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Abstract 

Relativistic Quantum Field Theory (QFT) develops divergences caused by perturbative 

corrections to Feynman diagrams. Dimensional Regularization (DR) is a technique that 

isolates divergences using analytic continuation to non-integer dimensions. In this 

introductory tutorial we argue that DR provides an alternative mechanism for mass 

generation in particle physics. This mechanism reconciles the Higgs model of electroweak 

symmetry breaking with the minimal fractal topology of spacetime above the Fermi scale. 

Mass predictions agree reasonably well with experimental data.  
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In relativistic QFT, the S-matrix (or scattering matrix) relates the initial and 

final states of a physical system undergoing a scattering process. S-matrix is 

associated with an unitary operator S  that determines the evolution between 

two asymptotic states at t =−  and t =+ , respectively, [1-2] 

 ( ) ( )ab S + = −  (1) 

The basic quantities of interest are the S – matrix elements, defined through  

 ( ) ( )aba b inout
S t t =  (2) 

On account of (2), the S-matrix represents a set of complex amplitudes that 

are used to compute the probabilities of various scattering processes. In the 

Standard Model (SM), the scattering matrix may include arbitrary 

combinations of elementary stable particles such as neutrinos, electrons, and 

photons, as well as combinations of other stable composite particles.  

The analysis of scattering processes employs the concept of n point function 

( )
1 2( , ,..., )n

np p p , which corresponds to n external particles, any of each can 

be either incoming or outgoing. Another key concept is the particle self-energy 
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(Σ(p)), which denotes the overall contribution of virtual processes that start 

and end with that particle.  

To fix ideas, consider the textbook φ4 model of a real scalar field described 

by the Lagrangian 

 2 2 41 1

2 2 4!

g
L m

   =   − −  (3) 

where m  is a mass parameter and g  the self-interaction coupling of the field. 

The continuous emission and absorption of virtual particles generates 

corrections to the parameters of (3). Fig. 1 illustrates an elementary self-

energy correction to the free propagator resulting from the emission and 

absorption of a virtual particle with arbitrary momentum k.   

 
           Fig. 1:  Elementary self-energy correction to the free propagator. 
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The self-energy contribution to the free propagator takes the form [3] 

 
4

2

4 2 2
( )

2 (2 )

ig d k i
i p

k m i 

−
−  =

− +
  (4) 

Like several other momentum integrals of QFT, it is apparent that (4) 

diverges as k → . The goal of the Regularization program is to bring 

divergences under control and enable observables of the underlying theory 

to stay finite.  

To this end, one proceeds by choosing a regulator, that can be either be an 

Euclidean momentum cutoff ( UV ) or a continuous deviation from four 

spacetime dimensions ( 4 d = − ). In either case, the expectation is that the 

regulated observables of the theory consist of, 

a) a regulator-dependent term containing the divergence and, 

b) a sum of finite terms that is asymptotically independent of the 

regulator as UV →  or 0 → .    
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Regardless of the choice, the regularization method must comply with the 

symmetries of the theory. In a relativistic QFT, these include Lorentz 

symmetry, as well as local gauge and global symmetries. 

We briefly review below two traditional regularization methods, namely 

Pauli-Villars (PV) and Dimensional Regularization (DR). 

• The PV method 

With reference to Fig. 2, consider the one-loop contribution to the 4-point 

function ( , , )s t u  in scalar field theory (3). Here, , ,s t u  are the Mandelstam 

variables defined as 

 2
1 2( )s p p= +  (5) 

 2
1 3( )t p p= −  (6) 

 2
1 4( )u p p= −  (7) 

The s− channel correction to   is given by [3] 
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2 4

2
4 2 22 2

( )
( )

2 (2 ) ( )

ig d k i i
p

p k m ik m i 

−
 =

− − +− +  (8) 

where momentum conservation requires 

 1 2 3 4p p p p p= + = +  (9) 

 

 Fig. 2: One-loop contribution to the 4-point function. 

The above integral contains the contribution from the two segments of the 

loop, the k  segment, and the p k−  segment. After tedious manipulations, the 

divergent piece of the 4-point function is found to be,  

 
22

2 2
(0) ln ( )

32

UVig

m


   (10) 
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Using similar arguments, the divergent part of the 2-point function amounts 

to [3], 

 2

2
(0)

32
UV

g


 =   (11) 

• The DR method 

The DR method makes use of the fact that momentum integrals can be 

formulated as analytic functions in continuous dimensions defined as  

                                                 4d = − ;   1                                                   (12) 

The d - dimensional integral corresponding to (8) can be written as, 

 
2 22 2(2 ) ( )

d

d d

d k i i
I

p k m ik m i


 
=

− − +− +  (13) 

where   is an arbitrary mass scale whose role is to maintain dimensional 

consistency of (13). Calculations show that the divergent part of the 4- and 

2-point functions in DR are given by, respectively, 
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2

2
(
2

(0) )
32

ig


 =  (14) 

 
2

2

2
(0) ( )

32

g m


 = −  (15) 

The table below summarizes the divergent parts of the 4-point and 2-point 

functions following the PV and DR methods, respectively.  

 Pauli-Villars Regularization Dimensional Regularization 

(0)  
2

2 2

2
ln( )

32
UV

ig
m


  

2

2
(2 )

32

ig



 

(0)  2

232
UV

g


  2

2
( 2 )

32

g
m 


−  

 

Tab. 1: Pauli-Villars versus Dimensional Regularization of 4  theory  

Since the computation of any observable must give answers independent of 

the regularization method, observables obtained via PV and DR methods 

must coincide. It follows that, in the limit UVm   , 

 2 2( ) 4 ( ) ( ) 1UVd O m  = − =    (16) 
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Although deceptively simple, this relationship has unexpected implications 

for particle physics near or beyond the Fermi scale ( 246v GeV= ), as well as 

for the non-integrable sector of gravitational dynamics and relativistic 

cosmology. For example, (16) leads - either directly or indirectly - to the 

following findings: 

1) Particle masses derive from dimensional deviations ( )  , which represent 

topological polarizations of classical spacetime above the Fermi scale [4]. 

2)  Minimal fractality of spacetime encoded in ( )   implies that there is 

mixing between the ultraviolet and infrared sectors of field theory. This, in 

turn, means that ultraviolet dynamics makes the transition from the 

ordinary calculus to fractional differential and integral operators, reflecting the 

non-local, dissipative, and structure-forming nature of interactions above 

the Fermi scale [5]. 

3) The Standard Model of particle physics represents a self-contained 

multifractal set, whose flavor and mass composition follows the bifurcation 
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scenario of transition to chaos [4]. The following table highlights the 

repetitive distribution of particle masses and coupling strengths, based on 

the universal transition to chaos of the Renormalization Group flow [6].  

 

4) The Fermi scale, cosmological constant ( cc ) and the Planck scale ( PlM ) 

satisfy the following relationship [7] 

 
1 4

min
cc

Pl

v
v M




    (17) 

where min
  denotes the minimal dimensional deviation.  
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5)  Particle masses obey the sum-of-squares constraint  

 2 2 2 2 2
Z HW f

f

m m m m v+ + + =  (18) 

where the last term of the right-hand side extends to the full set of fermion 

masses [8].  The boson and fermion contributions are divided into nearly 

equal shares, that is, 

 
2

2 2

2b f
b f

v
m m    (19) 

6) Taking complex-scalar field theory as baseline model points out that the 

SM group unfolds sequentially from bifurcations driven by the 

Renormalization Group scale   [9-10]. Specifically, the following 

relationships are shown to hold:   

 2 22Hm v=  (20) 

 2 Hv m  (21) 

 2 ZWv m m +  (22) 
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 173.95tm GeV=  (23) 

where ( ( ))   =  stands for the scale-dependent Higgs self-interaction 

coupling and tm  is the mass of the top quark. 

7) Other features of the SM (fermion chirality, mixing angles, the existence 

of three generations, the strong CP problem, the g-2 anomaly, the Cabibbo 

angle) appear to be linked to (16).  

8) Baryon asymmetry is a direct consequence of (16) [11].  

9) Dark Matter consists of Cantor Dust, a cosmic web structure formed by 

topological condensation of continuous dimensions in the early Universe 

[12-19]. An attractive feature of this finding is that it reconciles the 

gravitational and particle interpretations of Dark Matter. 

Additional relevant references can be found at [20]. 
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