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A new pre-processing approach to EEG data to detect topological EEG features

has been applied to a continuous segment of artifact-free EEG data lasting 10

minutes in ASCII format, derived from 50 ASD children and 50 children with

other Neuro-Psychiatric Disorders (NPD), matched for age and male/female

ratios.

Each EEG is transformed into a triangular matrix of 171 values expressing all

reciprocal Manhattan distances among the 19 electrodes of the international

10-20 system. From this matrix, the minimum spanning tree (MST) is

calculated. Electrode identi�cation serial codes sorted according to the

decreasing number of links in the MST, and the number of links in the MST,

are taken as input vectors for machine learning systems. 

Machine learning systems have been applied to build a predictive model to

distinguish between the two diagnostic classes (autism vs NPD) following a

rigorous validation protocol.

The best machine learning system (KNN algorithm) obtained a global accuracy

of 93.2% (92.37% sensitivity and 94.03% speci�city) in differentiating ASD

subjects from NPD subjects.

The results obtained in this study suggest that, thanks to the new pre-

processing method introduced, there is the possibility to discriminate subjects

with autism from subjects affected by other psychiatric disorders with a

modest computational time, reducing the information to 38 �gures.
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Graphical abstract

Schematic representation of data processing and

analysis

Introduction

Many different mathematical approaches have been

tested in the last few years to disentangle the

complexity of EEG data and determine if it is possible to

distinguish children with ASD from typically

developing children or children with other

neuropsychiatric disorders. An electroencephalogram

(EEG) records the electrical activity of the brain by

recording the electrical impulses of different

frequencies used by neurons for communication

through electrodes attached to the scalp. The relevant

involvement of the cerebral cortex in substantially

altering cortical circuitry explains the unique pattern of

de�cits and strengths that characterize cognitive

functioning. Therefore, EEG recordings can be potential

biomarkers of these abnormalities. EEG signals are

random, non-stationary, and non-linear. The most

delicate phase in the overall EEG process is the

preprocessing phase, which aims to extract relevant

features that are offered to potent classi�ers, generally

based on machine learning techniques.

The native EEG signal contains noise due to various

factors such as involuntary hand and eye movements or

heartbeat interference  [1]. These interferences increase

the complexity of EEG signal processing and make the

quality of mathematical calculations unstable in the

later stages of processing and must, therefore, be

eliminated before analysis. Good preprocessing will also

reduce the cardinality of the input vectors for machine

learning systems, reducing computation time and the

risks of overtraining. As mentioned in a recent

review [2], many different preprocessing methods have

been described in the literature, such as Common

Spatial Patterns (CSP), Principal Component Analysis

(PCA)  [1], Common Average Referencing (CAR)  [1][3],

Surface Laplacian (SL), adaptive �ltering  [1][4],

Independent Component Analysis (ICA), and digital

�lters  [5], MS-ROM IFAST  [6]. Each method has

advantages and disadvantages. PCA, for example, is a

potent dimensionality reduction technology but

involves discarding non-principal components with

small variance, which could potentially contain useful

information [7]. Digital �lters process EEG signals from

the frequency domain and are broadly utilized in

artifact processing of EEG signals; however, it is

required that EEG signals and artifact signals have

different frequency bands, which rarely exist in

practical situations. Our group has originally proposed

a new technique based on arti�cial neural networks

called the MS-ROM / I-FAST system to extract desired

features from EEG to achieve the differential diagnosis

of children with autism  [6]. The data assessment only

requires a few minutes of EEG data collection and does

not require any data preprocessing. The drawback of

this approach is the large computational time required

to achieve the �nal task.

In this paper, we present an alternative preprocessing

approach to EEG data based on a novel algorithm

applied to raw data to detect topological EEG features.

Our assumption is that brain connection abnormalities

can be detected through a speci�c mathematical

topological approach, which is able to compare the

minimal structure of functional networks beneath scalp

electrodes. Additionally, functional interconnections of

different brain areas can be assessed by measuring the

interdependence of time-series electrical signals

recorded by scalp electrodes using distance functions

(i.e., the Euclidean distance, the Manhattan distance,

the Minkowski distance, the Cosine similarity, etc.).

There are many clustering methods available, such as

Principal Component Analysis, Hierarchical

agglomerative clustering, Nearest-neighbor test,

autocorrelation, and Cuzick-and-Edwards’. In our study,

we have decided to rely on the minimum spanning tree

(MST) algorithm as a base to perform electrodes

clustering. A minimum spanning tree (MST) is a

spanning tree of a connected, undirected graph. It

connects all the vertices together with the minimal

total weighting for its edges.

The MST algorithm, originally described by the Czech

scientist Otakar Boruvka in 1926, aims to optimize the

planning of electrical connections among cities and was

later re�ned by Kruskal with a speci�c deterministic

algorithm.

The MST is a spanning tree with a weight less than or

equal to the weight of every other spanning tree. In
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practical terms, MST shows the best way to connect the

variables in a tree and the shortest possible

combination, allowing the presentation of the data in a

simpli�ed graph.

In the biomedical �eld, the MST has been used

particularly in microarray clustering. Although MST-

based clustering is formally equivalent to the

dendrograms produced by hierarchical clustering under

certain conditions, visually they can be extremely

different. Our assumption is that MST is a valuable

approach to synthesize the interconnection scheme of

time-series electrical signals recorded by scalp

electrodes, which are expected to be different in

subjects with autism in comparison with those affected

by other diseases. The main advantage of the MST

algorithm is that it gives a synthetic view of the variable

ensemble and allows an easy understanding of

clustering through links that directly connect variables

that are very close to each other. The importance of the

variables in the graph is related to the number of links.

Hubs may be de�ned as the variables with the

maximum number of connections in the graph.

To prove this hypothesis, the EEG data of �fty subjects

with autism and 50 subjects with other

neuropsychiatric disorders were pre-processed with

MST. Machine learning systems were applied

subsequently to build a predictive model to distinguish

between the two diagnostic classes.

Patients and methods

Fifty subjects diagnosed with ASD and 50 control

subjects diagnosed with other neuropsychiatric

disorders, matched for age and gender, were obtained

from a clinical archive in the United States. Both groups

had the same age range (4-10 years) and the same

gender distribution (m=39, f=11). None of the subjects

were affected by genetic conditions, cerebral

malformations, or epilepsy. In the control group,

primary diagnoses were ADHD (n=7), mood disorders

(n=4), anxiety disorders (n=16), sleep disorders (n=12),

Oppositional De�ant Disorder (n=6), and Traumatic

Brain Injury (n=5).

Methods

The EEG data were recorded at a psychiatric center in

the US, at resting state, with eyes closed. EEG

acquisition was performed using Mitsar-EEG-10/70-201

equipment, with impedance maintained below 10k

ohm. The patients were seated in a slightly reclining

chair in a silent and low-light environment. An

Electrocap was used to collect the data according to the

international 10-20 system with a linked ears montage

(Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,

P4, T6, O1, and O2). A minimum of 20 minutes of total

data were recorded in both eyes-open (10 minutes) and

eyes-closed (10 minutes) resting conditions. The order

of these could vary among patients. In this study, we

used only the eyes-closed data to be consistent with our

pilot study.

The EEG track was then saved in the database.

Subsequently, ten minutes of recording were exported

as ASCII �les through the same acquisition program,

SystemPlus Evolution, and saved to make it possible to

read in numerical format.

Preprocessing phase

In the common practice of EEG registration, there are 19

electrodes registering brain activity related to different

brain cortex regions. It is reasonable to assume that

these regions are interconnected with each other

through a complete matrix of mutual relationships.

Measuring the similarity between time series

registered in an EEG is a way to establish how close

parts of the brain under given electrodes are coherent

with each other. There are many types of similarity

measures. One of the most popular is the Manhattan

distance, also known as the city-block distance. The

city-block distance is so named because it is the

distance in blocks between any two points in a city (e.g.,

down 3 blocks and over 1 for a total of 4 blocks). This

distance calculation has been applied to the 19 time

series from EEG electrode derivations. After the

calculation, we can visualize the matrix in this way

(Figure 1).

Figure 1.

Distance matrix of 19 EEG electrodes according to their

Manhattan distance in an EEG of a study participant

taken as an example.

The cells contain values expressing time series

distances relative to each channel’s couple according to
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the speci�c metric chosen (Manhattan distance). The

value in each cell is proportional to the distance

between the respective electrodes. Higher values

indicate that two electrode time series are more distant,

indicating that the two brain areas are more

disconnected.

From each EEG Manhattan distance matrix, the MST

has been derived.

The following two �gures summarize the MST of nine

EEG subjects with ASD and nine other subjects without

ASD. To make the information contained in the MST

computable, the electrode names are numbered (Fp1=1,

Fp2=2, F7=3, F3=4, Fz=5, F4=6, F8=7, T3=8, C3=9, Cz=10,

C4=11, T4=12, T5=13, P3=14, Pz=15, P4=16, T6=17, O1=18,

O2=19).

Figure 2. MST of EEG from nine exempli�ed subjects

with ASD

Figure 3. MST of EEG from nine exempli�ed subjects

with NPD

The different electrodes are then listed according to

their decreasing number of links in the Minimum

Spanning Tree, as in this example (Figure 4).

Figure 4. Example of electrode

number listing according to

the number of links in MST

The two columns shown in Figure 4 are joined in a

single row to form an input vector, which is used to

train the �nal classi�ers.

In this way, all of the content of an EEG �le is

transformed into just 38 numbers. This input vector is

then used to train machine learning systems in an

attempt to develop a classi�cation model to distinguish

between the two diagnostic classes.

Predictive modelling

The robust sets of 38 features related to MST were used

as input for Machine Learning classi�ers. The KNN

algorithm was used to develop a predictive model to

distinguish subjects belonging to the two diagnostic

classes (autism vs. other disorders). The models'

performances were tested with training/testing cross-

validation procedures.
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Training-testing protocol

These classi�cation tools were applied to predict the

diagnostic class using the Training and Testing

validation protocol, with the following steps:

�. Random subdivision of the dataset into two sub-

samples: A and B, each containing 50% of the

records and having an equal proportion of cases

belonging to the two classes. We performed a

homogeneity check, which con�rmed the

substantial equivalence of the two subsets with

respect to the distribution of variable values. In

the �rst run, A is used as the Training Set and B as

the Testing Set.

�. Application of ANN on the Training Set. In this

phase, the ANN learns to associate the input

variables with those indicated as targets.

�. After the training phase, the weights matrix

produced by the algorithm is saved and frozen

together with all the other parameters used for the

training.

�. The Testing Set is then shown to a virgin twin

(same architecture and base parameters) ANN with

the same weights matrix as the trained ANN,

acting as the �nal classi�er. This operation takes

place for all records, and the results (right or

wrong classi�cation) are not communicated to the

classi�er. This allows us to assess the

generalization ability of the trained ANN.

�. In a second run, another virgin ANN is applied to

subset B, which is used as a training subset, and

then to subset A, which is used as a testing subset.

�. Therefore, the results are relevant to two

sequences of the training-testing protocol: A-B

and B-A.

Results are expressed in terms of sensitivity (correct

classi�cation of positive patients), speci�city (correct

classi�cation of negative patients), and global accuracy

(arithmetic mean between sensitivity and speci�city).

Overall results are expressed as the average of the two

experiments.

This crossover procedure allows us to blindly classify all

records with the trained algorithm, ensuring the

generalization capability of the model on records that

have never been seen before.

Natural clustering of records

The Pick and Squash Tracking (PST), an unsupervised

machine learning system developed at the Semeion

Research Centre based on an evolutionary algorithm

called GenD  [8]  has been used to cluster records

according to the features selected by the TWIST system.

Such a system can �nd the best spatial distribution of a

given number of points with respect to the maximum

degree of their reciprocal Euclidean distances without

exploring all the possible combinations, but adaptively

evolving through the optimal solution.

The PST system locates the points of the dataset onto a

2D space, minimizing the projection error; thus, the

original distances between the points suffer only

minimal distortions. The algorithm is particularly

useful when the matrix distance of the point of interest

is imprecise for different reasons, and consequently, the

map doesn't correspond precisely to reality.

The PST algorithm carries out a multidimensional

scaling from an N-dimensional to an L-dimensional

space (where N>>L), and typically where L=2 or L=3. PST

acts in this dimensional reduction to ensure that the

original distance between points has a minimal amount

of distortion in the L-dimensional space.

Results

Acting on the features related to MST, the KNN

algorithm reached the best predictive capability in

distinguishing autistic cases from NPD subjects with an

overall accuracy of 93.2% (Table 1).

Table 1. Predictive performance of machine learning

systems

The natural clustering of subjects with the PST system

allowed an almost perfect separation of records

according to their diagnostic classes (Figure 5).
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Figure 5. Natural clustering of subjects with an unsupervised machine learning system. ASD =

subjects with autism spectrum disorder; CTR = subjects with other neuropsychiatric

disorders. There is a notable separation of the two diagnostic classes. Clustering errors are

marked in red.

Discussion

Several papers have been published recently using EEG

data processed by advanced mathematical techniques

(often based on machine learning) to distinguish

children with autism from typically developing

children.

Table 2 summarizes the studies published in articles of

international journals or congress proceedings.

Almost all studies have employed machine learning

systems acting as classi�ers after suitable data

preprocessing. Among the preprocessing methods, the

most prevalent appears to be the discrete wavelet

transform followed by the Fast Fourier Transform.

Table 2. Summary of published studies on autism

diagnosis through digital EEG
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Table legend. DWT = discrete wavelet transform; AOI &

MRMR = area of interest & minimum

redundancy/maximum relevance; STFT = Short time

Fourier transform; EMD = empirical mode

decomposition; FFT = Fast Fourier Transform; MS-

ROM/IFAST = Multi-Scale Ranked Organizing

Map/Implicit Function As Squashing Time; MST =

Minimum spanning tree

In our study, the minimum spanning tree has been

employed on the electrodes distance matrix as a robust

pre-processing method, representing a novel

application of this technique in the biomedical �eld.

As happens in variables clustering efforts, MST

captures the implicit complexity of a data set and

returns a synthetic representation of it, while still

retaining its complexity. When processing EEG data, it

is very important to avoid overwhelming the machine

learning system with extraneous unimportant data.

Data that does not contain pertinent information, when

inserted into the model, can cause an increase in noise

and therefore a greater dif�culty for the machine

learning systems to correctly generalize new cases not

seen during the training phase. The results obtained are

promising and introduce a new philosophy in handling

this kind of data.

Looking at Table 2, few studies have focused on the

distinction between autism and other neuropsychiatric

disorders with a consistent sample size. From this point

of view, this is the largest study published so far that

aims at differential diagnosis, rather than simply

distinguishing children with autism from typically

developing children. This is important because, in the

real world, the application of these diagnostic

techniques will take place only for subjects seeking

medical care for some symptoms, rather than for

simple screening.

Looking at Table 2, it is quite clear that we are still in a

research phase with proof-of-concept efforts. The next

step is to validate these results in large cohorts with

multicentric studies where clinicians employ different

technical apparatus and different protocols to ensure

that EEG data processing methods are robust enough to

resist a certain degree of heterogeneity.

Further studies with more robust data and less

potential bias are probably required.

Research in this area is vital to the well-being of those

diagnosed with ASD. There are many disorders, such as

epilepsy, that are commonly misdiagnosed as ASD.

Because of this, those with misdiagnoses, especially

children, tend to be prescribed medications that worsen

their symptoms  [9]. By adding a biological basis to the

diagnosis of ASD through recognition of speci�ed EEG

patterns, we can minimize the misdiagnosis of certain

neuropsychiatric disorders.

There is also a need to increase adaptability in the

systems, enabling the incorporation of new medical

knowledge as new technology appears. A further step

will be to engineer machine learning systems to make

them work automatically on commercial EEG

machines, with the intervention of EEG companies able

to embed these trained systems in their technical

devices.
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