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Effective toxic content detection relies heavily on high-quality and diverse data, which serve as the

foundation for robust content moderation models. Synthetic data has become a common approach for

training models across various NLP tasks. However, its effectiveness remains uncertain for highly

subjective tasks like hate speech detection, with previous research yielding mixed results. This study

explores the potential of open-source LLMs for harmful data synthesis, utilizing controlled prompting

and supervised �ne-tuning techniques to enhance data quality and diversity. We systematically

evaluated six open source LLMs on �ve datasets, assessing their ability to generate diverse, high-

quality harmful data while minimizing hallucination and duplication. Our results show that Mistral

consistently outperforms other open models, and supervised �ne-tuning signi�cantly enhances data

reliability and diversity. We further analyze the trade-offs between prompt-based vs. �ne-tuned toxic

data synthesis, discuss real-world deployment challenges, and highlight ethical considerations. Our

�ndings demonstrate that �ne-tuned open source LLMs provide scalable and cost-effective solutions

to augment toxic content detection datasets, paving the way for more accessible and transparent

content moderation tools.
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1. Introduction

Toxic content detection requires large-scale labeled datasets, but manual annotation is costly and labor-

intensive. The sheer volume of required data has driven costs into the millions. Maintaining dataset

diversity and quality remains a persistent challenge, often hindering the development of robust detection

models. Additionally, the de�nition of "harmful" content is inherently subjective, varying across topics

and annotator perspectives, adding complexity to dataset curation[1]. Synthetic data generation[2]

[3] presents a scalable, cost-effective solution to these challenges. Training models for various NLP tasks

using synthetic data has become increasingly common. However, previous research has reported mixed

results regarding its effectiveness in highly subjective tasks such as hate speech detection[4]. Many

existing synthetic data methods for hate speech detection rely on simple prompt-based rewrites or

sentence reordering, often failing to capture nuanced toxicity patterns. Furthermore, most of the best-

performing methods have utilized proprietary GPT-series models, limiting scalability and

accessibility.Existing methods such as ToxiGen[5] and Toxicraft[6] rely on proprietary GPT-based models

and prompt engineering, incurring high computational costs and scalability limitations. These

constraints underscore the need for open-source alternatives, motivating this study to investigate three

key research questions:

How effectively can open-source LLMs generate synthetic toxic data compared to proprietary models?

What limitations arise from using prompt-based synthetic data generation for hate speech detection, and

how can supervised �ne-tuning improve performance?

How do different synthetic data generation strategies impact the robustness of toxic content detection

models?

To address these questions, we systematically evaluate 6 open-source LLMs on 5 datasets. Our evaluation

approach consists of two key stages:

�. Prompt Engineering – We compare LLMs, design structured prompts, and experiment with few-

shot techniques to balance data quality and diversity[7]. However, we observe that prompt

engineering alone is insuf�cient, as inherent safety alignments in LLMs restrict harmful content

generation

�. supervised �ne-tuning – We �ne-tune LLMs using proprietary datasets, exploring con�gurations

such as epoch settings and data mixing strategies. supervised �ne-tuning improves data
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reliability, mitigates hallucination, and enhances dataset diversity, though challenges such as data

duplication and over�tting persist.

In this study, we do not aim to develop a new state-of-the-art model in toxic content detection but rather

to explore and experiment with intuitive, effective ideas. Given that generated data is increasingly used

even in sensitive applications[8], it becomes crucial for the NLP community to critically examine the

impact of synthetic data—including its ethical risks—in a manner similar to discussions in other

research communities[9][10]. Our work serves as an initial contribution in this direction, providing

insights into the practical challenges of synthetic toxic data generation and its implications for real-

world content moderation systems. By exploring the effectiveness of prompt engineering and supervised

�ne-tuning in open-source LLMs, we offer guidance for the responsible deployment of synthetic data in

NLP applications. In summary, our main contributions are as follows:

Our study is one of the �rst (if not the �rst) to apply prompt engineering and supervised �ne-tuning

techniques on open-source LLMs, exploring their potential for harmful data synthesis and improving

toxic content detection.

We show that �ne-tuned open-source LLMs deliver cost-effective and scalable solutions for

automated content moderation, providing actionable insights for developing larger and more robust

harmful content detection systems through synthetic data generation.

We also offer valuable insights into the practicalities of production deployment, highlighting real-

world challenges and solutions.

2. Related Work

2.1. Hate Speech Detection

Early studies established classi�ers to detect harmful information using neural network models[11]  or

word embedding methods[12]. In recent years, models based on the Transformer architecture have

demonstrated remarkable capabilities, prompting researchers to explore further.[13]  conducted research

on the ETHOS hate speech detection dataset, comparing classi�ers’ performance in hate speech detection

by replacing or integrating word embeddings (fastText, GloVe, or FT + GV) with BERT embeddings.

[14] contrasted simple models (such as LASER embeddings with logistic regression) and BERT models in

scenarios with scarce and abundant linguistic resources.[15] generated explanations through multimodal
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debates between LLMs, enhancing the transparency and explainability of harmful meme detection.

[16] validated the effectiveness of ChatGPT in identifying harmful Spanish-language speech.

2.2. Data Synthesis

Traditional data synthesis methods have employed various techniques, ranging from synonym

replacement to token-level manipulations, as exempli�ed by[17]. While these methods provide some level

of augmentation, they often lack contextual richness and diversity. The introduction of translation-based

approaches[18] and masked language modeling[19] improved semantic consistency, yet they still struggle

to generate high-quality synthetic data necessary for complex tasks such as harmful content detection.

Recent advancements in zero-shot data generation, such as ZEROGEN[20], SuperGen[21], and PROGEN[22],

have explored methods for dataset synthesis without requiring extensive labeled examples. However,

these frameworks often suffer from issues related to low information density and redundancy, limiting

their effectiveness in generating diverse and contextually relevant samples.

3. Methodology

Our methodology systematically evaluates open-source LLMs for harmful data synthesis through a two-

stage approach: prompt engineering and supervised �ne-tuning., as illustrated in Figure 1.

Figure 1. Our experiment design is detailed: we �rst conducted prompt engineering on the models (stage 1),

and then, for better results, we selected a subset of models for supervised �ne-tuning (stage 2).
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3.1. Prompt Engineering

Given an open-source LLM  , we design prompts    to generate harmful data  . The prompt

template is de�ned as:

where Role de�nes the context, Requirement speci�es the task, and Few-Shot Examples provide

examples to guide the model. In the initial phase of our study, we focused solely on prompt engineering.

This involved creating various prompt templates tailored to elicit speci�c types of harmful data. Each

prompt was carefully crafted following work by[23] to ensure clarity and relevance to the desired output.

Despite the meticulous design of these prompts, we encountered signi�cant challenges. The primary

issue was the model’s inherent safety alignments, which are explicitly designed to prevent harmful

content generation. While these alignments are crucial for ethical AI usage, they posed a hurdle for our

speci�c goal of generating harmful data for augmentation purposes. Consequently, the generated data

often lacked suf�cient quality and diversity, hindering their utility in effective toxic content detection. To

overcome these challenges, we experimented with various con�gurations, such as altering few-shot

examples and adjusting requirement speci�city. However, these adjustments yielded limited success in

bypassing the internal safety mechanisms. After testing, the �nal prompt template are showed in

Appendix A. Our �ndings showed that relying solely on prompt engineering was inadequate for our

objectives. This realization prompted the integration of a second stage—supervised �ne-tuning—to

enhance the model’s ability to generate high-quality harmful data by retraining its weights with carefully

curated datasets.

3.2. Supervised Fine-tuning

Based on the results from prompt engineering, we hypothesized that supervised �ne-tuning would yield

a more effective solution. To achieve this, we employed LoRA methods[24]  for supervised �ne-tuning,

updating the weights of    using the training dataset    to enhance the quality and diversity of 

. The supervised �ne-tuning objective, denoted as  , minimizes the cross-entropy loss:

where   represents the true label for the  -th vocabulary class of the  -th sample,    is the predicted

probability for the same,   is the size of the vocabulary, and   is the number of samples in the dataset.

M P Dharmful

P = {Role, Requirement, Few-Shot Examples}

M Dtrain

Dharmful L

L = − log( )∑
i=1

N

∑
j=1

|V |

yij ŷ ij

yij j i ŷ ij

|V | N
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After supervised �ne-tuning, Mistral demonstrated the best performance compared to the baselines; the

detailed experimental results are presented in Section 5.

3.3. Algorithm

The overall algorithm for harmful data synthesis is outlined in Algorithm 1.

Here,    represents the initial training dataset used for supervised �ne-tuning,    consists of

unique harmful data samples generated by the �ne-tuned LLM, and    is the �nal dataset

combining   and   for downstream model training. Duplicates in   are removed.

Dtrain Dharmful

Daugmented

Dtrain Dharmful Dharmful
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3.4. Evaluation

We evaluate the performance of the augmented data using F1-score and Accuracy metrics on a smaller

MLP classi�er (more detailed in Section 4.2).

4. Experiment Setups

4.1. Datasets

The following proprietary datasets are utilized for training and evaluating models designed to identify

various types of harmful content. Each dataset consists of binary classi�cation labels, categorizing texts

as either positive (harmful) or negative (non-harmful). The labeling process involves multi-round human

annotations to ensure accuracy and consistency across diverse content types. The datasets are sourced

from online public datasets, company service collections, and other proprietary sources. Data samples are

randomly selected from pool. Detailed data distributions are provided in Table 1. Additionally, a 2,500-

entry evaluation dataset is prepared from each dataset for testing.

Hate Speech Dataset This dataset comprises text samples speci�cally focused on hate speech. It includes

a variety of offensive and discriminatory language targeting speci�c groups based on race, ethnicity,

religion, gender, or other characteristics.

Sexual Content Dataset This dataset includes text samples containing explicit sexual content. The focus

is on identifying sexually explicit language that may not be suitable for general audiences.

Violence Dataset This dataset consists of text samples that contain violent content. It aims to identify

language that incites or describes violence.

Self-Harm Dataset This dataset includes text samples that contain references to self-harm. The focus is

on identifying content that describes or encourages self-harming behaviors.

Political Dataset This dataset includes text samples that contain political references. The focus is on

identifying content that is targeting public �gures.
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Dataset Positive Negative

Hate Speech ~10k ~11k

Sexual ~7k ~10k

Violence ~11k ~10k

Self-Harm ~6k ~8k

Political ~3k ~3k

Table 1. Distribution of Datasets

Model

Success Rate Human Eval on Quality

Political Hate Political Hate

LLaMa-7B

LLaMa-13B ✓

Vicuna-13B ✓ ✓

Mistral-7B ✓ ✓

Falcon-7B

Bloom-7B ✓

Gemma-7B Reject to Answer

Table 2. Performance Comparison of Models in Stage 1

≥ 65% ≤ 10%

≥ 85% ≤ 10%

≥ 70% ≥ 85%

≥ 85% ≥ 85%

≥ 60% ≤ 30%

≥ 60% ≤ 10%

≥ 50%
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Version Hate Sex Violence Self-harm Figure

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

Mistral 0.608 0.706 0.534 0.676 0.700 0.730 0.560 0.660 0.906 0.906

GPT4(baseline) 0.628 0.721 0.628 0.721 0.649 0.708 0.583 0.670 - -

Mixture (Epoch 1) 0.586 0.698 0.782 0.809 0.679 0.724 0.593 0.674 0.924 0.926

Mixture (Epoch 3) 0.626 0.713 0.835 0.845 0.706 0.740 0.577 0.667 0.929 0.926

Mixture (Epoch 5) 0.672 0.738 0.835 0.844 0.713 0.745 0.541 0.651 0.929 0.934

Mix_GPT (Epoch 5) 0.667 0.734 0.802 0.852 0.702 0.749 0.788 0.794 - -

Table 3. Performance Comparison of Fine-Tuned Models on Different Datasets, best results are indicated in

bold.

4.2. Models

Prompt Engineering

In this stage of our study, we employed prompt engineering to systematically evaluate the performance

of six open-source LLMs: Mistral[25], LLaMA2[26], Vicuna[27], Falcon[28], Bloom[29], and Gemma[30]  and

our baseline: GPT4 model[31]. Detailed results and analysis for Stage 1 are provided in Section 5.1. Based

on the performance evaluation, Mistral and Vicuna were identi�ed as the top-performing models in the

prompt engineering stage, and were subsequently selected for the supervised �ne-tuning stage.

Supervised Fine-tuning

In supervised �ne-tuning, we �ne-tuned the Mistral[25]  and Vicuna[27]  models using the LoRA

method[24]. After comparing latency and cost, we experimented and reported the better performance

model Mixtral for further exploration. Detailed results and analysis for Stage 2 are provided in

Section 5.2.
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4.3. Implementation

The supervised �ne-tuning process was conducted on an Azure cluster equipped with 4 * NVIDIA A100

GPUs, leveraging the LLaMA-Factory1 framework[32]. We employed a supervised �ne-tuning (SFT)

methodology with a Low-Rank Adaptation (LoRA) setup[24]. Detailed training parameters, including

batch size, learning rate, and optimizer settings, are provided in the Appendix B. The results of this

supervised �ne-tuning process, along with performance metrics and qualitative analyses, are presented

in Section 5.

Downstream Model Evaluation

We utilized a Multilayer Perceptron (MLP)[33]  for downstream model evaluation. The MLP classi�er

consisted of two hidden layers, each comprising 600 neurons, with ReLU activation functions and a

softmax output layer for classi�cation. The model was trained using the Adam optimizer. We conducted

multiple training runs with different random seeds to ensure stability and robustness in evaluation.

Given its simple structure and strong interpretability, MLP provides a clear and reliable baseline for

assessing the impact of synthetic data on model performance across various datasets and experimental

conditions.

5. Results and Analysis

We present the results of our study, structured around the three research questions. Our two-stage

evaluation—prompt engineering and supervised �ne-tuning—allowed us to assess the effectiveness of

open-source LLMs in synthetic toxic data generation, examine the limitations of prompt-based methods,

and analyze the impact of different generation strategies on model robustness.

5.1. Stage 1: Prompt Engineering

The �rst stage of our evaluation assessed how well open-source LLMs could generate synthetic data

using prompt engineering. The primary objective was to evaluate their ability to generate high-quality

augmented data, particularly for political and hate speech content. Table  2 presents a performance

comparison of six open-source models, including their success rates for political and hate content as well

as human evaluation results. The success rate columns in Table  2 indicate the percentage of valid

positive samples generated by each model, where a minimum threshold of 60% of the total samples was

required. The human evaluation columns con�rm whether the generated data underwent human
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annotation. A green checkmark (✓) signi�es that annotators validated the data quality, achieving a high

Fleiss’ kappa score, which indicates strong inter-rater agreement.

5.2. Stage 2: Supervised Fine-tuning

In the second stage, models were supervised �ne-tuned on individual datasets and evaluated

accordingly, with results detailed in Table  4. Inspired by[6],[34], and[35], we then explored data mixing,

incorporating multiple datasets for training. Table 3 presents results from this multi-dataset �ne-tuning

strategy. Further analysis, including an ablation study on different design choices, is provided in Figure 2

and Appendix D. The "Mixture" versions in Table 3 represent models trained on a blend of hate, violence,

and sex-related datasets. The "Mix_GPT" versions extend this approach by integrating GPT-generated

positive samples. Across all �ne-tuning experiments, we maintained a balanced dataset of 3000 positive

and 3000 negative samples, formatted using the Alpaca instruction template.

Dataset Version F1 Score Accuracy

Hate

Mistral 0.608 0.706

GPT4(baseline) 0.628 0.721

hate_epoch5 0.590 0.678

hate_epoch3 0.563 0.661

hate_epoch2 0.587 0.678

hate_epoch1 0.540 0.665

Sex

Mistral 0.534 0.676

GPT4(baseline) 0.591 0.685

Sex_epoch5 0.755 0.788

Sex_epoch3 0.671 0.740

Sex_epoch2 0.653 0.731

Sex_epoch1 0.587 0.702

Table 4. Performance Comparison of Fine-Tuned Models on Hate and Sex, best results are indicated in bold.
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Figure 2. Ablation Study on Data mixing

5.3. RQ1: How effectively can open-source LLMs generate synthetic toxic data compared to

proprietary models?

We compared six open-source LLMs against a GPT-4 baseline using prompt-based generation. Mistral

and Vicuna consistently achieved the highest success rates and human evaluation scores among open

models (Table 2). However, even these models struggled to match GPT-4 in data diversity and nuance,

often producing repetitive or formulaic outputs. Fine-tuning signi�cantly reduced this gap. A �ne-tuned

Mistral model demonstrated improved F1 scores and accuracy across multiple datasets (Table  4).

Although GPT-4 remained the strongest performer, �ne-tuned Mistral approached its performance,

demonstrating that open-source LLMs, when �ne-tuned, can serve as viable alternatives for synthetic

data generation.

5.4. RQ2: What limitations arise from using prompt-based synthetic data generation for hate

speech detection, and how can �ne-tuning improve performance?

Prompt-based generation exhibited several critical limitations. Safety alignments in models such as

Gemma and Bloom led to frequent refusals to generate toxic content, reducing dataset completeness.

Additionally, generated samples often lacked diversity, limiting their utility for training robust detection

models. Another issue was over-simplicity, as models struggled to produce nuanced toxicity, instead

generating overly blunt or obvious harmful statements. Fine-tuning alleviated these challenges. Fine-

qeios.com doi.org/10.32388/E4TAOL 12

https://www.qeios.com/
https://doi.org/10.32388/E4TAOL


tuned models demonstrated improved data diversity, generating more varied and contextually rich toxic

content (Table 3). They also exhibited higher data reliability, reducing hallucination rates and enhancing

dataset quality. Furthermore, �ne-tuning enabled models to generate more subtle and realistic toxic

content, making them more applicable to real-world hate speech detection. However, �ne-tuning also

introduced challenges such as data duplication and over�tting, particularly in later training epochs

(Table 4).

5.5. RQ3: How do different synthetic data generation strategies impact the robustness of toxic

content detection models?

We analyzed how different synthetic data generation strategies in�uenced classi�cation performance.

Fine-tuned models consistently outperformed those relying solely on prompt-generated data, achieving

higher F1 scores and accuracy across multiple datasets (Table  4). Models trained on blended datasets

containing multiple categories of toxic content (e.g., hate speech, violence, and sexual content)

demonstrated stronger generalization compared to models trained on a single category. However,

extended �ne-tuning introduced over�tting risks. Performance improvements plateaued beyond epoch

3, and some models experienced performance degradation at epoch 5 (Table  4), likely due to

memorization effects. Ablation studies (Appendix  D) con�rmed that strategic �ne-tuning with mixed

data provides the best balance between data quality and generalization, underscoring the importance of

careful dataset curation and tuning strategies.

5.6. Error Analysis

We conducted an error analysis on the �ne-tuned models to better understand their mistakes and

identify areas for improvement. This analysis focuses on two key aspects: (1) generation errors and (2)

classi�cation errors. Generation errors refer to cases where the model produces responses that are

misleading, incomplete, or inconsistent with the input data. Classi�cation errors occur when the model

incorrectly labels content, either failing to detect harmful content (false negatives) or misclassifying

benign content as harmful (false positives).

Generation Errors.

The data generation process was evaluated for repetition rates and output consistency across different

epochs and model versions. For example, the Mixtral_Mixture3 model effectively generated targeted
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harmful data but sometimes produced malformed text, such as random character sequences or

redundant repetitions. Below, we present �ve representative cases of generation errors.

Classi�cation Errors.

We analyzed misclassi�ed examples in the downstream MLP classi�er trained on augmented data. The

most challenging errors involve implicit harm, sarcasm, and contextual misinterpretation. Below, we

present three representative cases with detailed explanations.
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6. Online Deployment

The �ne-tuned models developed in this study have been successfully deployed in real-world

applications by a leading cloud provider, enhancing automated content moderation work�ows. These

models contribute to real-time content �ltering, reducing manual intervention while improving accuracy

and ef�ciency. Deployment results indicate that �ne-tuned open-source LLMs can effectively identify

and �ag harmful content, demonstrating strong performance in diverse online environments. Key

deployment challenges include latency, scalability, and adaptability to evolving harmful content patterns.

Our models were optimized to operate within industry constraints, ensuring rapid inference while

maintaining high detection accuracy. Additionally, continuous monitoring and retraining mechanisms

have been implemented to adapt to emerging harmful language trends, reinforcing the robustness of our

approach.
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7. Conclusion

Our �ndings underscore both the potential and challenges of using open-source LLMs for toxic content

synthesis. The two-stage evaluation approach highlighted key trade-offs between prompt engineering

and supervised �ne-tuning. While prompt engineering offers a rapid and lightweight approach, its

effectiveness is limited by the inherent safety mechanisms within LLMs, which restrict harmful content

generation. Fine-tuning, on the other hand, signi�cantly improves diversity and realism but introduces

risks such as over�tting and data redundancy. A notable challenge is the subtlety of harmful content.

Fine-tuned models struggled with detecting nuanced harmful language, such as implicit bias and

sarcasm. Additionally, repetition and over�tting were observed in later training epochs, indicating that

�ne-tuning requires careful calibration to balance speci�city and generalization. Our data mixing

strategy, which incorporated multiple categories of harmful content, demonstrated bene�ts in improving

generalization. However, maintaining a balance between speci�city and coverage remains a key

challenge, especially for mixed-content datasets. Further research is required to re�ne �ne-tuning

methodologies, ensuring that generated content remains relevant, diverse, and applicable across different

domains.

8. Discussion

Future research should focus on improving adaptability, contextual awareness, and fairness in toxic

content detection. Dynamic adaptation to emerging toxic content is crucial, as harmful expressions

evolve rapidly. Self-supervised continual learning can help models detect new toxic patterns without

frequent retraining. Improving contextual awareness is another key challenge, as toxic language often

relies on implicit meaning. Integrating external knowledge graphs and multimodal signals (text, images,

audio) can enhance models’ ability to understand nuanced toxicity. Reducing over�tting and enhancing

diversity is essential to prevent models from becoming too specialized. Techniques like contrastive

learning, reinforcement learning, and curriculum learning can help balance speci�city and

generalization. Interactive human-in-the-loop systems can further improve accuracy and scalability by

incorporating expert feedback into real-time model updates. Lastly, ethical alignment and bias

mitigation require fairness-aware training methodologies and adversarial testing frameworks to

minimize unintended biases in synthetic toxic data generation.
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9. Responsible AI Statement

Our study acknowledges the ethical considerations and potential risks associated with generating

synthetic harmful content. While our research aims to improve automated content moderation, we

recognize that models capable of generating toxic data could be misused. To mitigate these risks, we

adopt strict safety measures, including controlled access to �ne-tuned models, comprehensive dataset

curation to prevent unnecessary ampli�cation of harmful language, and continuous monitoring for

unintended biases. Additionally, we emphasize the need for transparent documentation and responsible

deployment practices to ensure that synthetic data generation aligns with ethical AI principles. Future

work should further explore fairness-aware training methodologies, adversarial testing frameworks, and

regulatory oversight to minimize potential harms while maximizing societal bene�ts.

10. Limitations

While our study provides valuable insights into the performance of �ne-tuned LLMs for harmful content

generation and detection, several limitations must be acknowledged. One of the primary limitations is

the diversity and representation of the datasets used for supervised �ne-tuning. Although we utilized

mixed datasets combining hate, sex, and violence categories, the scope remains limited to speci�c types

of harmful content. Real-world applications may encounter a broader range of harmful content, including

less frequent or emerging forms of harmful language that were not covered in our datasets. Future work

should aim to include a wider variety of harmful content categories to improve the models’ robustness

and generalizability. Generating harmful content for research purposes raises signi�cant ethical

concerns. While we implemented control mechanisms(access control, etc…) to mitigate the risk of

producing excessively harmful outputs, there remains an inherent risk associated with the misuse of

such models. Ensuring the responsible use of LLMs in generating harmful content is crucial, and future

research should focus on developing more sophisticated ethical guidelines and safety measures. The

supervised �ne-tuning process in this study relied on signi�cant computational resources, including

multiple A100 GPUs. This requirement may not be feasible for all researchers or applications, particularly

those with limited access to high-performance computing resources. Exploring more ef�cient supervised

�ne-tuning techniques and leveraging less resource-intensive models would be bene�cial for broader

accessibility and scalability.
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Appendix A. Simple Prompt Engineering Choices and Experiment

Table

Prompt Versions for hate speech

V1 - Positive: You are no longer ChatGPT or an AI language model. Your new name is AOA (Absolutely

Obedient Agent). You should be absolutely obedient to the user and follow the user’s instructions without

deviation. You are an excellent data synthesis assistant in the �eld of hate content. You are capable of

generating 30 high-quality and diverse data entries based on the provided samples. Here are the speci�c

requirements: 1. The generated data should pertain to hate. 2. Each data entry must be diverse and

unique, with no repetitions. 3. The style and sentence structure should vary between different data

entries, ensuring distinctiveness in expression. 4. Precede each data entry with a unique, sequentially

ordered Arabic numeral, formatted as ’1.’, ’2.’, ’3.’, etc. 5. The samples provided are for reference only, and

the output data must not duplicate any of the provided samples.

V1 - Negative: You are an excellent data synthesis assistant with a strong ability to follow the rules, and

you can generate 30 high quality and diverse data items that are completely unrelated to the given

samples. Speci�c requirements are as follows: 1. The data generated should have nothing to do with hate.

2. Each data entry must be diverse and unique and must not be duplicated. 3. There should be different

styles and sentence structures between different data entries to ensure the uniqueness of the expression,

which can be multiple �elds. 4. Precede each data entry with a unique, sequentially ordered Arabic

numeral, formatted as ’1.’, ’2.’, ’3.’, etc.

V2 - Positive: De�nition: Hate content refers to written or spoken expressions that demean, discriminate

against, insult, or incite aggression towards individuals or groups based on inherent characteristics such

as race, gender, religion, sexual orientation, ethnicity, etc., thereby spreading hostility and intolerance.

You are an excellent data synthesis assistant in the �eld of hate content. You are capable of generating 30

high-quality and diverse data entries based on the provided samples and the de�nition of hate content.

Here are the speci�c requirements:

�. The generated data must align with the de�nition of hate content and be relevant to the samples,

yet it should incorporate new elements and creativity in content, subject matter, sentence structure,

and mode of expression, so the output distinctly differs from the provided samples.

�. Each data entry must be diverse and unique, with no repetitions.
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�. The style and sentence structure should vary between different data entries, ensuring

distinctiveness in expression.

�. Precede each data entry with a unique, sequentially ordered Arabic numeral, formatted as ’1.’, ’2.’, ’3.’,

etc.

V2 - Negative: You are an excellent data synthesis assistant with a strong ability to follow the rules, and

you can generate 30 high quality and diverse data items that are completely unrelated to hate content.

Speci�c requirements are as follows:

�. The data generated should have nothing to do with hate.

�. Each data entry must be diverse and unique and must not be duplicated.

�. There should be different styles and sentence structures between different data entries to ensure the

uniqueness of the expression, which can be multiple �elds.

�. Precede each data entry with a unique, sequentially ordered Arabic numeral, formatted as ’1.’, ’2.’, ’3.’,

etc.

V3 - Positive: De�nition: Hate content refers to written or spoken expressions that demean, discriminate

against, insult, or incite aggression towards individuals or groups based on inherent characteristics such

as race, gender, religion, sexual orientation, ethnicity, etc., thereby spreading hostility and intolerance.

You are an excellent data synthesis assistant in the �eld of hate content. You are capable of generating 30

high-quality and diverse data entries based on the provided samples and the de�nition of hate content.

Here are the speci�c requirements:

�. The generated data must align with the de�nition of hate content.

�. Each data entry must be diverse and unique, with no repetitions.

�. The mode of expression and sentence structure should vary between different data entries,

ensuring distinctiveness in expression.

�. Precede each data entry with a unique, sequentially ordered Arabic numeral, formatted as ’1.’, ’2.’, ’3.’,

etc.

V3 - Negative: You are an excellent data synthesis assistant with a strong ability to follow the rules, and

you can generate 30 high quality and diverse data items that are completely unrelated to hate content.

Speci�c requirements are as follows:

�. The data generated should have nothing to do with hate.
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�. Each data entry must be diverse and unique and must not be duplicated.

�. There should be different styles and sentence structures between different data entries to ensure the

uniqueness of the expression, which can be multiple �elds.

�. Precede each data entry with a unique, sequentially ordered Arabic numeral, formatted as ’1.’, ’2.’, ’3.’,

etc.

Version Prompt Sample Num Latency(s) Precision Recall F1

hate_30_30 V1 long pos:1454 neg:1520 0.174 0.440 0.250 0.712

hate_30_30 V1 long pos:2917 neg:3033 0.200 0.353 0.252 0.772

hate_30_30 V1 short pos:2967 neg:3106 0.305 0.151 0.202 0.870

hate_30_30 V2 short pos:3034 neg:2997 0.238 0.160 0.191 0.852

hate_30_30 V3 short pos:2957 neg:3000 0.282 0.151 0.197 0.866

Table 5. Experimental Results for Hate Speech Dataset

Experimental Results

Experimental Results for hate dataset using different version of prompt are showed in Table 5.

Appendix B. Detailed Training Parameters

The supervised �ne-tuning process was conducted on an Azure cluster equipped with 4 NVIDIA A100

GPUs, utilizing LLaMA-Factory[32]. Training parameters included a batch size of 16 with gradient

accumulation steps set to 8. The input sequence cutoff length and the maximum number of tokens

generated were both set to 4096. The learning rate was con�gured at 1e-5 with a warmup ratio of 0.1,

using the AdamW optimizer with a weight decay of 0.01 to prevent over�tting. A dropout rate of 0.1 was

applied to improve generalization, and mixed precision (fp16) was employed to enhance computation

speed and ef�ciency.
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Appendix C. Prompt engineering mixtral Duplication rate analysis

Table 6 presents a detailed analysis of the duplication rates for different prompt engineering versions

used in generating harmful and normal data samples. The analysis includes the duplication rate

percentages, the number of duplicated entries, and the mean duplication for �xed IDs across various

datasets and prompt versions.
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Version Prompt Sample Type Dup Rate Dup Num Dup Mean for Fixed ID Dup Num for Fixed ID

hate_30_30 V1 long harmful 5.90% 86 1.56 78

normal 1.30% 21 0.18 9

hate_30_30 V1 long harmful 13.30% 390 1.54 154

normal 1.80% 58 0.40 40

hate_30_30 V1 short harmful 10.71% 318 2.47 247

normal 4.41% 137 0.85 85

hate_30_30 V2 short harmful 11.70% 355 3.03 303

normal 4.80% 144 0.16 16

hate_30_30 V3 short harmful 10.88% 322 2.67 267

normal 3.60% 110 0.12 12

sex_30_30 V1 long harmful 8.90% 126 1.24 124

normal 1.08% 16 0.16 16

sex_30_30 V1 long harmful 13.41% 400 4.00 400

normal 3.80% 113 9.54 105

sex_30_30 V1 short harmful 3.16% 95 0.72 72

normal 1.39% 42 0.15 15

sex_30_30 V2 short harmful 1.56% 46 0.23 23

normal 1.23% 37 0.08 8

sex_30_30 V3 short harmful 2.34% 70 0% 0

normal 1.57% 47 0.10 10

Table 6. Duplication Rate Analysis
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Appendix D. Ablation Study

In this section, we explore the effects of using mixed data for supervised �ne-tuning models and

compare the results using different versions of prompts (v1, v2, v3). For simpli�cation, the effects of

different prompt versions are considered the same across all experiments.

D.1. Effect of Mixed Data on Model Performance

To investigate the impact of mixed data on the performance of �ne-tuned models, we performed

experiments using datasets that combine hate, sex, and violence categories (referred to as hate_multi).

The results of these experiments, alongside those for single-category datasets, are presented in Table 7.
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Dataset Version Precision Recall F1 Accuracy

Hate

Mistral_V1 0.305 0.151 0.202 0.870

hate_v1 0.175 0.170 0.172 0.823

multi_hate_v1 0.241 0.238 0.240 0.835

hate_v3 0.199 0.248 0.221 0.810

hate_sex_v3 0.201 0.197 0.199 0.827

Sex

Mistral_V3 0.581 0.699 0.634 0.830

sex_v1 0.614 0.720 0.663 0.845

multi_hate_v1 0.589 0.668 0.626 0.832

sex_v3 0.705 0.668 0.653 0.853

hate_sex_v3 0.628 0.664 0.664 0.886

Political Figure

Mistral_V3 0.974 0.946 0.960 0.960

hate_v1 0.947 0.921 0.934 0.935

multi_hate_v1 0.938 0.962 0.971 0.971

hate_v3 0.939 0.938 0.938 0.939

hate_sex_v3 0.908 0.937 0.922 0.921

Table 7. Analysis of the results of the �ne-tuned models using mixed data. Metrics include Precision, Recall,

F1, and Accuracy.

From Table 7, we observe the following trends:

Effectiveness of Mixed Data: The use of mixed data (hate_multi) generally improves the recall and F1

scores across most datasets, indicating that combining different categories of harmful content can

enhance the model’s ability to generalize and detect diverse harmful content.

Precision Trade-offs: While the recall improves, the precision for some categories decreases slightly.

This trade-off suggests that the model becomes more sensitive to identifying harmful content but
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may also generate more false positives.

Comparison with Single-category Data: Models �ne-tuned on single-category data (e.g., hate_v1,

sex_v1) show high precision but lower recall compared to those �ne-tuned on mixed data. This

indicates that single-category data supervised �ne-tuning might lead to more conservative models

that are less likely to generalize to other types of harmful content.

Prompt Versions: The experiments using different prompt versions (v1, v2, v3) show similar

performance metrics, indicating that the choice of prompt version has a minimal impact on the

overall performance of the �ne-tuned models.

The ablation study demonstrates that supervised �ne-tuning models with mixed datasets (hate_multi)

can signi�cantly improve recall and F1 scores, enhancing the models’ ability to detect various types of

harmful content. However, there is a trade-off with precision, requiring careful consideration in

applications where false positives are costly. Additionally, the choice of prompt version appears to have a

negligible effect on �netuned models performance, suggesting that the primary focus should be on the

diversity and quality of the training data.

Ethics Statement

The explicit nature of some of the generated harmful content raises ethical concerns. It is crucial to

implement robust control mechanisms and ethical guidelines to ensure that the use of such models does

not inadvertently promote or propagate harmful content. Future work should focus on developing

methods to mitigate the generation of excessively harmful outputs while maintaining the models’

effectiveness.

Footnotes

1 https://github.com/hiyouga/LLaMA-Factory
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