0.556   0.20 0.605   0.12 4.799   0.50 0.723   0.05 55   31

Table 8. Quantitative comparison of generated ligands for target pockets from the CrossDocked and Binding MOAD test sets.

Results taken from[11] are indicated with  . We report mean and standard deviation and highlight the best diffusion-based

approach in bold.
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E.4. Resampling

Inpainting is introduced for diffusion models to condition outputs with fixed parts[71]  and can be applied for

structure-based molecular tasks. Given a model that generates   pairs at denoising step  , the protein pocket 

  is replaced with the noised representation of protein context  . This noised representation can be obtained

through the forward process of diffusion models as specified in Eq. (2). However, the direct application of this method

leads to locally harmonised samples that struggle to incorporate the global context[71]. In order to effectively

harmonise the generated information during the entire generative process,[71]  propose a technique they call

“Resampling”. This modifies the reverse Markov chain by moving back and forth in the diffusion process to enable the

model to better incorporate the replaced components.

[11] propose to use the same resampling technique to harmonise the replaced protein context with the ligand, since the

replaced receptor is sampled independently of the ligand. During resampling, each latent representation is repeatedly

diffused back and forth before advancing to the next time step. We found that resampling further improves the general

performance of the unconditional generation, and thus improves the guided generation as well. We report results for

this in App. E.5, where we evaluate how the unconditional generation of the joint model is improved across different

metrics with added resampling steps. We follow[11]  in using the setting of    resampling steps and 

 timesteps. While DiffSBDD resamples the ligand and the noised target protein pocket, we resample the guided

protein pocket and ligand with UniGuide. In general, the concept of resampling can be applied to harmonise the

configuration   with the condition  .

E.5. Guidance parameters

The guidance scale   controls the strength of the guiding signal, see Eq. (7) and it is weighted by   during

the generation. We use a constant scale    for structure-based drug design experiments and evaluate for several

guidance scale values in Table 9 and Table 10 for models trained on the Binding MOAD dataset with   and full-atom

representation respectively. The quantitative evaluation on the CrossDocked data is shown under Table 11 and Table 12

with additional metrics reported in Table 7. For the generation with the  -models, we generate   samples for every

test pocket with a batch size of  . The full generation takes approximately   hours for Binding MOAD and   hours for

CrossDocked. For the DiffSBDD model trained on the Binding MOAD fullatom pocket data, we use a batch size of   for

the generation. We use a batch size of   to sample with the DiffSBDD model trained on CrossDocked (fullatom).
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t t
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Method Vina ( )
Vina Top

10% ( )
QED ( ) SA ( ) Lipinski ( ) Diversity ( ) RMSD ( )  

DiffSBDD-cond

( )
- -

-6.628 

1.59
-8.291  1.26 0.481   0.20 0.554   0.11 4.651   0.70 0.714   0.04

0.000 

0.00
 

DiffSBDD - 1/500
-6.362 

3.04
-8.179  1.24 0.452   0.20 0.541   0.11 4.604   0.76 0.734   0.03

0.008 

0.01
 

UniGuide 1.0 1/500
-6.519 

2.05
-8.227  1.23 0.464   0.20 0.540   0.11 4.627   0.73 0.733   0.03

0.125 

0.01
 

UniGuide 2.0 1/500
-6.568 

2.13
-8.268  1.25 0.471   0.20 0.543   0.11 4.636   0.73 0.735   0.04

0.105 

0.25
 

UniGuide 3.0 1/500
-6.667 

1.92
-8.305  1.28 0.468   0.20 0.542   0.11 4.622   0.73 0.737   0.03

0.072 

0.03
 

UniGuide 4.0 1/500
-6.587 

1.86
-8.293  1.29 0.470   0.20 0.544   0.11 4.636   0.72 0.735   0.03

0.058 

0.01
 

UniGuide 6.0 1/500
-6.568 

1.93
-8.284  1.26 0.468   0.20 0.542   0.11 4.630   0.73 0.734   0.03

0.045 

0.01
 

UniGuide 7.0 1/500
-6.575 

1.86
-8.296  1.28 0.469   0.20 0.544   0.11 4.636   0.72 0.735   0.03

0.043 

0.05
 

DiffSBDD - 10/50
-6.896 

3.10
-8.962  1.37 0.547   0.20 0.578   0.20 4.754   0.50 0.709   0.05

0.007 

0.01
 

UniGuide 1.0 10/50
-6.845 

3.68
-8.972  1.36 0.547   0.19 0.578   0.13 4.756   0.53 0.709   0.05

0.216 

0.21
 

UniGuide 2.0 10/50
-6.889 

3.83
-9.018  1.40 0.547   0.19 0.577   0.13 4.756   0.52 0.707   0.04

0.279 

0.03
 

UniGuide 3.0 10/50
-7.050 

2.38
-9.051  1.39 0.551   0.18 0.575   0.14 4.763   0.50 0.706   0.04

0.220 

0.01
 

UniGuide 4.0 10/50
-7.016 

2.93
-9.023  1.38 0.552   0.18 0.578   0.14 4.765   0.50 0.708   0.03

0.168 

0.05
 

UniGuide 6.0 10/50
-7.053 

2.91
-9.067  1.39 0.550   0.18 0.579   0.14 4.761   0.51 0.703   0.04

0.146 

0.01
 

UniGuide 7.0 10/50
-7.076 

2.27
-9.038  1.38 0.550   0.18 0.579   0.14 4.767   0.50 0.704   0.04

0.131 

0.01
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Table 9. Results for the Binding MOAD test set with the unconditional DiffSBDD base model trained on the  -

representation of the pockets combined with UniGuide and the inpainting-inspired technique DiffSBDD[11]. We provide

results for varying the guidance scales   during our controlled generation. We also report results for the DiffSBDD-cond (

) model trained on the   pockets.

Method Vina ( )
Vina Top 10% (

)
QED ( ) SA ( ) Lipinski ( )

Diversity (

)
RMSD ( )

DiffSBDD-

cond
- - -7.172  1.88 -9.174  2.13 0.430  0.20 0.564  0.12 4.526  0.80 0.711  0.08 0.0   0.0

DiffSBDD - 1/500
-6.540 

2.00
-8.427  1.39 0.413  0.20 0.531  0.11 4.611  0.77 0.748  0.03 55   31

UniGuide 6.0 1/500 -6.696  1.78 -8.561  1.58 0.407  0.19 0.527  0.11 4.587  0.78 0.740  0.04 55   31

UniGuide 7.0 1/500 -6.683  1.91 -8.575  1.52 0.406  0.19 0.524  0.11 4.579  0.80 0.738  0.04 55   31

UniGuide 8.0 1/500 -6.682  1.77 -8.555  1.52 0.407  0.19 0.526  0.11 4.591  0.78 0.740  0.04 55   31

UniGuide 9.0 1/500 -6.689  1.74 -8.541  1.50 0.403  0.19 0.524  0.11 4.589  0.78 0.738  0.04 55   31

DiffSBDD - 10/50 -7.263  4.19 -9.776  2.25 0.546  0.21 0.618  0.12 4.777  0.54 0.740  0.05 53   31

UniGuide 5.0 10/50 -7.470  2.97 -9.621  1.84 0.563  0.20 0.605  0.12 4.807  0.50 0.723  0.05 55   31

UniGuide 6.0 10/50 -7.570  3.20 -9.731  1.90
0.566 

0.20

0.606 

0.12
4.815  0.48 0.722  0.05 55   31

UniGuide 7.0 10/50 -7.639  2.39 -9.793  2.06 0.559  0.20 0.605  0.12
4.804 

0.49
0.723  0.05 54   31

UniGuide 8.0 10/50 -7.635  2.71 -9.821  2.07 0.558  0.20 0.605  0.12 4.804  0.50 0.720  0.05 54   31

UniGuide 9.0 10/50 -7.661  2.99 -9.864  2.13 0.556  0.20 0.605  0.12 4.799  0.50 0.723  0.05 55   31

Table 10. Results for the Binding MOAD test set with the unconditional DiffSBDD base model trained on the full-atom

context of the pockets combined with UniGuide and the inpainting-inspired technique DiffSBDD[11]. We provide results for

varying the guidance scales   during our controlled generation. We also report results for the conditional diffusion model

DiffSBDD-cond.

Cα
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Cα Cα
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Method
Vina

( )

Vina Top

10%

( )

QED

( )

SA

( )

Lipinski

( )

Diversity (

)
RMSD ( )

DiffSBDD-cond (

)
- -

-6.770 

2.73
-8.796  1.75

0.475 

0.22

0.612 

0.12

4.536 

0.91

0.725 

0.06

0.000 

0.00

DiffSBDD - 1/500
-6.485 

2.50
-8.472  1.62 0.510  0.21

0.619 

0.12

4.640 

0.73

0.735 

0.06

0.053 

0.03

UniGuide 2.0 1/500
-6.528 

2.64
-8.527  1.67 0.518  0.21

0.623 

0.12

4.649 

0.73

0.739 

0.05

0.085 

0.01

UniGuide 3.0 1/500
-6.604 

2.57
-8.556  1.64 0.519  0.21

0.622 

0.12

4.657 

0.72

0.738 

0.05

0.070 

0.01

UniGuide 4.0 1/500
-6.578 

2.72
-8.563  1.68 0.518  0.21

0.623 

0.12

4.659 

0.71
0.741  0.05

0.059 

0.02

UniGuide 5.0 1/500
-6.563 

2.58

-8.549 

1.66
0.516  0.21

0.624 

0.12

4.646 

0.72
0.741  0.05

0.052 

0.01

UniGuide 6.0 1/500
-6.658 

2.50
-8.578  1.69 0.527  0.21

0.629 

0.12

4.683 

0.69
0.741  0.05

0.045 

0.01

DiffSBDD - 10/50
-7.030 

3.39
-9.057  1.79

0.559 

0.21

0.730 

0.12

4.729 

0.60

0.720 

0.07

0.052 

0.01

UniGuide 1.0 10/50
-6.909 

3.35

-9.069 

1.79

0.563 

0.21

0.734 

0.12

4.743 

0.57
0.721  0.06 0.711  0.12

UniGuide 2.0 10/50 -7.015  3.20 -9.115  1.79
0.562 

0.21

0.733 

0.12

4.735 

0.60
0.721  0.07

0.188 

0.02

UniGuide 3.0 10/50
-7.081 

2.95
-9.140  1.83

0.560 

0.20
0.732  0.11

4.742 

0.57
0.723  0.07 0.127  0.01

UniGuide 4.0 10/50
-7.086 

3.27
-9.125  1.81 0.561  0.19 0.731  0.10

4.729 

0.60

0.719 

0.06
0.102  0.01

UniGuide 5.0 10/50 -7.117  2.78 -9.127  1.78
0.561 

0.20
0.731  0.12

4.738 

0.59

0.722 

0.07

0.090 

0.01

UniGuide 6.0 10/50 -7.113  3.00 -9.133  1.80
0.556 

0.20
0.731  0.12

4.734 

0.60

0.720 

0.32
0.077  0.01

Table 11. Evaluation of the samples generated for the CrossDocked test set using the joint ligand-protein diffusion model

trained on the   pocket representation for varying guidance scales  . The base model is combined either with the

S R/T
↓

↓
↑ ↑ ↑ ↑

↓

Cα

±
±

± ± ± ± ±

±
± ±

± ± ± ±

±
± ±

± ± ± ±

±
± ±

± ± ± ±

±
± ±

± ±
±

±

± ±
±

± ±
±

±

±
± ±

± ±
±

±

±
±

± ± ± ± ±

± ± ± ± ±
± ±

± ±
± ± ±

±
±

±
±

±
±

±
± ±

±
± ± ±

± ±
±

± ±
±

±
± ± ±

± ±
±

±
± ±

±

Cα S

qeios.com doi.org/10.32388/DQ3Y3T 28

https://www.qeios.com/
https://doi.org/10.32388/DQ3Y3T


inpaitning-inspired technique (DiffSBDD) or UniGuide. We further report the evaluation of the molecules generated by the

conditional model DiffSBDD-cond that is trained on the   pocket representation.

Method
Vina

( )

Vina Top

10%

( )

QED

( )

SA

( )

Lipinski

( )
Diversity ( )

RMSD

( )
 

DiffSBDD-

cond
- -

-6.950 

2.06

-9.120 

2.16
0.469   0.21 0.578   0.13 4.562   0.89 0.728   0.07

0.000 

0.00
 

DiffSBDD - 1/500
-6.225 

1.77
-8.115  1.64 0.469   0.20 0.573   0.11 4.691   0.70 0.778   0.04

0.049 

0.01
 

UniGuide 5.0 1/500
-6.346 

1.74

-8.208 

1.62
0.482 0.20 0.570 0.12 4.718   0.67 0.773   0.04

0.040 

0.01
 

UniGuide 6.0 1/500
-6.335 

1.72
-8.225  1.61 0.484   0.20 0.571   0.12 4.715   0.66 0.775   0.04

0.039 

0.01
 

UniGuide 7.0 1/500
-6.338 

1.73

-8.218 

1.60
0.481   0.19 0.571   0.12 4.710   0.67 0.774   0.04

0.039 

0.01
 

UniGuide 8.0 1/500
-6.366 

1.72
-8.261  1.57 0.485   0.20 0.570   0.12 4.717   0.66 0.773   0.03

0.039 

0.01
 

DiffSBDD - 10/50
-7.216 

2.54

-9.490 

2.00
0.571   0.19 0.639   0.14 4.808   0.50 0.707   0.09

0.045 

0.01
 

UniGuide 6.0 10/50
-7.295 

2.22

-9.441 

1.95
0.574   0.19 0.641   0.14 4.825   0.47 0.706   0.08

0.047 

0.01
 

UniGuide 7.0 10/50
-7.320 

2.27

-9.514 

2.04
0.571   0.19 0.638   0.14 4.822   0.47 0.705   0.08

0.047 

0.01
 

UniGuide 8.0 10/50
-7.298 

2.21

-9.460 

2.01
0.568   0.19 0.641   0.14 4.818   0.47 0.703   0.09

0.048 

0.01
 

UniGuide 9.0 10/50
-7.265 

2.45

-9.495 

2.05
0.577   0.19 0.640   0.14 4.821   0.47 0.706   0.08

0.049 

0.01
 

Table 12. Results for the CrossDocked test set with the joint model trained on the full-atom pocket representation of the

pocket for varying guidance scales  . The unconditional model is either controlled by the inpainting-inspired technique

(DiffSBDD) or UniGuide.
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dataset model runtime (s)

CrossDocked ( )

DiffSBDD-cond 60   68

DiffSBDD 141   55

UniGuide 193   61

Binding Moad ( )

DiffSBDD-cond 54   42

DiffSBDD 61   17

UniGuide 104   36

Binding Moad (full)

DiffSBDD-cond 345   55

DiffSBDD 398   95

UniGuide 453   120

Table 13. We evaluate the runtime of UniGuide and compare it to DiffSBDD-cond and DiffSBDD from [11]. We report the

average time (in seconds) to generate   ligands per pocket for the CrossDocked ( ), Binding Moad ( ) and Binding

Moad (fullatom).

Cα

±

±

±

Cα

±

±

±
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±
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100 Cα Cα
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    Validity ( ) Connectivity ( ) Uniqueness ( ) Novelty ( )

Cross- Docked

Test Set 100% 100% 96.00% 96.88%

DiffSBDD-Cond ( ) 95.32% 80.63% 99.97% 99.81%

DiffSBDD-Cond 97.32% 78.91% 99.99% 99.91%

DiffSBDD ( ) 99.20% 98.14% 99.26% 99.16%

DiffSBDD 97.76% 89.84% 99.94% 99.87%

UniGuide ( ) 99.12% 98.35% 99.50% 99.24%

UniGuide 97.40% 93.18% 99.93% 99.76%

Binding MOAD

Test Set 97.69% 100% 38.58% 77.55%

DiffSBDD-cond ( ) 94.43% 77.17% 100% 100%

DiffSBDD-cond 96.20% 63.20% 100% 100%

DiffSBDD ( ) 98.54% 91.45% 100% 100%

DiffSBDD 94.22% 75.60% 100% 100%

UniGuide ( ) 98.44% 93.12% 100% 99.99%

UniGuide 93.85% 79.95% 100% 100%

Table 14. Additional metrics for the methods discussed in Sec. 5.2.

For all tables, we conduct the experiments both with and without resampling. The VINA Dock score is measured with

QuickVina2[72], available under the Apache License, and the chemical properties (QED, SA, Lipinski) are measured with

RDKit. We note that in all ablation tables we measure the VINA Dock score on the processed molecules, following[11],

while the VINA Dock score in Table 2 is measured following[67]. Both the VINA Dock score and chemical properties

improve with additional resampling steps ( ) for both datasets. Additionally, increasing the guidance

scale improves the RMSD with respect to the target protein, and results in generating ligands with an improved

binding affinity (lower VINA).

E.6. Additional Results for SBDD

Supplementary to Table 2 we provide additional metrics for the evaluation of the generated ligands in Table 14: the

validity as measured by RDKit[73]  and the connectivity, representing the percentage of valid molecules without any

disconnected fragments. Additionally, we report the uniqueness and novelty of the valid connected ligands.

↑ ↑ ↑ ↑
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E.7. Runtime Comparison

In Table 13, we provide a comparison of the different controlled generation mechanisms regarding their runtime.

While UniGuide  has a higher runtime compared to other conditioning mechanisms, as it has to compute gradients

through the diffusion model at inference time, it stays comparable to other mechanisms such as inpainting.

Appendix F. Fragment-based drug design

F.1. Linker Design

For the experimental evaluation of the linker design task, we follow[13], employ the ZINC dataset[74] and preprocess it

following[13]. That is, 3D conformers are generated from the SMILES strings present in the dataset with RDKit[73]. We

fragment the dataset ligands using an MMPA-based algorithm[75][73], generating multiple fragment conditions per

molecule. We train an unconditional EDM model for this task as specified in C. For the evaluation metrics, we

follow[13]. Note that the synthetic accessibility score computation (SA) in Table 3 differs from the remaining

experimental evaluations. While[13] report the SA score   directly, [11] report the SA score as  .

For the task of linker design, we adjust the condition map as discussed in Sec. 4.2 slightly to include anchor

information, similar in spirit to the DiffLinker model incorporating anchor information[13]. That is, additionally to

guiding parts of the molecule to the desired fragment configuration, we additionally define a cuboid’s surface that is

defined from the specified anchor atoms. We can then utilise this surface condition   to guide the linker atoms in

accordance with Eq. (21). Additionally, we can expand this surface based on the linker size to ensure chemical validity

of the generated linker. This condition map highlights the flexibility of UniGuide  condition maps in various tasks,

especially through the combination of two definitions of the condition map. For the experimental evaluation, we

sample the size of the linker nodes uniformly in accordance with[13] and compare to the DiffLinker model without an

external network to predict the linker size. Note, however, that also the unconditional EDM model combined with

UniGuide can be adapted to include such predictors.

F.2. General Fragment Conditions

To assess the performance of UniGuide  for the task of FBDD, we create an experimental setup with the goal of

generating ligands conditioned on desired fragments roughly following[13]. We select 10 random protein targets from

the Binding MOAD dataset and decompose their corresponding reference ligands using an MMPA-based algorithm[75]

[73]. This decomposition results in a set of    different scenarios, including separated fragments we want to link, a

fragment to grow or small functional groups to perform scaffolding. For every set of fixed fragments, we aim to guide

the unconditional generation of ligands towards the generation of a ligand containing the desired fragments. As the

protein is not the target of the guidance, we employ the DiffSBDD-cond model, which is conditionally trained on the 

-representation of the protein pocket. For every set of fixed fragments, we generate    ligands and use a

constant guidance scale of  .

sSA (10 − )/9sSA

C∂V

40

( )Cα 100

8
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We provide quantitative results for the task of fragment-based drug design in Table 15. On the one hand, the task

requires the desired fragments to be present in the generated molecule. Thus, we measure the success rate of recovery

(Hit Ratio) and the RMSD between the generated fragments and desired fragments. On the other hand, given that the

target fragments are met in the generated ligand, the generation has to achieve favourable chemical properties, high

binding affinity, as well as high diversity within the set of generated ligands and low similarity to the reference ligand.

As the Inpaint mechanism enforces the fragment during generation more strictly, it is able to achieve a better Hit Ratio

and RMSD. Nevertheless, UniGuide achieves competitive results but also better VINA docking scores, better properties,

and lower similarity compared to the reference ligand.

The FBDD task puts a hard constraint on the generated ligands, namely that a set of desired fragments has to be

present in the generated ligand. However, neither DiffSBDD nor UniGuide can guarantee that the condition fragments

are present in the generated samples.

We provide further qualitative results of the generated ligands for the FBDD task in Fig. 7.

Figure 7. Examples of the generated fragment conditioned ligands.
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  DiffSBDD UniGuide

Vina ( ) -7.406    -7.924    

QED ( ) 0.612    0.639     

SA ( ) 0.703     0.691   

Lipinski ( ) 4.819    4.875    

Diversity ( ) 0.653    0.669    

Similarity ( ) 0.172      0.177    

Validity ( ) 93.35 % 94.41 %

Connectivity ( ) 66.87 % 68.30 %

Table 15. Quantitative comparison between DiffSBDD and UniGuide for the FBDD task on the Binding MOAD ( ) dataset. As

the condition in this FBDD scenario is a hard constraint that entails the condition to be exactly present in the generation, we

add a post-hoc step for both methods where we replace the inpainted or guided parts with the exact condition atoms. We

report mean and standard deviation and highlight the best method in bold.

Appendix G. Atom densities in 3D space

Similar to the guidance by the volume enclosed by the molecular surface, UniGuide allows to guide towards multiple

point clouds simultaneously. A natural extension of LBDD would be to harness atom densities as described in [82]. Such

a setting combines aspects of LBDD and SBDD as it provides conditions also on the feature space, yet the source can

only be represented by point clouds.

In particular, we anticipate UniGuide to be useful in scenarios where explicit information about advantageous features

of the ligand is provided in the form of 3D densities. Examples of this include a) volumetric densities that indicate

beneficial placement of certain atom types, such as oxygen atoms  [82]  or b) pharmacophore-like retrieval of

advantageous positions for aromatic rings, as utilised in e.g. [83]. On a technical level, this setting assumes that instead

of a reference ligand’s structure, we only have access to (multiple) atom type densities that indicate preferred

locations for optimal interaction with the protein. Additionally, instead of conditioning on a reference ligand’s shape,

we could condition on a protein pocket’s surface, which primarily defines exclusion zones rather than precise atom

placement.

Adapting UniGuide for such scenarios requires only minor adjustments, as the protein surface can treated like shapes

in standard LBDD, defining an exclusion zone based on proximity to the surface. The atom densities are thresholded to

reflect regions of high interest and converted to surfaces using the marching cubes algorithm  [84]. To also include

feature information, we effectively employ a modified condition map similar to Eq. (21) that extends the
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↑ ± 0.11 ± 0.09
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transformation from the conformation to the configuration space. Moreover, the number of atoms guided by each

density is adjusted based on its volume, reflecting the varying influence of each density, and guidance is only applied if

atoms are sufficiently close.

We show explorative results for the guided generation of molecules towards desired atom densities using UniGuide in

Fig. 8. While our current approach represents a promising first step in tackling this task, we acknowledge the potential

for further refinement and are eager to explore future improvements within the UniGuide framework.

Figure 8. Given a source density of oxygens, we can extend UniGuide to generate ligands satisfying the condition.

Notes

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Project Page: www.cs.cit.tum.de/daml/uniguide
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