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We introduce the problem of distributional matrix completion: Given a sparsely observed matrix of

empirical distributions, we seek to impute the true distributions associated with both observed and

unobserved matrix entries. This is a generalization of traditional matrix completion where the

observations per matrix entry are scalar valued. To do so, we utilize tools from optimal transport to

generalize the nearest neighbors method to the distributional setting. Under a suitable latent factor

model on probability distributions, we establish that our method recovers the distributions in the

Wasserstein norm. We demonstrate through simulations that our method is able to (i) provide better

distributional estimates for an entry compared to using observed samples for that entry alone, (ii)

yield accurate estimates of distributional quantities such as standard deviation and value-at-risk, and

(iii) inherently support heteroscedastic noise. We also prove novel asymptotic results for Wasserstein

barycenters over one-dimensional distributions.
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1. Introduction

Matrix completion is the broad problem of imputing missing entries in a matrix. Algorithms for this

problem have found widespread use in recommendation systems[1][2][3]  used at companies such as

Netflix, Amazon, and Meta, system identification[4], traffic sensing[5][6][7], device location sensing[8][9],

and patient-level predictions in healthcare[10][11]. While the theory and practice of matrix completion is

thoroughly researched, there has been little to no work on matrix completion over distributions of

numbers. We refer to this new problem as distributional matrix completion.
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To motivate this problem, consider the following example: a state education-board is trying to determine

if using digital resources improves student test scores. They collect test-score and digital resource use

data from schools going back 5 years for English, math, and science classes. The board would like to

estimate the impact of digital resources on test scores at the classroom level. Since data is collected over 5

years, the same school could have test-score data for English, for instance, both using and not using

digital resources. However, not every school will have tried each combination in the past 5 years. This

impedes the board’s ability to determine the impact of digital resources at the school level. However,

since they have data from many schools across the state, they can use data imputation methods such as

matrix completion to estimate the missing test scores.

Matrix completion methods have only been developed for scalar values, though, whereas test scores are

inherently a distribution of values because there is more than one student in a class. One way to get

around this problem is to consider average test scores per class. However, if later on, the board wants to

know if average test scores went up because the highest-scoring students tested better or if the all

students did better simultaneously, then we must move beyond averages (scalars) into the space of

distributions. The goal of our paper is to explore how we can better exploit repeated measurements to (i)

learn the underlying distributions associated with each matrix entry and (ii) better predict commonly

used quantities such as median, variance, and value-at-risk. Distributional matrix completion’s difficulty

stems from two information losses: we only observe a subset of the distributions and for the

distributions we do observe, we only have access to a finite number of samples, not the true distributions.

Additionally, distributional objects exist in infinite-dimensional spaces, adding to the difficulty of

extending formal matrix completion setups.

In this paper, we propose both a formal setup for distributional matrix completion and an estimation

method to recover the unobserved true distribution per matrix entry. Utilizing tools from optimal

transport, our method is able to generate synthetic distributions that closely approximate the respective

true distributions. Further, perhaps surprisingly, the estimates consistently recover the true distributions

more accurately compared to using just the empirical distribution for an observed matrix entry—see

Figure 1. This allows for more accurate estimation of downstream distributional quantities such as

variance or value-at-risk compared to simply using the observed empirical distribution.
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Figure 1. CDFs of random empirical distributions vs. our synthetic distribution from matrix completion.

We simulate two distributional matrix completion examples, one with all empirical Gausian distributions and

one with empirical continuous uniform distributions. In both cases, only the matrix entry we seek to estimate

is unobserved. Our method’s synthetic distributions, shown in the thick blue lines, provide much better

estimates of the true distribution’s CDF, shown in black dotted lines, than observed matrix entries alone. See

Sec. 5 for more details on our simulated tests.

1.1. Related work

Our work seeks to bridge two disparate topics, matrix completion and optimal transport, in order to

provide a way to estimate unobserved probability distributions. Here, we provide a brief overview of the

relevant literature in both areas.

Matrix completion. There are many algorithms for matrix completion that mainly fall into two

categories: empirical risk minimization (ERM) and matching. Empirical risk minimization (ERM)

methods seek to minimize both the distance between estimated matrix entries and observed matrix

entries along with a regularization term[12][13]. The regularizer seeks to prioritize less complex matrices

and is sometimes replaced with a hard constraint, such as the matrix being low-rank[14].

Matching methods, or nearest neighbor methods, are popular for large-scale recommendation systems

due to their simplicity and scalability[15][16]. These algorithms estimate a missing entry by finding

"similar" rows (users) or columns (items) and then use their average as the estimate for a missing entry.

These algorithms not only work well in practice, but have been shown to work under suitable latent-
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factor models[17][18]. To implement matching methods, we only need to generalize a notion of similarity

and averaging between matrix entries. We show how we do this in Sec. 3.

The matrix completion literature has also grown to include noisy matrix completion[19][17], panel data

settings for causal inference[18][13], and even matrix completion over more exotic spaces such as finite

fields[20]. These areas, though, still assume the matrix has scalar values.

Optimal transport. Optimal transport (OT), a field initially developed to solve logistics problems[21],

provides efficient computational and theoretical tools to compute the distance between two probability

distributions and the average between a collection of distributions. OT has found widespread use from

areas such as shape and image registration[22]  to systems control[23]. Most work in OT has focused on

efficiently finding the map to transport one distribution to another at the lowest cost for a given cost

function[24][25]. In this paper, we focus on the 2-Wasserstein distance, which is the cost of transporting

one distribution to another when the cost function is the Euclidean distance. The Wasserstein distance

also lends itself well to calculating distributional barycenters (i.e. averages)[26][27][28]. Wasserstein

barycenters preserve the geometric properties of the input distributions. For instance, the barycenter of

multiple Gaussian distributions is also Gaussian, unlike a mixture of Gaussians[29]. Thus, in our setting, if

every observed distribution is Gaussian, we would expect the estimated distribtuions to also be Gaussian

and not a mixture of Gaussians. While Wasserstein barycenters have a closed-form solution for one-

dimensional distributions, they have been proven to be NP-Hard to calculate in high dimensions[30].

In classical optimal transport literature, it is assumed that distributions are known completely, instead of

sampled. The statistics of OT, an area that has become increasingly popular, focuses on comparing how

empirical distributios generated from samples differ from their respective true distributions[29][31][32].

This literature works with empirical distributions as objects as opposed to using a noise model. Because

we only have access to empirical distributions, of particular use for this paper are the sample-size

convergence rates of empirical distributions to true distributions proven in[33].

Matrix completion over distribution functions. We are aware of only one previous use of optimal

transport for estimating unobserved distributions in the matrix setting:[34]  present a method for

learning counterfactual distributions in a synthetic control setting[35]  using a quantile-based

generalization of the synthetic control method. They perform a regression over quantile functions to

construct their estimate, whereas we use a nearest neighbors method.[34] also assumes a linear mapping

between latent factors and distributions whereas we allow our mapping to be nonlinear. They make
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similar assumptions to ours on their distributions for their theoretical results such as each distribution’s

density being differentiable and lower bounded by a positive constant. However, we also assume several

stronger regularity conditions in order to provide faster rates of error decay.

1.2. Organization and notation

In Sec.  2, we propose a Lipschitz latent function model for matrix completion over the space of one-

dimensional probability distributions. In Sec. 3, we provide a distributional nearest neighbor estimation

method to solve our new problem utilizing the geometry of the 2-Wasserstein space. In Sec. 4, we provide

asymptotic error bounds for our estimator and establish its consistency as the number of rows and

columns of the matrix, and the number of samples for a given observed matrix entry grow. We also

establish the asymptotic distribution for the error of the estimand. In Sec.  5, we use simulations to

empirically verify our theoretical error decay rates. We also demonstrate our method’s accuracy in

estimating distributional quantities such as mean, standard deviation, and quantiles. Finally, in Sec. 6, we

conclude and discuss future research directions.

Notation. We refer to a probability measure  μ’s cumulative distribution function as  Fμ, its quantile

function as F − 1
μ , and its density function as fμ. We write Xn = Op(ab) when Xn /ab is bounded in probability.

We write Xn = op(ab) when Xn /ab converges to 0 in probability. We denote the set {1, …, m} as [m]. We denote

the (i, j)-th entry of a matrix M as Mij. We abuse notation slightly by referring to a set of samples and its

respective empirical distribution with the same symbol when there is no ambiguity as to which object we

are referring to. We abbreviate the term almost surely to a.s. and write 
d
=  to denote equality in distribution.

Finally, in regards to our algorithm, we use the words user and row interchangeably. We do the same with

the words item and column. This originates from the literature for recommendation systems which

typically have users along rows and items along columns.

2. Setup and data-generating process

In this section, we describe the general setup of distributional matrix completion. We then review some

necessary background on optimal transport, which is used in our error calculations and estimation

procedure. We then propose a data-generating process (DGP) that allows us to provide an error bound

and asymptotic distribution for our method in Sec. 4.
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2.1. Problem setup and generic nearest neighbors

In our setup, we analyze a partially observed  N + 1  by  M + 1  matrix, denoted  Y, where each observed

matrix entry contains an array of scalars. Within each matrix entry, Yij, the scalars are assumed to be

drawn independently and identically (i.i.d.) according to some law μij. For each matrix entry in a column j,

we assume that number of samples is nj. However, our algorithm and theoretical guarantees can easily

generalize to unequally sized arrays within columns. If a matrix entry  (i, j)  is observed, then we denote

the samples in that matrix entry as {yij , k}
nj
k= 1

∼ μij. Note that for observed entries, we only have access to

empirical data, not the true distribution. Note that we simply add 1 to the matrix size to simplify the

notation in our main theorem. Using the observed empirical distributions, our goal is to estimate the true

distributions, μij, of the unobserved and observed matrix entries.

Missingness. Let A be an N + 1 by M + 1 binary matrix representing which entries are observed and which

are not. Then, we have

for i ∈ [N + 1], j ∈ [M + 1] : Yij =
[yij , 1, …, yij , nj] ifAij = 1

unknown ifAij = 0

where {yij , k}
nj
k= 1

∼ μij.

To explain this formal notation with the motivation example from Sec.  1, we present a matrix of

histograms in Fig.  2. In this example, the input Y  is a partially observed 3 by 6 matrix. There are four

unobserved distributions. Our goal is to estimate the true distributions (gray) for both observed and

unobserved entries using the observed empirical distributions (blue). This will allow us to better analyze

the effect of digital resources in different class types for each school.

{
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Figure 2. Simulated motivating example of a student test scores from multiple schools in different classes

with and without digital resources. We visualize the motivating example from Sec. 1 with a matrix of

empirical histograms with 4 unobserved entries shown without histograms. Each observed entry has 100

independent samples. The true distribution’s probability density functions are shown in gray curves. Our goal

is to not only estimate the unobserved distributions, but also the true distributions for the observed entries.

Generic user-user scalar nearest neighbors algorithm. The nearest neighbors algorithm requires a

distance threshold, η, to define a neighborhood. The nearest neighbors algorithm then proceeds in two

main steps impute a matrix entry (i, j):

(1) Find the set of nearest neighbors for row i. For each other row u ≠ i where Auj = 1, define the columns

that are observed in both rows i and u as

Ciu ≜ {v ∈ [M + 1] ∖ {j}:Aiv = 1, Auv = 1}.

Then, find the average distance between the row i and row u as:

ρiu ≜
| Ciu | − 1∑v∈Ciu

(Yiv − Yuv)
2 if~ | Ciu | ≥ 1

∞ if~ | Ciu | = 0.

Finally, define row i’s η-nearest neighbors as

Ni , η ≜ {u ∈ [N + 1] :Auj = 1, ρiu ≤ η}.

(2) Find the average of the nearest neighbors in column j. If Ni , η > 0, then estimate the missing entry at 

(i, j) as

{
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Ŷij =
1

Ni , η

∑
u∈Ni ,η

Yuj.

If we found no nearest neighbors, then return that we could not find any neighborhood for row i.

Step 1 finds rows who have matrix values close to the observed entries in the same row we are trying to

estimate in. It then defines the nearest neighbors as the rows with distance below η. Step 2 returns the

average of the nearest neighbors, Ni , η, in column  j. To generalize this algorithm to the distributional

setting, we need to provide distributional versions of 3 and 5.

Note that in this paper, we analyze user-user nearest neighbors. However, our work can be easily

extended to user-item or item-item nearest neighbors. In item-item nearest neighbors, distances are

calculated between columns and averages are taken over rows. In user-item nearest neighbors, distance

and averages are taken both over rows and columns. See[18]  for an example of how a user-item nearest

neighbors algorithm is used to construct a doubly-robust estimator.

To generalize the nearest neighbors method from scalar matrix completion to the distributional setting,

we require a notion of distance and average in the probability distribution space. While there are many

distributional distances such as total variation and Kullback–Leibler divergence, we utilize the

Wasserstein distance and barycenter from optimal transport for this new setting. It remains an

interesting line of future research to explore the statistical and computational properties of other

distributional distances.

2.2. Wasserstein distance background

The Wasserstein distance is a natural choice for distributional nearest neighbors because (i) it satisfies

the properties of a metric, (ii) it has a closed-form solution in the one-dimensional case, and (iii) it

behaves well when distributions do not share supports. For instance, for total variation, denoted  TV, 

TV(U(0, 1), U(2, 3)) = TV(U(0, 1), U(4, 5)) = 0  because these continuous uniform distributions do not share

supports. The 2-Wasserstein distance, denoted W2, however, has W2(U(0, 1), U(2, 3)) < W2(U(0, 1), U(4, 5)). For

other examples of the Wasserstein distance’s useful geometric properties, see[36].

In the one-dimensional setting, the 2-Wasserstein distance can be written as an  L2  norm between

quantile functions: For two probability measures on R, μ and ν with finite second moment, we have[29],

Eq. 2]

W2(μ, ν) = ∫1
0 |F − 1

μ (x) − F − 1
ν (x) |

2
dx

1 / 2
= ∥ F − 1

μ − F − 1
ν ∥

L2 ( 0 , 1 )

| |

( )
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where F − 1
μ  and F − 1

ν  are the respective quantile functions of μ and ν. For empirical distributions with the

same number of samples, n, we have a simpler formula[33], Lemma 4.2]:

W2(μn, νn) =
1
n

n

∑
i= 1

X ( i ) − Y ( i ) 2
1 / 2

where X ( i )  and Y ( i )  are the i-th order statistic of their respective empirical distributions μn and νn. Thus,

the Wasserstein distance can be calculated in O(nlog(n))  time between any two empirical distributions

with the same number of samples,  n, with the asymptotic runtime being dominated by the sorting

operation. Note that we interchangeably use “Wasserstein” and “2-Wasserstein” as we only consider the

2-Wasserstein distance in this work. We denote  W2(R), the Wasserstein space, as the space of one-

dimensional probability distributions on R with finite second moment equipped with the 2-Wasserstein

metric.

2.3. Wasserstein barycenter background

Let  μ1, …, μN ∈ W2(R)  be probability distributions. The Wasserstein barycenter is defined as the

probability distribution μ that minimizes  ∑N
i= 1W

2
2(μ, μi), similar to how an average over scalars minimizes

the squared distance to each scalar. The Wasserstein barycenter also has a simple closed-form solution as

the measure with quantile function[[29], Eq. 8]:

F − 1
μ =

1
N

N

∑
i= 1

F − 1
μi

.

When each distribution  μj  is an empirical distribution derived from order statistics  {Xi
μj

}
n

i= 1
, then the

Wasserstein barycenter’s distribution is an empirical distribution derived from order statistics given

by[[37], Section 2.4]:

X ( i )
μ =

1
N

N

∑
j= 1

X ( i )
μj

.

To calculate the k-th order statistic of the Wasserstein barycenter, we first sort each distribution’s data

into respective order statistics, and then average the  k-th order statistics of the input distributions.

Ordering each entry’s samples takes O(N ⋅ nlog(n))  time and calculating the order statistic average takes 

O(Nn)  time. So, the runtime to calculate the barycenter is O(N ⋅ nlog(n)). The Wasserstein barycenter has

several desirable properties: (i) it is computationally fast to calculate for empirical distributions, (ii) it

behaves well with location-scale distributions such as Gaussian and continuous uniform, and (iii) it has a

( ( ) )
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closed-form solution in the one-dimensional case which facilitates theoretical analysis. As an example of

the Wasserstein barycenter’s geometric properties, it is shown in[29]  that the barycenter of multiple

Gaussian distributions is also Gaussian.

2.4. Data-generating process

Under no assumptions about the matrix, matrix completion is ill-posed since there are too many valid

ways to impute missing entries. Therefore, matrix entries are often assumed to share some latent

structure which reduces the degrees of freedom. One popular way to encode this latent structure is by

assuming the matrix is low rank[14]. A more general framework to encode latent structure is given

in[38]  and contains low-rank matrices as a special case in the scalar setting[[17], Sec. D]. We utilize the

more general framework here.

Assumption 1 (Lipschitz latent factor model on Wasserstein space). Let the following latent structure hold:

(i) There exists latent bounded metric spaces  Hrow, drow( ⋅ , ⋅ )   and  Hcol, dcol( ⋅ , ⋅ )   for rows and columns,

respectively, (ii) each row i has a latent vector x ( i )
row ∈ Hrow, each column j has a latent vector x ( j )

col ∈ Hcol, and (iii)

there exists a function f :Hrow × Hcol → W2(R) such that for i ∈ [N + 1], j ∈ [M + 1], μij = f x ( i )
row, x ( j )

col .  We assume

that f is L-Lipschitz with respect to its row argument: For all x1, x2 ∈ Hrow, y ∈ Hcol, we have

W2 f(x1, y), f(x2, y) ≤ Ldrow(x1, x2).

This assumptions means that the true distributions vary smoothly in the Wasserstein space as we vary

the respective latent row vectors. Thus, rows which are close together in the latent row space will have

similar distributions within the same column. In the scalar case, this latent-factor model reduces the

degrees of freedom from the full  (N + 1) × (M + 1)  to  (N + 1) + (M + 1), thus allowing us to impute missing

entries in the partially observed matrix.

Since our method is a user-user nearest neighbors algorithm, we only require the latent function, f, to be

Lipschitz with respect to the row argument. However, our model can be easily extended to user-item and

item-item nearest neighbors by restricting f to be Lipschitz with respect to the column argument as well.

In the distributional setting, this model allows us to induce a low-rank structure on, for example, the

means of each distribution: Let Hrow = [0, 1]d  and Hcol = [0, 1]d  with their respective metrics being the

Euclidean metric. Let each distribution be from the same location-scale family (such as Gaussian or

continuous uniform) with the same scale σ2 > 0. Then, we can induce a low-rank structure on the means

of the distributions if the quantile function for each distribution is given by:  F − 1
μij

= σ2F − 1 + ⟨x ( i )
row, x ( j )

row⟩

( ) ( )

( )

( )
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  where  F − 1  is the common quantile function from the chosen location-scale family (e.g.  Φ − 1  in the

Gaussian case where Φ is the standard Gaussian CDF).

A simpler example where both the location and scales change between distributions is given by: Let 

Hrow ⊂ R  determine the mean of distributions, and Hcol ⊂ R > 0  determine the variance of distributions.

Here the quantile function for a measure μij is given by F − 1
μij

= F − 1x ( j )
col + x ( i )

row.  Both of these examples can

be shown to respect the Lipschitz condition. Next, we make an assumption about the missingness

structure.

Assumption 2 (MCAR). We assume the missing-completely-at-random (MCAR) case where each matrix entry’s

missingness Aij ∼ Bernoulli(p), is i.i.d. across matrix entries, and is independent of the latent factors of the rows

and columns.

MCAR is a standard missingness pattern where the missingness is independent of both observed and

unobserved factors. In the education example, this means that the chance of having data for a specific

class for both using and not using digital resources is independent of the school, the class type, and the

other data in the matrix. While MCAR can be relaxed to the missing not-at-random (MNAR) case, the

theoretical analysis becomes more complex and missingness structure is not the main focus of this

paper. We leave it as future work to provide theoretical bounds for the MNAR setting.

3. Estimation method

In this section, we propose a generalization of scalar nearest neighbors to the distributional setting.

Nearest neighbors scales well to very large datasets often encountered in recommendation systems and

panel-data settings, making it very popular in practice. On top of that, nearest neighbors only requires a

notion of distance and average to be implemented, which makes it a suitable choice for our setting with

complex infinite-dimensional objects. Singular-value based methods do not generalize as easily to

distributional matrix completion because there is no similar notion of singular values for our setting. It

remains interesting future work to explore if it possible to generalize singular-value based methods to

the distributional setting.

In Secs. 2.2 and 2.3, we motivated why the 2-Wasserstein distance and barycenter are natural choices for

comparing and averaging one-dimensional distributions. Thus, in the generic nearest neighbors

algorithm, we can simply replace the squared difference in (1) with the Wasserstein distance and the

scalar average in (2) with the Wasserstein barycenter.
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3.1. Nearest neighbors method

The inputs to our method are a data matrix, Y, a masking matrix A, and a distance threshold parameter, 

η ≥ 0. For each entry  (i, j), we calculate  μ̂ij  as an estimate of  μij. We propose a nearest neighbors (NN)

method, denoted Dist-NN, for our setting below:

Dist-NN(Y, A, i, j, η):

(1) Find the set of nearest neighbors for row i. For each other row u ≠ i where Auj = 1, define the columns

that are observed in both rows i and u as

Ciu ≜ {v ∈ [M + 1] ∖ {j}:Aiv = 1, Auv = 1}.

Then, find the average distance between the row i and row u as:

ρiu ≜
| Ciu | − 1∑v∈Ciu

W2
2(Yiv, Yuv) if~ | Ciu | ≥ 1

∞ if~ | Ciu | = 0.

Finally, define row i’s η-nearest neighbors as

Ni , η ≜ {u ∈ [N + 1] :Auj = 1, ρiu ≤ η}.

(2) Find the Wasserstein barycenter of the nearest neighbors in column j. If Ni , η > 0, then estimate the

quantile function of μij as:

F − 1
μ̂ij

=
1

Ni , η

∑
u∈Ni ,η

F − 1
Yuj

.

If we found no nearest neighbors, then return that we could not find any neighborhood for row i.

In step 1, we calculate pairwise distances between row i and every other row that is observed in column j

 to estimate row  i’s neighbors, which we denote Ni , η. Once we have row  i’s neighbors, in step 2, we find

the Wasserstein barycenter of the observed distributions in column  j  for the nearest neighbors. This

barycenter can be calculated using its quantile function, which has a closed-form solution from (5).

4. Main results

In this section, we present our main results showing that under certain regularity conditions on the

probability distributions, our nearest neighbors method produces estimates close to their respective true

probability distributions with high probability.

{

| |
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4.1. Error decay rate

To state our main results, we require several regularity conditions on the underlying distributions.

Assumption 3 (Regularity conditions). We say that a measure ν with distribution function F and density  f  is

regular if (i) F is twice-differentiable and continuous on (a, b) where −∞ < a < b < ∞, (ii) there exists a universal 

C > 0 such that for all x ∈ (a, b), f(x) ≥ C, (iii) ν has a finite second moment, (iv) (F − 1)
′
 is L′-Lipschitz, (v) f is non-

decreasing in a right-neighborhood of a and non-increasing in a left-neighborhood of b, and (vi)

sup
x∈ ( a , b )

F(x)(1 − F(x))

f2(x)
f′(x) < 2.

All continuous uniform distributions automatically satisfy this regularity condition because their

probability density functions are constant on their respective supports. Note that the 2 in (10) is merely to

simplify the analysis and can be raised to some  γ < ∞  at the cost of worsening some parts of our error

decay rate. Also note that since we assume that our densities are uniformly lower bounded and compact,

Gaussian distributions do not satisfy Assum. 3. Truncated Gaussian distributions satisfy these regularity

conditions. However, in our simulations in Sec.  5, we find with Gaussian distributions empirical error

rates are close to our theoretical guarantees. Note that this is a common issue with analyzing the

asymptotic behavior of the Wasserstein distance. See[[39], Remark 1] for a detailed discussion of this

problem.

We are now ready to provide our first main result—scaling of the error for the Dist-NN estimate (proven

in App. A).

Theorem 1 (Rate of error decay for μ̂ij). Let Assums. 1, 2, and 3 hold. Let  |Ni , η |  be the number of neighbors for

row i with distance threshold η. Let N, M, and {nv}v≠ j
 be fixed. Then, conditioned on  Ni , η ≥ 1 and  Ciu ≥

1

2Mp2

 for all u ∈ [N + 1], we have that

W2
2(μ̂ij, μij) = Op

1

nj Ni , η

+
log2nj

n2
j

+ η +
log(2N)

Mp2 as nj → ∞.

Each estimated distribution, μ̂ij, is close to its respective true distribution, μij, asymptotically. The first two

terms go to 0 as nj → ∞. The third term goes to 0 as η → 0 and the final term goes to 0 as the number of

columns, M → ∞. However, there is a tradeoff between optimizing the hyperparameter η and increasing

the number of neighbors. Comparing this bound to the rate of convergence of the nearest neighbors

algorithm for scalar matrix completion from[17] or[18], we see one similar component: the dependence on

| |

| | | |

( | | √ )
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the number of columns is also on the order of  O((Mp2)
− 1 / 2

). However, there is one major difference

between noisy matrix completion and distributional matrix completion:

Remark 1 (Number of neighbors can be small as long as nj is large). The number of neighbors and number

of rows does not have to increase to infinity for our error to go to 0. This is because as nj increases, we get

a better estimate of the true distributions in the j-th column, and these true distributions can be used to

exactly construct μij. Note that this O((nj Ni , η ) − 1) relationship between the 2-Wasserstein distance and a

barycenter approximation from empirical distributions exists only in the asymptotic sense. In

expectation, for general one-dimensiopnal distributions, this term is replaced with O(n − 1
j + Ni , η

− 1)[[29],

Thm. 3.2]. However, in App. D, we show that a similar rate holds for continuous uniform distributions in

expectation.

Remark 2 (Asymptotic result for Wasserstein barycenters). To prove Thm.  1, we had to prove an

asymptotic error bound on the Wasserstein barycenter between empirical distributions. To the best of

our knowledge, this is the first asymptotic bound for 1-dimensional Wasserstein barycenters between

empirical distributions. We separate out this result into its own proposition in Prop. 1 in the appendix.

Remark 3 (nj → ∞  with  {nv}v≠ j
  fixed). This bound is asymptotic in  nj  while keeping the number of

samples in the other columns fixed. We require this because in the proof, we require the neighborhood

set,  Ni , η, to vary independently from the variable we send to infinity,  nj. Note that we calculate

Wasserstein distances and barycenters between distributions within the same columns. So, keeping the

number of samples fixed within a column allows us to utilize (6) to calculate both Wasserstein distances

and barycenters.

Remark 4 (Error does not decay to zero with matrix size). If nj  is finite, then the error will be bounded

away from 0 because the Wasserstein barycenter of empirical distributions is a quantizations of the

Wasserstein barycenter of the true barycenter distribution. This is empirically shown in our simulations

and follows from the definition of the Wasserstein barycenter of empirical distributions shown in (4).

This is captured in the O(log2nj /n
2
j )  term, which stems from the uniform error between an empirical

quantile function and its respective true quantile function.

To prove Thm. 1, we break up the bound into “variance” and “bias” terms and independently bound each

term. Note that these terms are not in fact the variance and bias of our estimate. We merely label these

terms as such to denote which where the error in these terms is derived from: The variance term is the

sampling error in each matrix entry from observing a finite number of samples. The bias term captures

| |

| |
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how close the nearest neighbors barycenter is to the true distribution we are trying to estimate. This bias

is due to the fact that we can only provide an approximation of the distance between row latent factors

from a finite number of columns.

4.2. Asymptotic distribution for quantiles

We have the following asymptotic distribution for any quantile of our estimand (proven in App. B):

Theorem 2 (Asymptotic distribution of  F − 1
μ̂ij

(t)). Let Assums.  1, 2, and  3 hold. Let the sequence 

{nj ,M, NM, ηM, Ni , ηM
}∞

M= 1
 satisfy

Ni , ηM

lognj ,M

nj ,M
= op(1), nj ,M Ni , ηM ηM +

log(2NM)

Mp2 = op(1), and Ni , ηM ≥ 1.

Then, we have that for almost all t ∈ (0, 1)

nj ,M Ni ,ηM

σNi ,ηM
( t ) F − 1

μ̂ij
(t) − F − 1

μij
(t)

d
→ N(0, 1) as M → ∞, where

σ2
Ni ,ηM

(t) ≜
1

Ni , η

∑
u∈Ni ,ηM

t − t2

f2μuj
(F − 1

μuj
(t))

.

This asymptotic Gaussian distribution allows us to provide approximate confidence bands for the

quantile function of our estimate. Note that this is a pointwise, and not necessarily uniform, convergence

in distribution. We provide a proof of this theorem in . However, using Bonferroni’s correction[40], we can

use this pointwide result to provide uniform confidence bands for the quantile function calculated for a

finite number of points. We show how to do this in Sec. 5.

Remark 5 (Number of neighbors can be finite). This convergence in distribution occurs even when the

number of neighbors is finite. This is possible because as  nj → ∞, we get closer to observing the true

distributions in column j. With the true distributions, if our “bias” goes to 0, then we can recover our the

unobserved distribution exactly.

While this confidence interval requires access to the true distributions of row  i’s neighborhood to

calculate σNi ,η
(t), we show in Sec. 5 that a bootstrap estimate provides a reasonable approximation. Kernel

density estimates (KDE’s) can also be used to estimate  σNi ,η
(t). See[[39], Eq. 9]  for an example of using

KDE’s to estimate quantities like σNi ,η
(t).

√ | | √ | | ( ) | |

√ | | ( )

| |
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4.3. Consequences for location-scale distributional matrix completion

Here, we introduce the location-scale category, which demonstrates how one can interpret distributional

matrix completion as a generalization of noisy scalar matrix completion, and we provide asymptotic

guarantees for examples that fall under this category.

4.3.1. Location-scale family: A generalization of (scalar) noisy matrix completion

In noisy scalar matrix completion[19][17], an observed scalar matrix entry is assumed to have an

underlying true value,  Yij, corrupted by by i.i.d.  noise,  εij  usually assumed to be symmetric and Sub-

Gaussian. Then, the observed value is generated by sampling a single sample from the noise distribution

with its center at Yij. Thus, noisy matrix completion is simply distributional matrix completion with the

number of samples per matrix entry set to 1, and each distribution being from the same family. Noisy

matrix completion, similar to distributional matrix completion, encounters difficulties from two sources

of information loss because the underlying matrix is both masked and corrupted with noise. In order for

the noise to be i.i.d., the distribution family must be of the location-scale type: distributions that depend

solely on scale and location parameters. This family includes the Gaussian, continuous uniform, discrete

uniform, and Student’s t distributions.

If X is distributed according to a location-scale distribution, then for σ > 0, μ ∈ R, Y ≜ σX + μ is in the same

distribution family as X and F − 1
Y (x) = σF − 1

X (x) + μ. Thus, for the location-scale family, the quantile function

of Y  is linear in terms of the quantile function of X, facilitating analysis through the Wasserstein space.

Specifically, as stated above in Secs.  2.2 and  3, the 2-Wasserstein distance is a norm between quantile

functions and the Wasserstein barycenter is given by an average over quantile functions. Thus, for any

location-scale family, the Wasserstein barycenter will remain in the same family of distributions.

Example 1 (Simple location-scale). Let the latent row space, Hrow, be a bounded subset of R and the latent

column space, Hcol be a bounded subset of R > 0. Let F − 1
f ( a , b ) (x) = bF − 1

μ (x) + a for some chosen measure μ that

comes from a location-scale family. Locations are drawn from Hrow and scales are drawn from Hcol. Each

row has a different location and each column has a different scale.

We can check that Ex.  1 falls under the Lipschitz DGP in Assum.  1: By simple algebra we have 

W2(f(a1, b), f(a2, b)) = | a1 − a2 | . Thus, the Lipschitz constant is 1 and drow(x, y) = | x − y | . Applying this simple

location-scale model to motivating education example from Sec. 1, we model the student test scores at

each school as a location-scale type (Gaussian, uniform, etc.) where each school has a constant mean
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(location) across classes, and each subject/digital resources use pair has a different standard deviation

(scale).

Under this category of examples, we have the following cleaner error rates for our method.

4.3.2. Error rates for the location-scale example

In the following corollary, let 
∼

Op suppress logarithmic dependencies and constants besides (M, N, p, nj, d).

Then, we have the following bounds (proven in App. C).

Corollary 1 (Location-scale with bilinear factor model with homoscedasticity). Let Assums. 1, 3, and 2 hold.

Let  drow  and  dcol  be the Euclidean measure and  μrow  be the uniform measure. Let N, M,   and  p  be fixed. Let 

nv = n − j for v ≠ j. Both asymptotic guarantees below are conditioned on the number of neighbors being at least 

1

4 (Np)
2

d+ 2  and the number of shared columns between row i and row u being at least 
1

2Mp2 for u ∈ [N + 1]. Then,

we have

(a) Homoscedastic bilinear factor model. Let Hrow = [0, 1]d, Hcol = [0, 1]d  and  F − 1
f ( x , y ) = σF − 1

μ + ⟨x, y⟩  for some

constant scale σ > 0 and location-scale distribution μ. Then, we have

W2
2(μ̂ij, μij)  =

∼

Op
1

nj(Np)
2

d+ 2

+
log2nj

n2
j

+
1

p√M
+

1
n − j

as nj → ∞.

Furthermore, the number of neighbors is at least 
1

4 (Np)
2

d+ 2  with probability at least 1 − 2exp −(Np)
2

d+ 2 /16 .

(b) Heteroscedastic independent location and scale model. Let rows determine location and columns determine

scale (or vice versa), Hrow = [0, 1], and Hcol = [0, 1]. Then, we have

W2
2(μ̂ij, μij)  =

∼

Op
1

nj(Np)
2

3

+
log2nj

n2
j

+
1

p√M
+

1
n − j

as nj → ∞.

Furthermore, the number of neighbors is at least 
1

4 (Np)
2

3  with probability at least 1 − exp −Np2 /16 .

Part (a) of corollary 1 corresponds to the setting of bilinear factor models with homoscedastic noise. This

setting is commonly assumed in causal panel data settings with doubly robust estimators[18][13]. Part (b)

in the corollary corresponds to Ex. 1. We examine this setting in our simulations because it is easier to

interpret in the distributional setting.

( )
( )

( )
( )
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5. Simulation results

We simulate the location-scale setting described in Ex. 1. The Python code to run our tests is available at

our repository on GitHub. No commercial libraries are needed to reproduce our results. All of our tests

were run on a MacBook Pro with an M2 chip and 32 GB of RAM. Thus, our tests should be easy to

replicate. In these simulations, we let the sample size per matrix entry be  n  and thus equal across

columns. In Fig. 3, we show error decay rates with respect to the number of samples, n, rows, N + 1, and

the product of n and the number of neighbors in the Gaussian location-scale case. We test the Gaussian

case to connect with previous matrix completion literature, who primarily consider Sub-Gaussian noise.

We also test our method on continuous uniform distributions in Figs. 1 and 4.

Each matrix entry is drawn from the same distribution family with only the location or scale being

different between matrix entries like in Ex. 1. We draw locations from Unif(−5, 5) and scales from Unif(1, 5).

Our experiments have one missing entry in the matrix. Nearest neighbors estimates one entry at a time.

Thus, if we can estimate one matrix entry, then we can estimate all of them.

We use cross-validation on observed matrix entries to choose our threshold parameter η. Specifically, if

we are trying to estimate μij, then we loop over each observed entry in row  i, hold it out, and run our

method to estimate that left our entry. We then compare our estimate with the observed entry. We choose

the  η  that minimizes the squared Wasserstein distance between our estimate and the observed entry.

Since this problem is nonlinear and nonconvex, we use the Tree of Parzen Estimators (TPE) method[41] to

choose  η. This method is a Bayesian optimization method that uses a Gaussian process to model the

objective function. We use the Python library hyperopt to run TPE and used the standard settings with a

maximum of 50 iterations.

Error with respect to number of samples, n. As shown in Fig.  3, as the number of samples, n, and the

number of rows, N + 1, go up, our estimation error drops rapidly. For the error plot against the number of

samples, we can see that our error decay rate improves from about O(n − 1) to O(n − 1.16) as the number of

neighbors increases. This is supported by our theoretical result in Thm.  1 where as the number of

neighbors increases, the dominant rate with respect to n becomes O(log2n /n2). We also see that the error

rate power with respect to n |Ni , η |  is around O( n Ni , η
− 0.8), which is close to the asymptotic bound of 

O((n Ni , η ) − 1).

Error with respect to number of rows, N. For the error plot against the number of rows, we see that the

error also drops rapidly with the number of rows. Again, we manage to achieve a better error decay rate

( | |)
| |

qeios.com doi.org/10.32388/DX6MDB 18

https://anonymous.4open.science/r/Dist-NN-D7D7/README.md
https://www.qeios.com/
https://doi.org/10.32388/DX6MDB


than is predicted by our theoretical results. We also plot the expected error of an observed random

sample in the dotted line to show that our method is able to produce an estimate that is far better than an

observed random sample. Even for just 20 rows, our error is already significantly better than the

expected error of a random sample. Thus, our synthetic sample is a much better estimate of the true

distribution than an entry’s random samples alone. We call this ability “denoising” because it mirrors the

denoising ability of scalar nearest neighbors.

Figure 3. Scaling of error with sample size n, number of rows N, and effective sample size n Ni ,η . Every

distribution in the matrix is a Gaussian distribution. Each row has an expected value sampled from Unif(−5, 5).

Each column has a standard deviation sampled from Unif(1, 5). In plot (a), we set the number of columns to 30.

We also require at least 2 nearest neighbors. In plot (b), we simulated a random sample 100 times to estimate

the expected error of a random sample. In plot (c), we set the number of samples to 500 and the number of

columns to 10. We also cut the plot off on the top at 0.4 so that the lower error samples can be better

visualized. We simulated each setting 50 times. Each curve is fitted using least squares to the power function 

f(x) = axb.

Confidence bands. Using the results of Thm. 2, we can provide confidence bands for the quantiles of our

estimates. In this simulated setting, we have access to the true distributions of the matrix entries we take

a barycenter over. In practice, the σi ,Ni ,η
 quantity would need to be estimated. However, we show that a

bootstrap estimate of the confidence bands using the empirical samples alone provides a good estimate

of the true confidence bands.

In Fig.  4, we plot both the true and bootstrap confidence bands in the Gaussian and uniform location-

scale cases. For our bootstrap method, we resample from both the individual neighboring distributions

and resample over the neighbor set itself. We resample over samples and neighbors 10 times each for

these simulations. Clearly, the bootstrap confidence bands are more conservative than the asymptotic

| |
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confidence bands. Note that we provide estimates for the Gaussian case even though the Gaussian

distribution does not satisfy our assumption that the true distribution has a continuous quantile

function on [0,1] because it is undefined at the boundary. This is why our estimate is poor around the

boundary. However, the continuous uniform distribution satisfies our assumption. So, our estimate is

much better around the boundary.

Note that we provide estimates of simultaneous confidence bands as opposed to pointwise confidence

bands for the quantile function. I.e., our confidence regions provide 95% coverage at each of the n points

simultaneously. We provide simultaneous confidence bands using Bonferroni’s correction[40] by dividing

the confidence level, α = 0.05, by the number of confidence intervals we plot, n.

Figure 4. Asymptotic and bootstrap simultaneous confidence bands for Gaussian and continuous uniform

location-scale case. The bootstrap confidence bands are more conservative than the bands provided by our

asymptotic result. However, the bootstrap estimate resamples the neighboring distributions as well whereas

the asymptotic one does not, which could make the bootstrap confidence bands more accurate. Also note that

for the Gaussian case, our estimate is worse around p = 0 and p = 1. This is expected, because our theoretical

guarantees rely on the true distribution being supported on a compact interval.

Denoising. We show the method’s denoising ability through empirical CDF’s in Fig.  1. This ability of

nearest neighbors means that information can be shared across rows to achieve empirical distributions

that are much closer to their respective true distributions than a random sample. This feature of our

method is beneficial for downstream analysis since distributional quantities such as mean, variance, and

value-at-risk can be estimated with a much higher accuracy than an isolated observed set of samples.
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Value-at-risk (VaR) is commonly used in financial modeling and is defined for  α ∈ (0, 1)  as 

VaRX(α) = F − 1
−X(1 − α) where X is a random variable and F − 1

−X is the quantile function of −X.

We show empirically that our method estimates distributional quantities well in Fig. 5 where, clearly, the

synthetic sample produces estimates of the mean, standard deviation, value-at-risk, and median a lot

closer to their respective true values than what an observed random sample alone provides. This shows

that running our method on observed distributions can provide much better estimates of their true

distributions than just using their random samples in isolation. We also tested our method against scalar

nearest neighbors, where the respective distributional quantity is calculated for each observed

distribution beforehand to create the scalar matrix, and then we run scalar nearest neighbors. For

estimating these distributional quantities, our distributional nearest neighbors does just as well or better

than scalar nearest neighbors. However, for scalar nearest neighbors, each distributional quantity must

be calculated ahead of time before the estimation procedure, whereas new distributional quantities can

be estimated from our method without rerunning the entire procedure.

Figure 5. Error for distributional nearest neighbors (Dist-NN), scalar nearest neighbors, and a random

sample for estimating means, standard deviations, value-at-risk numbers (VaR (5%)), and medians. We use

the same Gaussian location-scale setup Fig. 3. Dist-NN  is able to estimate all of these distributional quantities

far better than a random sample and with better or about the same accuracy as scalar nearest neighbors. We

cut off the y-axis to visualize the difference between Dist-NN  and scalar nearest neighbors since both

perform better than an observed random sample.

6. Discussion

In this paper, we proposed a new problem, distributional matrix completion, where matrix entries are

one-dimensional empirical distributions. We also proposed a nearest neighbors method to solve this new

problem using tools from optimal transport and proved theoretical asymptotic bounds and distributions
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for our estimate’s error. Additionally, our simulations showcased the ability of our method to not only

recover the unobserved distributions but also create synthetic distributions that are consistently closer to

their true distributions than an observed random sample alone.

We also showed empirically that our method produces estimates for quantities such as means, standard

deviations, and quantiles that are just as good or better than scalar nearest neighbors. Whereas scalar

nearest neighbors requires recreating the entire matrix with the desired distributional quantities, our

method allows calculation of new quantities without rerunning the whole estimation procedure. A key

takeaway from these findings is that even for observed distributions, utilizing information from

neighbors can provide far better estimates of distributional quantities of interest.

While our theoretical results are limited by the assumptions we require, our method is not limited by

these assumptions and would, for instance, run in settings without i.i.d.  sampling or with different

numbers of samples in each matrix entry. In future work, we will seek to loosen these assumptions as

much as possible. We also plan on extending our method to support higher dimensions. The main

challenge with this is that the Wasserstein barycenter suffers from the curse of dimensionality[30]. This

slowdown is evident even on small 2D distributions such as grayscale images. However, we believe there

are interesting dimension-free results if one restricts the class of probability distributions (see[31] for one

such result). Finally, we plan on extending our theoretical analysis to the missing-not-at-random (MNAR)

setting where the missingness is not independent of the observed data. This will allow us to extend our

method and theoretical results to settings in causal inference to generate counterfactual distributions.

Appendix

In this appendix, we provide the proofs of the main theorems and corollary.

Appendix A. Proof of Thm. 1: Asymptotic bound

First, we split up the error into bias and variance components by definition a new term: Let

¯
μij

≜ arg min
μ

∑
u∈Ni , η

W2
2(μ, μuj). (13)

From[[29], Eq. 8], this minimum has a closed form solution in 1-dimension where 
¯
μij is the measure with

quantile function given by
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F − 1¯
μij

=
1

|Ni , η |
∑

u∈Ni , η

F − 1
μuj

.

Then, we have

W2
2 μ̂ij, μij

(3 )
= ‖F − 1

μ̂ij
− F − 1

μij
‖

2

L2 ( 0 , 1 )
= ‖F − 1

μ̂ij
− F − 1¯

μij
+ F − 1¯

μij
− F − 1

μij
‖

2

L2 ( 0 , 1 )
(14)

(a )
≤ ‖F − 1

μ̂ij
− F − 1¯

μij
‖
L2 ( 0 , 1 )

+ ‖F − 1¯
μij

− F − 1
μij
‖
L2 ( 0 , 1 )

2

(b )
≤ 2 W2

2 μ̂i j,
¯
μi j

⏟
≜V

+ W2
2

¯
μi j, μi j

⏟
≜B

,

where (a) follows from the Minkowski inequality[[42], Thm. 198] and (b) follows from the Cauchy-Schwarz

inequality[[42], Thm. 7].

Next, we bound the terms B  and V. Notice that the term V  is akin to a variance term measured as the

Wasserstein distance between the barycenter  μ̂ij  obtained from the empirical distributions of the

neighbors versus the barycenter 
¯
μij  constructed from their true distributions. On the other hand,  B

 denotes a bias-like term (that would arise if we had infinite sample size in each cell), which measures the

squared Wasserstein distance between the latter barycenter and the distribution μij being estimated. To

proceed further, we utilize two auxiliary results.

The next proposition, proven in Sec. A.1, characterizes the convergence of “empirical” barycenter to the

“population” barycenter as a function of both the sample size and the number of distributions:

Proposition 1 (Convergence of the barycenter of empirical measures). Consider a collection of measures 

νj
k
j= 1

  each of which satisfies Assum.  3. For each  j ∈ [k], let  ν̂j , n  denote the empirical distribution obtained

from n i.i.d. samples from νj. Define the two barycenters

¯
ν ≜ arg min

ν

k
∑
j= 1

W2
2(ν, νj) and ˆ

¯
νn ≜ arg min

ν

k
∑
j= 1

W2
2(ν, ν̂j ,n).

( )

( )

[ ( ) ( )]

{ }
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Then we have

W2
2(ˆ

¯
νn,

¯
ν) = Op

1

nk +
log2 n

n2 as n → ∞

uniformly with constants in Op( ⋅ ) that do not depend on {νj}
k
j= 1

 or the number of distributions, k.

Prop. 1 shows that the empirical barycenter  ˆ
¯
νn converges to the population barycenter 

¯
ν at the order of 

O(1 /nk + log2n /n2). Next, we provide a lemma showing that we can apply Prop. 1.

Lemma 1. Let  (i, j)  be the entry we seek to estimate. Let 
¯
μij  be defined as in (13),  μ̂ij  be the distribution with

quantile function defined in (9), and Ni , η defined as in (8). Then, we have have that the measures in column  j

 satisfy the conditions of Prop. 1, and we thus have

W2
2 μ̂ij,

¯
μij = Op

1

nj |Ni , η |
+

log2 nj

n2
j

as nj → ∞, (15)

Proof. Note that in this proof, we abuse notation slightly by letting Yuv be the samples in matrix entry (u, v)

 regardless if  (u, v)  is observed or not. For u ∈ [N + 1], let  Iu be the indicator random variable that ρiu ≤ η.

Recall the definition of the row-wise distance from 12:

ρiu ≜
| Ciu | − 1∑v∈Ciu

W2
2(Yiv, Yuv) if~ | Ciu | ≥ 1

∞ if~ | Ciu | = 0,
where

Ciu ≜ {v ∈ [M + 1] ∖ {j}:Aiv = 1, Auv = 1}.

Then, from MCAR,  A  is independent from the samples in each entry and from the latent factors. In

particular, Yuj ⊥⊥ Auj  for u ∈ N + 1. Next, condition on the latent row and column factors Urow  and Ucol.

Thus, each distribution is now fixed. Then, Yuj ⊥⊥ Iu  because the samples in column  j  are not used to

calculate ρiu. Auj is dependent on ρiu because Ciu is only defined if Auj = 1. But, we already showed by MCAR

( )

( ) ( )

{
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that Yuj ⊥⊥ Auj. Next, in column  j, we assume that each observed matrix entry has nj  samples that are

drawn i.i.d. from Sec. 2. Thus, we can apply Prop. 1 to the empirical distribution set {Yuj}u∈Ni ,η
. Finally,

since the bound in Prop. 1 is uniform with constants that do not depend on the distributions or  Ni , η ,

then we can remove the conditioning on Urow and Ucol. ◻

Next, we claim an asymptotic bound on the bias term (proven in Sec. A.3):

W2
2

¯
μij, μij = Op η +

log ( 2N )

Mp2 . (16)

Putting together (15) and (16), we get

W2
2(μ̂ij, μij)

(14 )
≤ 2(W2

2 μ̂ij,
¯
μij + W2

2

¯
μij, μij )

= Op
1

nj Ni , η

+
log2 nj

n2
j

+ η +
log ( 2N )

Mp2 as nj → ∞.

A.1. Proof of proposition 1: Convergence of the barycenter of empirical measures

From[[29], Eq. 8], the quantile functions of each barycenter has an explicit formula:

F − 1¯
ν =

1

k

k
∑
j= 1

F − 1
νj

and F − 1
ˆ
¯
ν =

1

k

k
∑
j= 1

F − 1
ν̂j , n

.

So, we can write the Wasserstein distance between the two barycenters as:

W2
2(ˆ

¯
ν,

¯
ν)

(3 )
= ‖F − 1

ˆ
¯
ν − F − 1¯

ν
‖2

(5 )
= ‖

1

k

k
∑
j= 1

F − 1
ν̂j , n

− F − 1
νj

‖
2

L2 ( 0 , 1 )
(17)

=
1
n‖

1
k

k
∑
j= 1

√n F − 1
ν̂j , n

− F − 1
νj

‖
2

L2 ( 0 , 1 )

≜
1
n‖

1
k

k
∑
j= 1

√nq̂νj ,n‖
2

L2 ( 0 , 1 )

,

| |

( ) ( √ )

( ) ( )

( | | √ )

( )

( )
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where we have defined  q̂νj , n ≜ √n(F − 1
ν̂j ,n

− F − 1
νj

)  in the last step. To complete the proof, we next derive the

asymptotic distribution of q̂νj , n. While it is well known that q̂νj , n converges to a weighted Brownian bridge

in distribution[[43], Ch. 18],1 the next lemma establishes a stronger result, namely a convergence in

probability for the barycenters. See Sec. A.1.1 for the proof.

Lemma 2 (Approximation of barycenter). Consider a collection of measures  νj
k
j= 1

  each of which satisfies

Assum. 3. For each  j ∈ [k], let  ν̂j , n denote the empirical distribution obtained from n  i.i.d. samples from νj. Then

there exists sequences of standard Brownian bridges (Bj , n)
k
j= 1

 such that as n → ∞, we have (uniformly)

2

n‖
1

k

k
∑
j= 1

√n(F − 1
ν̂j , n

− F − 1
νj

) −
Bj , n

fνj∘F
− 1
νj

‖
2

L2 ( 0 , 1 )

a . s .
= O

log2 n

n2 .

Using the Brownian bridges appearing in Lem. 2, we obtain

W2
2(ˆ

¯
ν,

¯
ν)

(17 )
=

1

n‖
1

k

k
∑
j= 1

q̂νj ,n‖
2

L2 ( 0 , 1 )

=
1
n‖

1
k

k
∑
j= 1

q̂νj ,n −
Bj , n

fνj∘F
− 1
νj

+
Bj , n

fνj∘F
− 1
νj

‖
2

L2 ( 0 , 1 )

(i )
≤

2

n‖
1

k

k
∑
j= 1

q̂νj ,n −
Bj , n

fνj∘F
− 1
νj

‖
2

L2 ( 0 , 1 )

+
2

n‖
1

k

k
∑
j= 1

Bj , n

fνj∘F
− 1
νj

‖
2

L2 ( 0 , 1 )

.

where (i) follows from applying Minkowski’s inequality[[42], Thm. 198] followed by the Cauchy-Schwarz

inequality[[42], Thm. 7]. While Lem. 2 establishes that the first term on the RHS of the above display is

bounded almost surely, the next result (proven in Sec. A.1.2) provides a tight control on the second term

in probability:

Lemma 3 (Norm of weighted average of Brownian bridges). Let (Bj)
k
j= 1

 be sequences of standard Brownian

bridges. Let (wj( ⋅ ))k
j= 1

 be positive L-Lipschitz-continuous functions. Then, we have

1

n
‖

1

k

k
∑
j= 1

wj ⋅ Bj‖
2

L2 ( 0 , 1 )
= Op

1

nk
.

{ }

[ ] ( )

( )
( )

( )
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Putting together Lems. 2 and 3, we get our final result:

W2
2(ˆ

¯
ν,

¯
ν) = Op

log2 n

n2 +
1

nk .

A.1.1. Proof of Lem. 2: Approximation of barycenter

First, we will apply the following theorem (Note that we only restate the part of theorem on Brownian

bridges and not Kiefer processes):

Theorem A (Thm. 6 in[44]). Consider a measure  ν  satisfying Assum.  3 and let  ν̂n  denote the empirical

distribution obtained from n  i.i.d. samples from ν. Then there exists a sequence of Brownian bridges  B1, …, Bn

 such that

sup
0 < t< 1

f(F − 1(t))√n(F − 1
ν̂n ( t ) − F − 1

ν (t)) − Bn(t)

a . s .
=

O n − 1 / 2logn if γ < 2

O n − 1 / 2(loglogn)γ(logn) ( 1 + ϵ ) ( γ− 1 ) if γ ≥ 2,

where ϵ > 0 is arbitrary.

From Assum.  3, we have  γ < 2  for each distribution. So, we have that for each distribution  νj  and its

respective approximation by a sequence of Brownian bridges,  Bj , l
n
l= 1

,

sup
t∈ ( 0 , 1 )

fνj F
− 1
νj

(t) q̂νj ,n(t) − Bj ,n(t)
a . s .

= O
log n

√n
.

This result holds for each measure, but we need it to hold uniformly for any finite set of measures. Thus,

we will unpack the proof of this theorem to show that it holds uniformly. Thm. A is proven by combining

three theorems where un be the quantile process 
^
qn for a Unif(0, 1) random variable:

Theorem B (Thm. 1 in[44]). If the uniform (0,1) random variables  U1, U2, …  are defined on a rich enough

probability space, then one can define, for each n, a Brownian bridge {Bn(y) : 0 ≤ y ≤ 1} on the same probability

( )

| |

{ ( )
( )

( )

| ( ) | ( )

qeios.com doi.org/10.32388/DX6MDB 27

https://www.qeios.com/
https://doi.org/10.32388/DX6MDB


space such that, for all z, we have

P sup
0 ≤ y≤ 1

un(y) − Bn(y) > n − 1 / 2(Alogn + z) ≤ Be −Cz

for positive absolute constants A, B,  and C;

Theorem C (Thm. 2 in[44]). With δn = 25n − 1loglogn we have

lim supn→ ∞ sup
δn≤ y≤ 1 − δn

(y(1 − y)loglogn) − 1 / 2 un(y)
a . s .

≤ 4; and (19)

Theorem D(Thm. 3 in[44]). Let X1, X2, …  be i.i.d random variables with a continuous distribution function F

 which is also twice differentiable on (a, b) and F′ = f ≠ 0 on (a, b). Let the quantile processes q̂n(y) and respective 

un(y) be defined in terms of the order statistics Xk : n and Uk : n = F(Xk : n). Assume that for some γ > 0,

sup
a< x<b

F(x)(1 − F(x))
f′ ( x )

f2 ( x )
≤ γ,

and f is nondecreasing (increasing) on an interval to the right of a (to the left of b). Then, with δn as in Thm. C

sup
0 < y< 1

f(F − 1(y))qn(y) − un(y)
a . s .

=

O(n − 1 / 2loglogn) if γ < 1

O(n − 1 / 2(loglogn)2) if γ = 1

O(n − 1 / 2(loglogn)γ(logn) ( 1 + ε ) ( γ− 1 ) ) if γ > 1

where ε > 0 is arbitrary. The constants in the O( ⋅ ) are respectively, 2( max (45, 25(2γ / (1 − γ)))) + 40γ10γ if γ < 1, 102

if γ = 1, and 2 max (45, (2γ / (γ − 1))25γ) if γ > 1.

First, Thm. B can be easily extended to our setting using a simple union-bound:

P sup
i∈ [ k ]

sup
0 ≤ y≤ 1

un , i(y) − Bn , i(y) > n − 1 / 2(Alogn + z) ≤ kBe −Cz

( | | )

| |

| |

| | {

( | | )

qeios.com doi.org/10.32388/DX6MDB 28

https://www.qeios.com/
https://doi.org/10.32388/DX6MDB


So, as long as k does not grow faster than exp(z), this statement will still hold and we thus have

sup
i∈ [ k ]

sup
0 ≤ y≤ 1

un , i(y) − Bn , i(y)
a . s .

= O(n − 1 / 2logn).

Next, for Thm. C, we have

lim supn→ ∞ sup
i∈ [ k ]

sup
δn≤ y≤ 1 − δn

(y(1 − y)loglogn) − 1 / 2 un , i(y) (20)

= sup
i∈ [ k ]

lim supn→ ∞ sup
δn≤ y≤ 1 − δn

(y(1 − y)loglogn) − 1 / 2 un , i(y)

(19 )
≤ sup

i∈ [ k ]
4

= 4.

For Thm. D, we claim that we have the same asymptotic behavior in our case (proven at the end of this

section)

sup
i∈ [ k ]

sup
0 < y< 1

f(F − 1(y))qn(y) − un(y) (21)

a . s .
=

O(n − 1 / 2loglogn) if γ < 1

O(n − 1 / 2(loglogn)2) if γ = 1

O(n − 1 / 2(loglogn)γ(logn) ( 1 + ε ) ( γ− 1 ) ) if γ > 1

Putting these pieces together, we get

sup
i∈ [ k ]

sup
0 < y< 1

fi(F
− 1
i (y))q̂n , i(y) − Bn , i(y)

(b )
≤ sup

i∈ [ k ]
sup

0 < y< 1
fi(F

− 1
i (y))q̂n , i(y) − un , i(y) + un , i(y) − Bn , i(y)

(c )
= O(n − 1 / 2logn + n − 1 / 2(loglogn)2)

= O(n − 1 / 2logn)

| |

| |

| |

| |

{

| |

| | | |
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where (b) follows from the triangle inequality and (c) follows because γ < 2 for each measure and we can

set ε < 1/ (γ − 1) − 1 if 1 < γ < 2 in (21).

We can now finish the main proof. From Assum. 3, there exists a positive constant C that lower bounds

each density function. Thus, for n large enough (which we have shown exists for any admissible value of k

), we have for some universal constant c

sup
j∈ [ k ]

sup
0 < y< 1

fj(F
− 1
j (y))q̂n , j(y) − Bn , j(y)

a . s
≤ c(n − 1 / 2logn + kn − 1 / 2(loglogn)2) (22)

sup
j∈ [ k ]

sup
0 < y< 1

q̂n , j(y) −
Bn , j ( y )

fj (F
− 1
j ( y ) )

a . s .
≤

c

C
(n − 1 / 2logn + kn − 1 / 2(loglogn)2)

Then, for any y ∈ (0, 1), almost surely,

1

k

k
∑
j= 1

q̂νj ,n(y) −
Bn , j ( y )

fj (F
− 1
j ( y ) )

(c )
≤

1

k

k
∑
j= 1

q̂νj ,n(y) −
Bn , j ( y )

fj (F
− 1
j ( y ) )

(22 )
≤

c

C
n − 1 / 2logn

where  (c)  follows the triangle inequality. Next, since this holds for all y, we can take the L2(0, 1) of both

sides to get

2

n‖
1

k

k
∑
j= 1

q̂νj ,n(y) −
Bn , j ( y )

fj (F
− 1
j ( y ) )

‖
2

L2 ( 0 , 1 )

≤
2c

n2C
log2n = O

log2 n

n2 .

Proof of claim (21). We will only repeat the parts of the proof that differ in our case. Let y ∈ ((l − 1) /n, l /n]

 and ξ be between y and Ul : n = y + √nun(y). Then, we have from[[44], Eq. 3]

sup
i∈ [ k ]

fi(F
− 1
i (y))q̂n , i(y) − un , i(y) ≤ sup

i∈ [ k ]

1

2n
− 1 / 2u2

n , i(y)fi(F
− 1
i (y))

f′i (F
− 1
i ( ξ ) )

f3i (F − 1
i ( ξ ) )

.

| |

| |

| ( )| | |

( ) ( )

| |
| |
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Next, from (20) and since each term is nonnegative, we have for large enough n

sup
i∈ [ k ]

fi(F
− 1
i (y))q̂n , i(y) − un , i(y) ≤ 8n − 1 / 2(loglogn)y(1 − y) sup

i∈ [ k ]
fi(F

− 1
i (y))

f′i (F
− 1
i ( ξ ) )

f3i (F − 1
i ( ξ ) )

.

From the proof of[[44], Thm. 3], we have

sup
i∈ [ k ]

fi(F
− 1
i (y))q̂n , i(y) − un , i(y) ≤ 8γ5 ⋅ 10γn − 1 / 2(loglogn).

Next, from[[44], Eq. 3.10], we have

sup
i∈ [ k ]

sup
0 ≤ y≤ δn

un(y)
a . s .

≤ 45n − 1 / 2loglogn.

From[[44], Eq. 3.13], if Ul : n ≥ y, then

sup
i∈ [ k ]

fi(F
− 1
i (y))qn , i(y) ≤ un(y).

If Uk : n < y, then[[44], Eq. 3.14] establishes

sup
i∈ [ k ]

fi(F
− 1
i (y))qn , i(y) ≤

2γ

1 − γn
1 / 2y if γ < 1

2γ

γ− 1
n1 / 2yγU − ( γ− 1 )

l :n if γ > 1

2n1 / 2ylog(y /Ul :n) if γ = 1

Next, from the end of proof of[[44], Thm. 3], we have our result.

| | | |

| |

| |

| |

| | {
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A.1.2. Proof of Lem. 3: Norm of average of Brownian bridges

We seek to prove that Prop. 1 holds with constants that do not depend on k. This will allow us to remove

the conditioning on the entire neighborhood set. We have

1

n
‖

1

k

k
∑
j= 1

wj ⋅ Bj‖
2

L2 ( 0 , 1 )

=
1

nk
‖

1

√k

k
∑
j= 1

wj ⋅ Bj

⏟
Gk

‖
2

L2 ( 0 , 1 )

.

Clearly,  Gk  is a Gaussian process with  E[Gk(t)] = 0  and  Gk(0) = Gk(1) = 0. We also know that it has

continuous sample paths and is thus bounded. However, we wish to show that it is uniformly bounded

over all values of k. For s, t ∈ [0, 1], we have

Cov(Gk(s), Gk(t)) =
1

k
Cov

k
∑
j= 1

wj(s)Bj(s),
k
∑
j= 1

wj(t)Bj(t)

(a )
=

1
k

k
∑
j= 1

Cov(wj(s)Bj(s), wj(t)Bj(t))

=
1

k

k
∑
j= 1

wj(s)wj(t)( min (s, t) − st)

where  (a)  follows from the independence on the Brownian bridges. Next, we have for all  j ∈ [k]  and 

t ∈ [0, 1], wj(t) < C′ for some universal C′. Thus,

Var(Gk(t)) = Cov(Gk(t), Gk(t)) =
1

k

k
∑
j= 1

(wj(t))
2(t − t2) ≤ (t − t2)C′2 ≤ (0.5)C′2. (23)

Let σ2
Gk
≜ supt∈ [ 0 , 1 ] E[(Gk(t))

2]. Since we have that almost surely, the paths of Gk are bounded, then by the

Borell–TIS inequality[[45], Thm. 2.1.1], we have that for u > 0,

P sup
t∈ [ 0 , 1 ]

Gk(t) − E sup
t∈ [ 0 , 1 ]

Gk(t) > u ≤ exp(−u2 / (2σ2
Gk

))
(23 )

≤ exp(−u2 /C′2).

( )

( [ ] )
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Rewriting, we get

P sup
t∈ [ 0 , 1 ]

Gk(t) ≤ u + E sup
t∈ [ 0 , 1 ]

Gk(t) ≥ 1 − exp(−u2 /C′2).

The final step is to provide a uniform upper bound on  E supt∈ [ 0 , 1 ] Gk(t) . From Dudley’s theorem[[45],

Thm. 1.3.13], there exists a universal constant K such that

E sup
t∈ [ 0 , 1 ]

Gk(t) ≤ K∫diam ( [ 0 , 1 ] ) / 2
0 √log(N([0, 1], d, ε))dε (24)

where d(s, t) = E (Gk(s) − Gk(t))
2 1 / 2

, diam([0, 1]) is the maximum distance under d between two points in 

[0, 1], and N([0, 1], d, ε) is the smallest number of balls of length ε that cover [0, 1] under d. Next, we claim

that there is a constant 
∼

C > 0 such that

(d(s, t))2 ≤
∼

C|s − t|. (25)

We prove this claim in Sec. A.2. So, we can provide the following upper bounds:

diam([0, 1]) = max
s , t∈ [ 0 , 1 ]

d(s, t) ≤
∼

C, and

N([0, 1], d, ε) ≤ N([0, 1], | ⋅ | , ε2 /
∼

C)
(a )
≤

3
∼

C

ε2 if ε ≤
∼

C

1 if ϵ >
∼

C

where (a) follows from[[46], Eq. 4.10]. Plugging this into (24), we get

( [ ])

[ ]

[ ]

( [ ])

√

{ √
√
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E sup
t∈ [ 0 , 1 ]

Gk(t) ≤ K∫
∼

C / 2
0

log
3
∼

C

ε2 dε ≜
∼

K < ∞.

Going back to the probability term, we get

P sup
t∈ [ 0 , 1 ]

Gk(t) ≤ u +
∼

K ≥ 1 − exp(−u2 /C′2).

Thus, we have that  supt∈ [ 0 , 1 ] Gk(t) = Op(1)  with constants that do not depend on  k  or the functions wj.

Thus, we have that

‖Gk‖
2
L2 ( 0 , 1 )

≤ ‖ sup
t∈ [ 0 , 1 ]

Gk(t)‖
2

L2 ( 0 , 1 )

= sup
t∈ [ 0 , 1 ]

Gk(t)
2 = Op(1).

A.2. Proof of claim 83

First, let t ≥ s. Since Gk has mean 0 at any time,

(d(t, s))2 = E[(Gk(t) − Gk(s))
2]

= Var(Gk(t) − Gk(s))

= Var(Gk(t)) + Var(Gk(s)) − 2Cov(Gk(t), Gk(s))

=
1

k

k
∑
j= 1

wj(t)
2(t − t2) + wj(s)

2(s − s2) − 2wj(t)wj(s)(s − st)

Now, we just consider one summand since the bound will apply for all summands:

[ ] √ √ ( )

( )

( )

[ ]
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wj(t)2(t − t2) + wj(s)2(s − s2) − 2wj(t)wj(s)(s − st)

= wj(t)2t − wj(t)2t2 + wj(s)2s − wj(s)2s2 − 2wj(t)wj(s)s + 2wj(t)wj(s)st

= wj(s)2s − 2wj(t)wj(s)s + wj(t)2s − wj(t)2s + wj(t)2t

−wj(t)2t2 − wj(s)2s2 + 2wj(t)wj(s)st

= wj(s)
2s − 2wj(t)wj(s)s + wj(t)

2s − wj(t)
2s + wj(t)

2t − (wj(t)t − wj(s)s)
2

≤ wj(s)
2s − 2wj(t)wj(s)s + wj(t)

2s − wj(t)
2s + wj(t)

2t

≤ s(wj(t) − wj(s))
2 + wj(t)

2(t − s)

≤ (wj(t) − wj(s))
2 + wj(t)

2(t − s)

(a )
≤ L2(t − s)2 + wj(t)2(t − s)

(b )
≤
∼

C(t − s)

where (a) follows from the wj functions being L-Lipschitz, and (b) follows from the fact that t, s ∈ [0, 1] and

there is a multiplicative constant that makes (t − s) dominate (t − s)2 with in [0, 1].

A.3. Proof of (16): Asymptotic bias bound

For this proof, we are conditioned on the number of neighbors  Ni , η . We do not write this for notational

brevity. First, we claim the following finite-sample error bound on the bias (proven after this proof):

There exists universal constants c, cf and K such that for any fixed δ ∈ (0, 1),

P 2W2
2 μ̄ij, μij ≤ 2cf η + K

2

cMp2 log
2N

δ |Ni ,η ≥ 1 ≥ 1 − δ. (26)

Taking the complement, we have

P(2W2
2

¯
μij, μij ≥ 2cf η + 2K

2

cMp2 log
2N
δ ) ≤ δ.

| |

( ( ) ( √ ( )) | | )

( ) ( √ ( ))
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where c and cf are constants. Note that each term in the bound is fixed except for δ. Thus, we satisfy the

boundedness in probability definition. So, we have

W2
2

¯
μij, μij = Op η +

log ( 2N )

Mp2 .

We now return to our earlier claim (26)

Proof of claim (26). Similar to the arguments in[[18], Sec. 4.3], we have

W2(
¯
μij, μij)

(3 )
= ∥ F − 1¯

μij
− F − 1

μij
∥L2 ( 0 , 1 )

(17 )
= ∥

1

|Ni , η | ∑
k∈Ni , η

F − 1
μkj

− F − 1
μij

∥L2 ( 0 , 1 )

=
1

|Ni , η |
∥ ∑

k∈Ni , η

F − 1
μkj

− F − 1
μij

∥L2 ( 0 , 1 )

(a )
≤

1

|Ni , η | ∑
k∈Ni , η

∥ F − 1
μkj

− Fμij
∥L2 ( 0 , 1 )

≤
|Ni , η |

|Ni , η |
max

k∈Ni , η

∥ F − 1
μkj

− F − 1
μij
∥L2 ( 0 , 1 )

(3 )
= max

k∈Ni , η

W2(μkj, μij).

where (a) follows from Minkowski’s inequality[[42], Thm. 198]. By nonnegativity and squaring, we have

W2
2(

¯
μij, μij)

≤ max
k∈Ni , η

W2
2(μkj, μij).

Next, we claim that

E[ρiu x ( i )
row, x (u )

row ] = E[W2
2(Yij, Yuj) x ( i )

row, x (u )
row ] (27)

which we prove at the end of this section. Since the latent spaces are bounded and the latent function f is

Lipschitz, then the space of distributions is also bounded in Wasserstein distance. Since the space is

( ) ( √ )

( )

( )

| |
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bounded in Wasserstein distance and since each distribution has finite support, then there exists a

universal constant ymax  such that W2
2(Yij, Yuj) ≤ ymax . Thus, we have2

∥W2
2(Yij, Yuj)∥ψ2

≤
ymax

√ln ( 2 )
= K.

So, by the Hoeffding Inequality (Theorem 2.6.3 in[46]), we have that for any fixed row u,

P ρik − E[W2
2(Yij, Yuj)] ≥ t Ciu, x

( i )
row, x (u )

row ≤ 2exp −c
t2

K2 Ciu .

So, by total probability, we have

P( ρiu − ∗ W2
2(Yij, Yuj) ≥ t x ( i )

row, x (u )
row )

≤ P( ρiu − ∗ W2
2(Yij, Yuj) ≥ t | Cik | ≥

1
2Mp2, x ( i )

row, x (u )
row )

+P( | Cik | ≤
1

2
Mp2, x ( i )

row, x (u )
row )

≤ 2exp −c
t2

2K2Mp2 + exp −
1
8Mp2 .

Taking a union bound, we can remove the conditioning to get

P max
k≠ i

ρik − ∗ W2
2(Yij, Ykj) ≤ t ≥ 1 − 2Nexp −c

t2

2K2Mp2 − Nexp −
1
8Mp2 . (28)

Denote the event above as E. Since the latent metric spaces Hrow and Hcol are bounded and since the latent

function f is L-Lipschitz with respect to its row argument, then there exists a constant cf ≥ 0 where

W2
2(μkj, μij) ≤ cfx∼Hcol

E[W2
2(f(x ( k )

row , x), f(x ( k )
row , x))] (29)

(| | | ) ( | | )

| | |
| | |

( ) ( )

( | | ) ( ) ( )
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where x ∼ Hcol means that x is drawn from the distribution over the column latent space. Next, we have

from[[47], Lem. 3] that for any distributions μ and ν with respective empirical distributions μ̂ and ν̂ derived

from n samples each,

E[W2
2(μ̂, ν̂)] ≥ W2

2(μ, ν) (30)

where the expectation is taken over the randomness in the sampling. So, we have that on event E,

max
k∈Ni , η

W2
2(μkj, μij)

(29 )
≤ max

k∈Ni , η

cfx∼Hcol
∗ W2

2(f(x ( k )
row , x), f(x ( k )

row , x))

(30 )
≤ max

k∈Ni , η

cfHcol ∗ ∗ W2
2(Ykj, Yij)

(28 )
≤ max

k∈Ni , η

cf(ρik + t)

≤ cf(η + t).

Putting this together, we have

P(W2
2

¯
μij, μij ≤ cf(η + t) |Ni ,η | ≥ 1) ≥ 1 − 2Nexp −c

t2

2K2Mp2 − Nexp −
1

8
Mp2 .

Finally, it can be easily verified that by setting

t = K
2

cMp2 log
2N

δ

we get

( ) | ( ) ( )

√ ( )
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P(2W2
2

¯
μij, μij ≤ 2cf η + K

2

cMp2 log
2N

δ |Ni ,η | ≥ 1)

≥ 1 − δ − Nexp −
1

8Mp2 .

Finally, since in the statement of Thm.  1, we condition on  Ciu ≥
1

2Mp2  for all  u ∈ [N + 1], then we can

remove the third term in the probability bound to get:

P(2W2
2

¯
μij, μij ≤ 2cf η + K

2

cMp2 log
2N

δ |Ni ,η | ≥ 1) ≥ 1 − δ.

Proof of claim (27). Recall the definition of ρiu from (7):

ρiu
△

=

1

|Ciu | ∑j∈Ciu
W2

2(Yij, Yuj) if | Ciu | ≥ 1

∞ if | Ciu | = 0.

Let  S  denote the randomness from sampling  n  points from each distribution. Next, we only need to

consider the case of  Ciu ≥ 1 because we give a high-probability bound on this quantity being large. Under

this, we have

E[ρiu Ciu, x
( i )
row, x (u )

row ] = E[
1

|Ciu | ∑
j∈Ciu

W2
2(Yij, Yuj) Ciu, x

( i )
row, x (u )

row ]

=
1

Ciu

∑
j∈Ciu

E[W2
2(Yij, Yuj) Ciu, x

( i )
row, x (u )

row ]

=
1

|Ciu |
∑

j∈Ciu

E[W2
2(Yij, Yuj) x ( i )

row, x (u )
row ]

where the last line follows from the independence of the missingness from the distributions. This

expectation is taken over two sources of randomness: the distribution over Hcol and the distribution over

( ) ( √ ( )) |
( )

| |

( ) ( √ ( )) |

{

| |

| |
| | |

|
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the sampling from each distribution,  S. Next, since each sample is drawn i.i.d.  and since each column

vector is also drawn i.i.d then we have that  ∗ W2
2(Yij, Yuj) x ( i )

row, x ( u )
row   is constant across column latent

vectors. Thus, we have that

E[ρiu Ciu, x
( i )
row, x (u )

row ] = E[W2
2(Yij, Yuj) x ( i )

row, x (u )
row ].

Since this holds for all Ciu, we can remove the conditioning to get our claim:

E[ρiu x ( i )
row, x (u )

row ] = E[W2
2(Yij, Yuj) x ( i )

row, x (u )
row ].

Appendix B. Proof of Thm. 2: Asymptotic distribution of estimate

Let t ∈ (0, 1). First, we can do a similar bias-variance decomposition as in (14):

F − 1
μ̂ij

(t) − F − 1
μij

(t) = F − 1
μ̂ij

(t) − F − 1¯
μij

(t) + F − 1¯
μij

(t) − F − 1
μij

(t).

We claim that

nj ,M Ni , ηM

σ
Ni , ηM

( t ) F − 1
μ̂ij

(t) − F − 1¯
μij

(t)
d

→ N(0, 1)
(31)

and

nj ,M Ni , ηM

σNi , ηM
( t )

F − 1¯
μij

(t) − F − 1
μij

(t) = op(1). (32)

We use the following fact to prove both claims for random variables Xm:

|

| |

| |

√ | | ( )

√ | | ( )
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if Xm = Op(am) and lim
m→ ∞

am = 0 then Xm = op(1).

Putting together claims (31) and (32), we have

nj ,M Ni , ηM

σ
Ni , ηM

( t ) F − 1
μ̂ij

(t) − F − 1
μij

(t)
d

→ N(0, 1).

Proof of claim  (31). First, define  q̂uj(t) ≜ nj ,M F − 1
Yuj

(t) − F − 1
μuj

(t) . Recall from the proof of Prop.  1 that we

have that for each distribution  μuj  for  u ∈ Ni , ηM
  and its respective approximation by a sequence of

standard Brownian bridges,  Bu , l
nj ,M
l= 1

,

sup
t∈ ( 0 , 1 )

q̂uj(t) −
Bu , nj ,M

( t )

fμuj F − 1
μuj

( t )

a . s .
= O

log nj ,M

nj ,M
.

Next, we have

nj ,M Ni ,ηM
F − 1
μ̂ij

(t) − F − 1¯
μij

(t)
(9 )
= nj ,M Ni ,ηM

1

Ni , ηM

∑
u∈Ni , ηM

F − 1
Yuj

(t) − F − 1
μuj

(t)

=
1

Ni , ηM

∑
u∈Ni , ηM

q̂uj(t)

Now, we will proceed similar to the proof of Prop.  1 by adding and subtracting the Brownian bridge

approximation:

√ | | ( )

√ ( )

( )

| ( ) | ( √ )

√ | |( ) √ | |( | | )
√ | |
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1

Ni , ηM

∑
u∈Ni , ηM

q̂uj(t)

=
1

Ni , ηM

∑
u∈Ni , ηM

q̂uj(t) −
Bu , nj ,M

( t )

fμuj F − 1
μuj

( t )
+

Bu , nj ,M
( t )

fμuj F − 1
μuj

( t )

=
1

Ni , ηM

∑
u∈Ni , ηM

q̂uj(t) −
Bu , nj ,M

( t )

fμuj F − 1
μuj

( t )
+

1

Ni , ηM

∑
u∈Ni , ηM

Bu , nj ,M
( t )

fμuj F − 1
μuj

( t )

Analyzing the first sum, we have from the following bound from applying proposition 1 just like in the

proof of Lem. 2:

1

Ni , ηM

∑
u∈Ni , ηM

q̂uj(t) −
Bu , nj ,M ( t )

fμuj F − 1
μuj

( t )

≤
1

Ni , ηM

∑
u∈Ni , ηM

q̂uj(t) −
Bu , nj ,M

( t )

fμuj F − 1
μuj

( t )

(a )
≤

1

Ni , ηM

∑
u∈Ni , ηM

q̂uj(t) −
Bu , nj ,M

( t )

fμuj F − 1
μuj

( t )

(18 )
= O Ni ,ηM

log nj ,M

√n

11
= op(1)

where (a) follows from the triangle inequality. Analyzing the second sum, we have

1

Ni , ηM

∑
u∈Ni , ηM

Bu , nj ,M
( t )

fμuj F − 1
μuj

( t )

d
=

1

Ni , ηM

∑
u∈Ni , ηM

Xu

fμuj F − 1
μuj

( t )

where {Xu}u∈Ni ,ηM

 are i.i.d. N(0, t − t2) random variables because Bu , nj ,M
(t) ∼ N(0, t − t2) from the definition

of a standard Brownian bridge[[48], Prop. 8.1.1]. Next, the sum of independent mean-zero Gaussian

√ | |

√ | | ( ( ) ( ) )
√ | | ( ( ) ) √ | | ( )

√ | | ( ( ) )
| √ | | ( ( ) ) |

√ | | | ( ) |
(√ | | )

√ | | ( ) √ | | ( )
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random variables is Gaussian with a variance equal to the sum of summand’s variances and mean-zero.

Thus, we have

1

Ni , ηM

∑
u∈Ni , ηM

Xu

fμuj F − 1
μuj

( t )
∼ N 0,

1

Ni , ηM

∑
u∈Ni , ηM

t− t2

f2μuj
F − 1
μuj

( t )

(12 )
= N(0, σ2

Ni , η
(t))

Thus, we have

1

σ
Ni , η

( t ) Ni , ηM

∑
u∈Ni , ηM

Bu , nj ,M
( t )

fμuj F − 1
μuj

( t )
∼ N(0, 1)

which comples the proof of claim (31).

Proof of claim (32). Here, we consider the sequence 

nj ,M Ni ,ηM

σNi ,ηM
( t ) F − 1¯

μij
(t) − F − 1

μij
(t) . From the proof of Thm. 1,

we have:

‖F − 1¯
μij

− F − 1
μij
‖
L2 ( 0 , 1 )

(3 )
= W2

¯
μij, μij

(16 )
= Op ηM +

log ( 2Nn )

Mnp
2

1 / 2
. (33)

Now, let aM(t) =
nj ,M Ni ,ηM

σNi ,ηM
( t ) . Thus, we have

‖aM(t) F − 1¯
μij

− F − 1
μij

‖
L2 ( 0 , 1 )

= aM(t)‖F − 1¯
μij

− F − 1
μij
‖
L2 ( 0 , 1 )

(33 )
= Op aM(t) ηM +

log ( 2NM )

Mp2

1 / 2

(11 )
= op(1)

√ | | ( ) ( | | ( ) )

√ | | ( )

√ | | ( )

( ) (( √ ) )
√ | |

( )

( ( √ ) )
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Next, from Assum.  3, each distribution has an  L-Lipschitz quantile function and is thus continuously

differentiable, which makes it Lipschitz as well. So, there exists a universal Lipschitz constant for the

quantile functions since the union of all quantile functions have bounded range (because the union of the

distributions has bounded support). Thus,  {F − 1¯
μij

}
∞

n= 1
  is equicontinuous[[49], Examples 11.15] (For the

definition of equicontinuous sets of functions see[[49], Ch. 11]. Next, from[[50], Lem. 3.2], we know that if a

sequence of equicontinuous functions converges in L2(0, 1) then it also converges uniformly. So, we have

that for any t ∈ (0, 1), aM(t) F − 1¯
μij

(t) − F − 1
μij

(t) = op(1).

Appendix C. Corollaries

Let ϕ(x, r) =
∼

x ∼Hrow ∗ v∼Hcol ∗ W2
2(f(x, v), f(

∼

x , v)) ≤ r. We require the following two lemmas to remove the

conditioning. First, we have a bound on the probability of having no neighbors: Next, we have a high-

probability lower bound on the number of neighbors (proven in Sec. C.2):

Lemma 4 (Lower bound on number of neighbors). Let n − j be the number of samples in each matrix entry not

in column j. Let there exist constants c1 and K such that η′ ≥
6c1

n − j
 and η ≥ η′ + K

4log (N )

cMp2 . Let Ni , η be the nearest

neighbors for row i. Then we have

P( Ni ,η ≥
1

2
N
∼

p i ,η′ x ( i )
row) ≥ 1 − exp −

N
∼

p i , η′

8 where

∼

p i ,η′

△

= 1 −
1

N2 − exp −
Mp2

8
⋅ p ⋅ ϕ x ( i )

row,
η′

3
−

6c1

n − j
.

Next, we have a simplified lower bound for the previous lemma:

Lemma 5 (Simplified lower bound on number of neighbors). We provide a simplified lower bound on 
1

2Np̂i , η′,

to give a lower bound on the number of neighbors. For N, M large enough, we have

( )

√

| | | ( )

( ( ) ) ( )
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1
2Np̂i ,η′ ≥

1

4Np ⋅ ϕ x ( i )
row,

η′

3 −
6c1

n − j
.

Now, we are prepared to state and prove our corollary.

C.1. Latent factors drawn from uniform hypercube

Here, we provide a general corollary where the latent factors are drawn from a uniform hypercube. This

case covers Cor. 1.

Corollary 2 (Uniform measure on hypercube). Let Hrow = [0, 1]d  for some d ≥ 1. Let Assums. 1 to 3 hold. Let 

drow and dcol be the Euclidean measure and μrow be the uniform measure. Let N, M,  and p be fixed. Let n − j = nv

 for v ≠ j. Conditioned on the number of neighbors being at least 
1

4 (Np)
2

d+ 2  (event E1) and the number of shared

columns between row i and row u being at least 
1

2Mp2 for u ∈ [N + 1] (event E2), we have

W2
2(μ̂ij, μij) =

∼

Op
1

nj (Np )
2

d+ 2

+
1

p√M
+

1
n − j

as nj → ∞,

∗ E1 ≥ 1 − (N + 1)exp −Mp2 /8 , and

∗ E2 ≥ 1 − 2exp −(Np)
2

d+ 2 /16 .

Proof of Cor. 2. Similar to Corollary 2 in[17], we define B(x, r)
△

= {x′
∈ Hrow : drow(x, x′) ≤ r}  for r > 0. Then, we

have if  drow(x, x′) ≤
1

L

η′

3 −
6c1

n , then by Lipschitzness of  f, we have  Ev∼μcol
[W2

2(f(x, v) − f(x′, v))] ≤
η′

3 −
6c1

n .

Thus, we have

ϕ x,
η′

3 −
6c1

n ≥ μrow B x,
1

L

η′

3 −
6c1

n = Vol B x,
1

L

η′

3 −
6c1

n .

There are positive universal constants α and β such that for any d ≥ 1, x ∈ [0, 1]d, r > 0

( )

( )
( )

( )

( )

( ) ( ( ( ))) ( ( ( )))
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Vol(B(x, r)) ≥ min (1, αβdrd).

Plugging this into the inequality above, we have

ϕ x,
η′

3 −
6c1

n ≥ min 1, αβd
1

L

η′

3 −
6c1

n

d

Next, ∀v ∈ Hcol, x, x′
∈ Hrow, W2(f(x, v), f(x′, v)) ≤ L√d. Let

η′

3 =
6c1

n + α2 /dβ2L2(Mp) − 2 / (d+ 2 ) .

So, we have

Np ⋅ ϕ x, η′ −
c1

n −
c2

√n
≥ Np ⋅

α − 2 /dβ − 2L2 (Np ) − 2 / ( d+ 2 ) d / 2

αβdLd
= (Np)

2

d+ 2 .

Putting this into the bounds in Lems. 4 and 5, and letting η′ be equal to its lower bound, we get our result. 

◻

C.2. Proof of Lem. 4: Lower bound on number of neighbors

Now, we place a high-probability lower bound on the number of neighbors in order to remove the

conditioning on Ni , η. Now, we must remove the conditioning on  |Ni , η | . We do this by finding a high-

probability bound on a another set which can be more easily analyzed:

Ω
△

= u ∈ [N + 1] ∖ {i}:Auj = 1, EHcol
[E[W2

2(Yiv, Yuv)]] ≤ η′ .

Next, consider the set

( ) { ( ( )) }

( ) ( )

{ }
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∼

Ω
△

= u ∈ Ω: ρiu − EHcol
[E[W2

2(Yiv, Yuv)]] ≤ η − η′ .

Since for u ∈ Ω,  Hcol ∗ ∗ W2
2(Yiv, Yuv) ≤ η′, then 

∼

Ω ⊆ Ni , η. Thus, if we can provide a lower bound on  |
∼

Ω | ,

then this provides an upper bound on 
1

|Ni ,η | .

Next, we claim (proven at the end of this section)

P(u ∈ Ω x ( i )
row) ≥ p ⋅ ϕ x ( i )

row,
η′

3 −
6c1

n − j
and (34)

P(u ∈
∼

Ω u ∈ Ω) ≥ 1 −
1

N2 − exp −
Mp2

8 .

Putting these together, we find that

P(u ∈
∼

Ω x ( i )
row) = P(u ∈

∼

Ω u ∈ Ω, x ( i )
row)P(u ∈ Ω x ( i )

row)

≥ 1 −
1

N2 − exp −
Mp2

8 ⋅ p ⋅ ϕ x ( i )
row,

η′

3 −
6c1

n − j

△

=
∼

p i ,η′.

So, by the Binomial Chernoff bound, we get

P( |
∼

Ω | ≥
1

2
N
∼

p i ,η′ x ( i )
row) ≥ 1 − exp −

N
∼

p i , η′

8

and since 
∼

Ω ⊆ Ni , η, then we have our result.

Proof of claim  (34). We have that a row  u  is in  Ω  and satisfies the above inequality with probability 

p ⋅ ψ(x ( i )
row, η′) where

{ }

| ( )
| ( )

| | |

( ( )) ( )

| ( )
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ψ(x ( i )
row, η′) = P(E[W2

2(Yij, Yuj)] ≤ η′ x ( i )
row).

By the Binomial Chernoff Bound and conditioning on the i-th latent row vector, we have

P( | Ω | = 0 x ( i )
row) ≤ P( | Ω | ≤

1

2
Np ⋅ ψ(x ( i )

row, η′))

≤ exp −
Np

8
ψ(x ( i )

row, η′) .

Next, there exists a universal constant  c1  such that for two empirical distributions  μn  and  νn  with

corresponding true distributions μ and ν, we have

E[W2
2(μn, νn)] ≤ 3W2

2(μ, ν) +
6c1

n .

This follows from this line of reasoning: Let X ( k )  and Y ( k )  denote the k-th order statistics of the samples

from μ and ν respectively. Let F − 1
μ  and F − 1

ν  denote the quantile functions of μ and ν, respectively. Then, we

have

E[W2
2(μn, νn)]

=
1

n

n
∑
k= 1

E[ X ( k ) − Y ( k ) 2]

=
n
∑
k= 1

∫k /n
( k− 1 ) /nE[ X ( k ) − F − 1

μ (t) + F − 1
μ (t) − F − 1

ν + F − 1
ν − Y ( k ) 2]dt

≤ 3
n
∑
k= 1

∫k /n
( k− 1 ) /nE[ X ( k ) − F − 1

μ (t) 2 + F − 1
μ (t) − F − 1

ν
2 + F − 1

ν − Y ( k ) 2]dt

= 3W2
2(μ, ν) + 3E[W2

2(μn, μ)] + 3E[W2
2(νn, ν)]

≤ 3W2
2(μ, ν) +

6c1

n − j
.

Then, let E[W2
2(μij, μuj)] ≤

η′

3 −
6c1

n − j
. So, we get

|

|

( )

( )

( )

( ) ( ) ( )

qeios.com doi.org/10.32388/DX6MDB 48

https://www.qeios.com/
https://doi.org/10.32388/DX6MDB


E[W2
2(Yij, Yuj)] ≤ η′.

Thus, we have that the bound on E[W2
2(μij, μuj)] implies the bound on E[W2

2(Yij, Yuj)]. So, we have

P(E[W2
2(μij, μuj)] ≤

η′

3 −
6c1

n − j
) ≤ P(E[W2

2(Yij, Yuj)] ≤ η′).

Rewriting this in the ϕ and ψ notation, we have that

ϕ x ( i )
row,

η′

3 −
6c1

n − j
≤ ψ(x ( i )

row, η′).

Thus, we obtain the first part of our claim. For the second part, we have

P(ρiu − EHcol
[E[W2

2(Yiv, Yu0v
)]] > η − η′ x ( i )

row, | Ω | ≥ 1)

≤ P(ρiu − EHcol
[E[W2

2(Yiv, Yu0v
)]] > η − η′ x ( i )

row, | Ciu | ≥
1

2Mp2)

+P( | Ciu | <
1
2Mp2 | x ( i )

row)

≤ exp −c
(η−η′ ) 2

K2

1

2Mp2 + exp −
Mp2

8

≤ exp(−2log(N)) + exp −
Mp2

8

=
1

N2 + exp −
Mp2

8

which completes the proof of our claim.

Appendix D. Continuous uniform location-scale case

If we restrict ourselves to just the continuous uniform case, we can analyze the rate with more precision.

The uniform distribution is one of the only cases where the expected squared Wasserstein distance

( )

|
|

( ) ( )
( )

( )
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between an empirical distribution and its true distribution can be exactly calculated. Let  Θ  denote

asymptotic upper and lower bounds. From[33], we have for  μ = Unif(0, 1)  and  μn  being the empirical

distribution of n samples from μ:

E[W2
2(μn, μ)] = Θ

1

n

and if we take the barycenter of m  i.i.d.  empirical distributions, then the expected squared Wasserstein

distance between the Wasserstein barycenter of the empirical distributions and the true distribution is

given in the following lemma:

Lemma 6 (Expected error for the empirical barycenter of uniform distrbutions). Let μ1, …, μm be Uniform

distributions on [ai, bi]. Let μ be the barycenter of μ1, …, μm. Let Xi , 1, …, Xi , n ∼ μi. Let X ( k )
i  denote the k-th order

statistic for the  i-th distribution. Let  μ̂  denote the empirical barycenter of the m  empirical distributions. Let μ

  denote the random measure drawn from the empirical distribution of  μi . Let 
¯
X

( k )
  denote the  k-th order

statistic μ. Then, we have

E[W2
2 μ̂, μ ] = Θ

1

m
+

1

mn
+

1

n2

where Big-Θ notation denotes both upper and lower rates.

This case is a scenario where increasing the number of neighbors not only reduces the error, but also

improves the error decay rate with respect to the number of samples, n. We see that as the number of

neighbors increases, the rate with respect to the number of samples improves from O
1

n  to O
1

n2 . This

is expected since as the number of neighbors increases, the Wasserstein barycenter’s support points

approach their expected values, which provide a better quantization of the true distribution. From[[51],

Thm. 2.1(b)], we know that for quantization of 1-dimensional probability distributions, O
1

n2  is the best

rate. While we do not have a proof for the location-scale Gaussian case, we show empirically in Sec. 5 that

even in the Gaussian case, the sample error rate improves as the number of neighbors increases. Note

( )

{ }

( ) ( )

( ) ( )

( )
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that for our theorem, we require η to be lower bounded by a term that is on the order of O
1

n . Note that

while the uniform case motivates why adding more neighbors improves our error rate, it does not provide

a proof that this improvement will always occur.

Proof of Lem. 6. First, we calcualate the distribution of the barycenter μ:

F − 1
μ (t) =

1

m

m
∑
i= 1

F − 1
μi

(t) =
1

m

m
∑
i= 1

ai + t(bi − ai) =
1

m

m
∑
i= 1

ai + t
1

m

m
∑
i= 1

bi −
1

m

m
∑
i= 1

ai .

Let 
¯
a =

1

m ∑m
i= 1ai and 

¯
b =

1

m ∑m
i= 1bi. Then, μ = Unif(

¯
a,

¯
b). Next, from[[37], Thm. 3.1] we have

E[W2
2 μ̂, μ ] =

1
mE[W2

2(μ, μ)] +
1
mn

n
∑
k= 1

Var
¯
X

( k )

+
n
∑
k= 1

∫k /n
( k− 1 ) /n E[

¯
X

( k )
] − F − 1

μ (t)
2

dt.

We analyze each term independently:

1

mE[W2
2(μ, μ)] =

1

m2

m
∑
i= 1

W2
2(μi, μ) = Θ

1

m

since the Wasserstein distance between two Uniform distributions is O(1) as shown in Lem. 7. Next, we

have

1
mn

n
∑
k= 1

Var
¯
X

( k )
=

(
¯
b−

¯
a )

2

mn

n
∑
k= 1

k (n− k+ 1 )

(n+ 1 ) 2 (n+ 2 )

(a )
=

(
¯
b−

¯
a )

2

6m (n+ 1 ) = Θ
1
mn

where (a) follows from the proof of Theorem 4.7 in[33]. Finally, we have

( )

[ ] ( ) ( )

( ) ( )
( )

( )

( ) ( )
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n
∑
k= 1

∫k /n
( k− 1 ) /n ∗

¯
X

( k )
− F − 1

μ (t)
2

dt = (
¯
b −

¯
a)

2 n
∑
k= 1

∫k /n
( k− 1 ) /n

k
n+ 1 − t

2
dt

(a )
= (

¯
b −

¯
a)

2 1
6n −

1
6 (n+ 1 )

=
(

¯
b−

¯
a )

2

6n (n+ 1 )

= Θ
1

n2

where (a) follows again from Theorem 4.7 in[33]. Putting these together, we recover the result in Eq. (3.3)

in[37]:

∗ W2
2 μ̂, μ = Θ

1

m +
1

mn +
1

n2 .

Lemma 7. Let μ = Unif(a, b) and ν = Unif(c, d). Then, we have

W2
2(μ, ν) =

1
3 (a − c)2 + (b − d)2 + (a − c)(b − d) .

Proof. From the definition of the 2-Wasserstein metric, we have

W2
2(μ, ν) = ∫1

0 F − 1
μ (t) − F − 1

ν (t) 2dt = ∫1
0(a + (b − a)t − c − (d − c)t)2dt

=
1

3 (a − c)2 + (b − d)2 + (a − c)(b − d) .

◻

Lemma 8. Let X1, …, Xn ∼ Unif(a, b). Let X ( k )  denote the k-th order statistic. Denote the law of Xi as μ and the

empirical distribution as μn. Then, we have

( ) ( )

( )

( )

( ) ( )

[ ]

( )
[ ]

qeios.com doi.org/10.32388/DX6MDB 52

https://www.qeios.com/
https://doi.org/10.32388/DX6MDB


E[W2
2(μn, μ)] =

(b−a ) 2

6n .

Next, let Y1, …, Yn ∼ Unif(c, d). Let Y ( k )  denote the k-th order statistic. Denote the law of Yi as ν and the empirical

distribution as νn. Then, we get

E[W2
2(μn, νn)] = W2

2(μ, ν) +
(b−a ) (d− c )

3 (n+ 1 ) .

Proof. We utilize identities from the proof of Theorem 4.7 in[33]. We know that for U1, …, Un ∼ Unif(0, 1), we

have that U ( k )
∼ Beta(k, n − k + 1). So, we have

E[U ( k ) ] =
k

n+ 1 , Var U ( k ) =
k (n− k+ 1 )

(n+ 1 ) 2 (n+ 2 )
, E[X ( k ) ] = a + (b − a)

k

n+ 1 , and

Var X ( k ) = Var a + (b − a)U ( k ) = (b − a)2Var U ( k ) = (b − a)2 k (n− k+ 1 )

(n+ 1 ) 2 (n+ 2 )
.

Putting these together, we get

E[W2
2(μn, μ)] =

1
n

n
∑
k= 1

Var X ( k ) +
n
∑
k= 1

∫k /n
( k− 1 ) /n E[X ( k ) ] − F − 1

μ (t) 2dt

=
1

n

n
∑
k= 1

(b−a ) 2k (n− k+ 1 )

(n+ 1 ) 2 (n+ 2 )

+
n
∑
k= 1

∫k /n
( k− 1 ) /n a + (b − a)

k

n+ 1 − a − (b − a)t
2
dt

= (b − a)2 1

n

n
∑
k= 1

k (n− k+ 1 )

(n+ 1 ) 2 (n+ 2 )
+ (b − a)2

n
∑
k= 1

∫k /n
( k− 1 ) /n

k

n+ 1
− t

2
dt

=
(b−a ) 2

6n
.

For the second part, we have

( )

( ) ( ) ( )

( ) ( )

( )
( )
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E[W2
2(μn, νn)] =

1

n

n
∑
k= 1

E[ X ( k ) − Y ( k ) 2]

=
1

n

n
∑
k= 1

E[ X ( k ) 2] + E[ Y ( k ) 2] − 2E[X ( k ) ]E[Y ( k ) ]

=
1
n

n
∑
k= 1

Var X ( k ) + Var Y ( k ) + E[X ( k ) ] − E[Y ( k ) ] 2

=
(b−a ) 2 + (d− c ) 2

6 (n+ 1 )
+

1

n

n
∑
k= 1

E[X ( k ) ] − E[Y ( k ) ] 2.

Next, we have

1
n

n
∑
k= 1

E[X ( k ) ] − E[Y ( k ) ] 2

=
1
n

n
∑
k= 1

a + (b − a)
k

n+ 1 − c + (d − c)
k

n+ 1

2

=
1
n

n
∑
k= 1

(a − c) + ((b − a) − (d − c))
k

n+ 1

2

=
1

n

n
∑
k= 1

(a − c)2 + 2(a − c)((b − a) − (d − c))
k

n+ 1 + ((b − a) − (d − c))2 k2

(n+ 1 ) 2

= (a − c)2 +
2 (a− c ) ( (b−a ) − (d− c ) )

n (n+ 1 )

n
∑
k= 1

k +
( (b−a ) − (d− c ) ) 2

n (n+ 1 ) 2

n
∑
k= 1

k2

= (a − c)2 +
2 (a− c ) ( (b−a ) − (d− c ) )

n (n+ 1 ) ⋅

n (n+ 1 )

2

+
( (b−a ) − (d− c ) ) 2

n (n+ 1 ) 2 ⋅
n (n+ 1 ) ( 2n+ 1 )

6

= (a − c)2 + (a − c)((b − a) − (d − c)) +
( (b−a ) − (d− c ) ) 2 ( 2n+ 1 )

6 (n+ 1 )

= (a − c)(b − d) +
( (b−a ) − (d− c ) ) 2 ( 2n+ 1 )

6 (n+ 1 )

Putting these together, we get

( )

[ ( ) ( ) ]
[ ( ) ( ) ( ) ]

( )

( )

[ ( )]
[ ]

[ ]
( ) ( )
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E[W2
2(μn, νn)]

=
(b−a ) 2 + (d− c ) 2

6 (n+ 1 )
+

1

n

n
∑
k= 1

E[X ( k ) ] − E[Y ( k ) ] 2

=
(b−a ) 2 + (d− c ) 2

6 (n+ 1 )
+ (a − c)(b − d) +

( (b−a ) − (d− c ) ) 2 ( 2n+ 1 )

6 (n+ 1 )

=
( (b−a ) − (d− c ) ) 2

3 + (a − c)(b − d) +
(b−a ) (d− c )

3 (n+ 1 )

=
1
3 (a − c)2 + (b − d)2 + (a − c)(b − d) +

(b−a ) (d− c )
3 (n+ 1 )

= W2
2(μ, ν) +

(b−a ) (d− c )
3 (n+ 1 )

◻

Footnotes

1 A stochastic process B  is a standard Brownian bridge if it is a Gaussian process where for  s, t ∈ (0, 1), 

∗ B(t) = 0, Cov(B(s), B(t)) = min (s, t) − st.[[48], Prop. 8.1.1]

2 The Orlicz ψ2 norm is defined as ∥X∥ψ2
= inft> 0 ∗ exp( |X | 2 / t2) ≤ 2.
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