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Abstract: The results presented here are based on the Planck-Kleinert crystal concept. The rigorous use of 9 

quaternion algebra allows postulating the scalar, vectorial, and quaternion propagators in the ideal elastic 10 
continuum. The propagators are used in constructing the proton, electron, and neutron 2nd order partial 11 
differential equation systems, PEDS. The results generate the two 2nd order PEDS for the u and d quarks from the 12 
up and down groups. It was verified that both the proton and the neutron obey experimental findings and are 13 
formed by three quarks. The proton and neutron are formed by d-u-u and d-d-u complexes, respectively. All 14 
particle PEDS comply with the Cauchy equation of motion and can be considered as stable particles. The u and d 15 
quarks do not meet the relations of the Cauchy equation of motion. The inconsistencies of the quarks' PEDS with 16 
the quaternion forms of the Cauchy equation of motion account for their lifetime and the observed Quarks 17 
Chains. That is, they explain the Wilczek phenomenological paradox: “Quarks are Born Free, but Everywhere 18 
They are in Chains”. 19 

 20 
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1. Introduction 23 
     The focus here is on quaternion quantum mechanics, QQM, and quaternionic field theory, QFT. The 24 
quaternion algebra is attributed to many physical systems and laws, sporadically to quantum mechan- 25 
ics. Lanczos’s dissertation was on a quaternionic field theory of classical electrodynamics [1,2]. In his der- 26 
ivation of Dirac’s equation [3], there is a doubling in the number of solutions and several concepts that 27 
still remain at the front of the fundamental theory. These articles were unnoticed by contemporaries; 28 
Lanczos abandoned quaternions and never returned to quaternionic field theory. Fueter demonstrated 29 
that the Cauchy-Riemann type conditions in the quaternion representation are identical in shape to the 30 
vacuum equations of electrodynamics [4]. Yefremov described Newtonian mechanics in a rotating 31 
frame of reference [5] and the motion of non-inertial frames [6]. Adler shows that the Dirac transition 32 
amplitudes are quaternion valued [7]. Christianto derived an original wave equation from the corre- 33 
spondence between the Dirac equation and Maxwell’s electromagnetic equations via the biquaternionic 34 
representation [8].  35 
    The Adler’s method of quaternionizing quantum mechanics was avoided in the Harari-Shupe preon 36 
model for the composite quarks and leptons [9]. However, the composite fermion states were later iden- 37 
tified with the quaternion real components [10]. In spite of the lack of progress in advancing the Harari- 38 
Shupe scheme, substantial progress in QQM and QFT was made [11,12]. 39 
    The evolution of the P-KC model and the subsequent development of the QQM are shown [13,14,15]. 40 
The QQM presented here is ontological in the sense that it starts with being, that is, the Planck-Kleinert 41 
ideal regular crystal  [14,16]. The basic categories of being and their relations are governed by the qua- 42 
ternion algebra [14]. The stress tensor of the Planck-Kleinert crystal is given by 43 

 ,                                  (1) 44 
where D denotes the deformation tensor (the symmetrical part of the strain tensor) and  and  are 45 
the Lamé coefficients of an ideal regular crystal. It was shown by Cauchy and Saint Venant that if the 46 
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particles composing a regular crystal interact pairwise through central forces, then there is an addition- 47 
al symmetry requiring C44 = C12 that implies the Poisson ratio 0.25 and  [17] 48 

   .                              (2) 49 
Using the identity: the stress tensor in the Planck-Kleinert crystal becomes 50 
[16]: 51 

.           (3) 52 
    The motivation for writing this paper was to explicate the stress field origin of the QQM and QFT. 53 
The Standard Model of elementary particles lacks an adequate description of the mechanism of quark 54 
charges. It is showed here that the quark particle waves do exist, and two their PEDS are presented. 55 
Further studies in order to verify or refute those propositions are suggested.  56 
 57 
1.1. Quaternions 58 

The elements of the quaternion algebra used in the QQM and QFT were already presented in previous pa- 59 
pers [13-15]. Only the two definitions are recalled here. In the ideal elastic continuum, the quaternion potential, 60 
i.e., the deformation four-potential, is defined by 61 

,                        (4) 62 

where denotes the displacement,  is the q-potential, and the constraint  63 

holds. 64 
We use the Cauchy–Riemann operator D in  acting on the quaternion-valued functions 65 

.                                  (5) 66 

Under the constraint:  D corresponds physically to the nabla operator in : 67 

                                                    (6) 68 

The exponent function has its trigonometrical representation 69 

                                              (7) 70 

1.2. The critical review of the earlier results.  71 
The Cauchy equation of motion and the overall energy density of the deformation field in the quaternion formu- 72 
lation equal [14] 73 

  (8) 74 

  (9) 75 

where  denote the deformation energy and the mass densities in the P-KC respectively, 76 

 is the mass velocity in the quaternion representation: 77 

 . (10) 78 
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The overall energy of the particle wave in an arbitrary volume Ω follows from Eq. (9) and is given by the in- 79 
tegral: 80 

 ,   (11) 81 

where for the sake of clarity, the external potential, , is not shown [14]. 82 

In the previous paper [15] upon substituting , we introduced in (11) the transformed, q- 83 
potential,  and expressed the particle mass by the symmetrical relation 84 

 .       (12) 85 

The combination of (10) and (12) resulted in the energy functional and allowed consideration of the exist- 86 
ence of the stable particle m in the potential field . Subsequently, the quaternionic particle density was 87 
defined,  88 

  (13) 89 

and it was proved that  satisfies the time-independent Schrödinger equation [14] 90 

 .                                 (14) 91 

The quaternionic particle density  is also called the quaternionic probability because the relation  92 
holds [15]. 93 
Remark. The q-potential definition,  is incompatible with the derived quaternionic oscillator formu- 94 
la where only integral coupling coefficients n are allowed, e.g.,  in [15].   95 

The 2nd order boson PEDS presented in [13,14] are based on the postulate of the scalar propagator, 96 
 providing the coupling between the longitudinal and transverse waves. The coupling is ev- 97 

ident upon expressing the quaternionic Klein-Gordon system in the equivalent form, e.g., 98 

      (15) 99 

Above two systems are identical, five equations and five unknowns:  and m, see defini- 100 
tion (4). If mass m is unknown, it may be treated as the parameter in the Poisson equation above.  101 

In [15], we further developed the propagator concept and postulated the family of second-order 102 
quaternionic wave equations: 103 

   (16) 104 

where n is a coupling coefficient.  105 
It’s evident that at n = 0, the coupling (15) for boson particles follows. The propagator term 106 

 in (16) corresponds to the density of the rate of the momentum change, and the  term 107 
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is referred to as the power of the harmonic oscillator. The coupling coefficient n can be elucidated as the 108 
radius R of the quaternionic oscillator in the Cauchy crystal, expressed in Planck length: . In the 109 
system (16), the generalized q-potential can be introduced  110 

  (17) 111 

Upon the  substitution into the system (16), the two 2nd order PEDS are evident: 112 

  (18) 113 

Remark. The problem of the coupling coefficients  and the resulting different particles is not presented 114 
here.  115 
The harmonic oscillator controls the acceleration of q-potential in the particle wave. The acceleration of the sca- 116 

lar part  of the q-potential was estimated in [15]: 117 

 . (19) 118 

Using the equipartition theorem and the common frequency postulate for all four q-potential compo- 119 
nents: , the relation (19) was extended to  120 

 . (20) 121 

The acceleration of the q-potential will be called the power of the quaternionic oscillator in the particle 122 
wave: 123 

 , (21) 124 

where  is an unknown particle frequency that may be postulated or computed. 125 
Remark. The power of the oscillator , Equation (21), does not take into account both the con- 126 
straint  and the pseudovector character of twist .  127 

The 1st order particle wave equation in the quaternion formulation obtained in [15] is consistent with its 128 
form in the Dirac algebra formalism. However, the 1st order system is generated by the invalidated substitution 129 

 in [14]. The 2nd order PEDS, following the schema (18), where  and  equal: 130 

  (22) 131 

The system (22) consists of the two 2nd order scalar PEDS while the vector potential is not present. In the 132 
next sections, the solutions of the presented problems are given. 133 
Remark. The Equation (22) is mistaken and will be reformulated in the next sections. 134 
 135 
2. The Baryons, Quarks, and Their q-Potentials  136 

2.1. The Quaternionic Oscillator  137 
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The coupling of the transverse and longitudinal waves takes place in the PKC elementary cell, i.e., 138 
at the Planck scale. The quaternionic oscillator controls the acceleration of all the q-potential constitu- 139 
ents in the particle wave in Ω: . The function  is called the power of the quaternionic 140 
oscillator. In earlier papers, we neglected the facts that twists  form the pseudovector 141 

 [18] and that the constraint  holds. Thus, the relation (19) for the scalar q- 142 
potential component  extended for  in (20) must be corrected and the two independent 143 
q-potential constituents,  and , considered: 144 

  (23) 145 

and the power of the quaternionic oscillator equals 146 

 . (24) 147 

The particle wave frequency depends on the particle mass, , and follows from the  148 
schema, see Fig. 1 in [15]. The sum of moments of all the Planck masses forming the particle wave in Ω 149 
(at the arbitrary time t and solely due to the particle wave) equals the momentum of the particle m it- 150 
self. To simplify, we may estimate the average momentum of the arbitrary single Planck mass  dur- 151 
ing the whole particle cycle  The complete cycle implies that every Planck mass returns to its ini- 152 
tial conditions:  and . The overall distance that the arbitrary mass mP passes 153 
during the wave cycle T equals .  The average momentum of the Planck mass during the 154 
particle wave cycle equals 155 

  (25) 156 

The momentum of the particle m results in the same way from the particle wave propagation velocity, 157 
e.g., c in the system (15): 158 

 . (26) 159 

The moment (25) and (26) must equal, and the frequency of the particle wave becomes: 160 

  (27) 161 

Combining the relations (24), (27), and the definition , the overall power of the quaternionic os- 162 
cillator when the particle mass is known equals: 163 

 . (28) 164 

By substituting  in (27), the Planck–Einstein relation follows: , where . The fami- 165 
ly of the scalar 2nd order quaternionic wave equations, when the corrected propagator is used, becomes: 166 

  (29) 167 

where n denotes an integer and n ≠ 0. 168 
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It’s evident that at n = 1, the coupling in (15) for the boson particle follows. The corrected propaga- 169 
tor results in symmetry of the coupling equation in system (29). I t does not have an effect on 170 
the scalar 2nd order PEDS and the gravitational constant in (15)-(18). 171 

 172 
 173 
 174 
 175 
 176 
. 177 

2.2. The baryon particles formed by the odd number of quarks 178 

The strong coupling only is considered here, e.g.,  in the system (29). The quaternionic oscillator  al- 179 
lows postulating three propagators: the scalar, the vectorial,  and the quaternion, 180 

.  181 
The term  fixes the density of the rate of twist change and is called the vectorial propagator. We 182 

postulate the vectorial Poisson equation in system (29): . Upon the rearrangement of the new 183 
system, the particle wave (electron) and the vectorial Poisson equations are evident: 184 

  (30)  185 

Note that the wave propagation velocity in system (30) equals the velocity of longitudinal waves in the Cauchy 186 

continuum:  [16]. By adding equations in system (30), it is clear that it complies with the Cauchy equa- 187 

tion of motion (8): 188 

  (31) 189 

The above vectorial Poisson equation hints at Equation (30) as the 2nd order PEDS for electrons. Note that the 190 
wave propagation velocity in the electron system in Equation (31) equals the velocity of longitudinal waves in 191 

Cauchy Equation (15):  192 

In the quaternion propagator, , the vectorial, , and scalar, , propagators are  193 

“merged” and form the strongly coupled system. The rearrangements of system (32) are shown below and dis- 194 
play different forms of the 2nd order PEDS: 195 
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      (32) 196 

The comparison of the scalar, vectorial, and quaternionic propagators shows that the q-propagator offers 197 
the strongest coupling, Eq. (32). The quaternionic Poisson equation in (32) reveals that it is the 2nd order PEDS for 198 
a proton. The sum of equations in (32) shows that the system complies with the Cauchy equation of motion (8): 199 

                  (33) 200 

The scrupulous assessment of systems (15), (30), and (32) allows postulating the 2nd order PEDS for the quarks 201 
from the up and down groups. Explicitly, the 2nd order PEDS of the u quark from the up group equals: 202 

  (34) 203 

and the 2nd order PEDS of the d quark from the down group: 204 

  (35) 205 

The sum of equations in the quark systems (34) and (35) does not comply with the Cauchy equation of motion 206 
(8) and may indicate their short lifetime.  207 
 208 
2.3. The quarks 209 
There are two groups of hadrons: baryons (containing three quarks or three antiquarks); and mesons 210 
(containing a quark and an antiquark). In the following, we show that systems (30) - (35) comply with the 211 
experimental findings shown in Table 1. 212 

 213 
 Table 1. The basic properties of the quarks in baryons. 214 

Group Quark
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e 

Spin 

up u,c,t 2/3 1/2 
down d,s,b -1/3 1/2 

The terms  and  in systems (34) and (35) respectively, are related to the charge, see Table 1. 215 

A proton is formed by the two up quarks and the single down quark:  . Thus, by computing the sum of 216 
two systems (34) and one system (35),  we may expect a proton, system (32): 217 
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                  (36) 218 

and the result is in agreement with equation (33): 219 

        (37) 220 

A neutron is formed by the one up quark and the two down quarks:  221 

              (38) 222 

and the result is in agreement with the neutron system (15): 223 

                                           (39) 224 

The systems (30), (37), and (39) represent coupled 2nd order PEDS and show the different coupling strengths. The 225 
strongest coupling of the proton, Equation (37), is related to its enormously long lifetime. 226 
 227 
3. The Quaternion Schrödinger Equation 228 
The vectorial Poisson equation indicates that it’s the 2nd order PEDS for the electron. We will apply this 229 
schema in the system (30) in the integral form of the energy conservation. We treat the wave as a parti- 230 
cle in an arbitrary volume Ω [14]. The energy per mass unit, e, in the volume occupied by the particle 231 
wave defines its overall energy: , 232 

 ,                            (40) 233 
where Ep and EV denote energies of the particle and of its force field, respectively, ρP is the Planck mass 234 
density.   235 
The 1st step in deriving the Schrödinger equation is the choice of the symmetrization scheme for the par- 236 
ticle energy, Ep. Equation (40) can be written in the equivalent form: 237 

 ,                                            (41) 238 

Upon comparing with the system (30), we separate the Ep and EV terms in the integral formula. 239 

               (42) 240 

The mass of the particle,  follows from the particle wave energy in (42). 241 

 .                                       (43) 242 

The terms  and  oscillate and depend on the time and position. The symmetry in (43) al- 243 
lows normalizing the deformation and mass velocity with respect to the overall particle mass: 244 
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                                 (44) 245 

The quaternionic particle mass density  can be called the quaternionic probability because the rela- 246 
tion  in (44) is satisfied. Obviously, terms  and vary in time.  247 

We analyze the evolution of the wave as in relations (42) and (43) in the time-invariant potential field, 248 
e.g., the particle wave in the field generated by other particles. The overall particle energy is now a sum 249 
of the ground and excess energy Q, 250 

 . .                       (45) 251 

We consider the low excess energies, and the impact of Q on the overall particle mass in (43) is margin- 252 
al. Thus, the relation (45) becomes 253 

                         (46) 254 

Both the  and m are constant; thus, it is enough to minimize the relation 255 

 .                                       (47) 256 

The above relation contains two unknowns:  and . By relating the local lattice velocity  to 257 
the force, specifically to the normalized Cauchy–Riemann derivative of the deformation: , one 258 
gets 259 

 .                                                   (48) 260 

By introducing (48) and the normalization (44), the relation (47) becomes the functional 261 

 .                                 (49) 262 

The functional , Eq. (49), was minimized with respect to a quaternion function such that  satis- 263 
fies the normalization introduced in relation (44). We follow the schema used in [14]. In simple terms, 264 
we seek a differential equation that has to be satisfied by the  function to minimize the energies al- 265 
lowed by (49). Given the functional (49) and the constraint , the conditional extreme is found 266 
using the Lagrange coefficients method and the Du Bois Reymond variational lemma [19]. In such a 267 
case,  satisfies the time-invariant Schrödinger equation satisfied by the particle wave in the ground 268 
state of the energy  269 

 ,                                     (50) 270 

where a constant factor on the right-hand side can be considered as the extra energy of the particle in 271 
the presence of the field V = V(x). For , Equation (50) is clearly the time-independent Schrödinger 272 
equation satisfied by the particle in the ground state of the energy E,  273 

  .                                       (51) 274 

It has to be satisfied together with the condition 275 
 .                                  (52) 276 
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Upon using the NIST data [20] for Planck’s natural units , and the light velocity c, the constant 277 

 introduced in relation (48) equals the Planck constant [16]. 278 
The particle mass center equals its wave energy center. The “space-localized” particle is defined in the 279 
sense given by the Bodurov definition [21]: “A singularity-free multi-component function 280 

 of the space  and time t variables will be called space-localized if  281 

sufficiently fast when , so that its Hermitean norm 282 

                             (53) 283 

remains finite for all time.” 284 
 285 
4. The First-Order PDE in the P-KC 286 
Operator quantum mechanics is based on the complex number algebra, the matrices, and the matrix 287 
algebra. Canonical quantization starts from classical mechanics and assumes that the point particle is 288 
described by a “probabilistic wave function.” Dirac applied complex combinations of the displacements 289 
and velocities in the linear problem of secondary quantization [22] and replaced the second-order 290 
Klein–Gordon equation by an array of first-order equations. He also recognized the problem of a medi- 291 
um for the transmission of waves: ”It is necessary to set up an action principle and to get a Hamiltonian for- 292 
mulation of the equations suitable for quantization purposes, and for this the aether velocity is required” [23]. 293 
   In the earlier work [15], we did not separate the Planck and the particle time scales in the quaternionic 294 
oscillator  i.e., both the Planck and the particle frequencies were running the oscillator. In the 295 
following, we derive the proper formula of the quaternionic oscillator  for the 1st order PEDS and 296 
the separated time scales. We base our work on the concept of the medium as a solid “aether” [16] and 297 
implement quaternion algebra [14]. The 2nd order particle wave equations in QQM, e.g., in the system 298 
(31), contain two characteristic terms: 299 

           (54) 300 

We will comply with the above schema for the 1st order PEDS: 301 

        (55) 302 

 303 
4.1. The 1st order wave term.  304 
We consider the system (30) and the relation between the wave velocity and the Cauchy–Riemann de- 305 

rivative,  The expression for the overall particle energy, Equation (42), implies: 306 

• the displacement velocity as the alternative variable: 307 

 ,                                       (56) 308 

• the longitudinal wave velocity as the wave propagation velocity: 309 

 . (57) 310 
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The stable particle is considered, thus its wave is at a quasi-steady state. The 2nd order time derivative of 311 
the q-potential in (55) we express as follows: 312 

 .                                        (58) 313 

The term in the bracket on the right-hand side is the rate of change of the q-potential. We want to 314 
express this term by a new variable, i.e., separate the time scales. The rate of change of the deformation 315 
potential  is due to the wave propagation within the particle space. The propagation process must 316 
follow the extremum principle, i.e., it is the brachistochrone problem [24]. A good example of the “local 317 
principle” approximation is given by Derbes [25].   318 
We know that the wave path fulfills the extremum principle, i.e., the wave path follows its unique tra- 319 
jectory given by the Cauchy–Riemann derivative . The trajectory which has the minimum property 320 
globally in the whole volume Ω occupied by the particle must have the same property locally. This path 321 
grants the shortest possible travelling time for the waves identified in QQM. Consequently, from (57) 322 
we postulate the following:  323 

  .                     (59) 324 

From the relation (56), we get 325 

                              (60) 326 

Combining the relations (59) and (60), we get the 1st order particle wave term consistent with the 2nd or- 327 
der formula (54): 328 

           (61) 329 

Thus, the 1st order particle wave term in (55) equals: 330 

                                           (62) 331 

4.2. The 1st order quaternionic oscillator.  332 
The power of the 2nd order quaternionic oscillator, Equation (28), follows from two time scales in PK-C, 333 
namely from the relations (24) and (27):   and . Combining the relations 334 
(24), (27), and removing the Planck frequency results in the power formula of the 1st order quaternionic 335 
oscillator when the particle mass is known: 336 

 .                                       (63) 337 

By introducing the relations (62) and (63) in the schema (55), the 1st order PDE for the electron equals 338 

                     (64) 339 

Relation (44), , implies that by multiplying the particle wave equation (64) by 340 
, it will be expressed as a function of probability 341 

                                         (65) 342 

or 343 

                            (66) 344 
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Equation (66) may require the  time dependence. This dependence results from the continuity equa- 345 
tion presented in [15]. The comparison of the first-order wave equations in quaternion formulation, 346 
Equation (66), with the form in the Dirac algebra formalism: 347 

            (67) 348 

 349 
5. Conclusions 350 
The new results of the QQM and QFT make firmer the concept of the P-KC. The fine-tuning of our 351 
model allowed obtaining new results and next targets:  352 
• The symmetrical formula of the scalar force field:  is consistent with the sca- 353 
lar coupling between transverse and longitudinal waves in [13] and [14].  354 
• The quaternion, , scalar,  and vectorial,  propagators are postu- 355 

lated and used to generate the 2nd order partial differential equation systems, PEDS, for the proton, elec- 356 
tron, and the neutron  357 
• The scrupulous assessment of the 2nd order PDE systems allows postulating the two 2nd order 358 
PEDS for the u and d quarks from the up and down groups.  359 
• It was verified that both the proton and the neutron obey experimental findings and are formed 360 
by three quarks. Namely, the proton and neutron are formed by  and  complexes, re- 361 
spectively. All the above systems comply with the Cauchy equation of motion (8) and can be consid- 362 
ered as stable particles. 363 
• The u and d quarks do not meet the relations of the Cauchy equation of motion. Also, experi- 364 
mental efforts to find the individual quarks were without success. Observed were the bound states of 365 
the three quarks – the baryons – and a quark and an antiquark – the mesons. Wilczek calls it the phe- 366 
nomenological paradox: “Quarks are Born Free, but Everywhere They are in Chains” [26]. The inconsistency 367 
of the quarks’ PEDS with the quaternion forms of the Cauchy equation of motion might account for the 368 
observed Quarks Chains.  369 
• The gravitational waves propagate at the velocity of the transverse wave in the Cauchy continu- 370 
um, c.  371 
• The electron waves propagate at the velocity of the longitudinal wave in the Cauchy continuum, 372 
√3c. 373 
  374 
The results indicate the following targets for immediate future: 375 
• The particles and quarks in the case of higher coupling coefficients: . 376 
• The ratios between the constants for the different force fields. 377 
• The rigorous derivation of the 1st order PEDS basing on the extremum principle. 378 
• The multivalued coordinate transformation to determine the properties of space with curvature 379 
and torsion produced by 2nd order PEDS of the QFT [27]. 380 
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PEDS partial differential equation systems 
QQM quaternion quantum mechanics 
QFT Quaternion field theory 
D deformation tensor  

 Lamé coefficients; 
 stress tensors 

 density of the deformation energy 

 displacement in  

 q-potential in , the quaternion deformation potential 

 strain energy density 

 power of the quaternionic oscillator 

 
density of the rate of momentum change, i.e., the  
quaternionic scalar propagator 

 quaternionic vector propagator 

 quaternionic q-potential propagator 

 
quaternionic particle density, i.e., the particle wave 
function 

 probability, i.e., the normalized particle mass density 

n coupling coefficient in the propagator 
 Planck length 

 Planck frequency, inverse of the Planck time 
 Planck mass 

 transverse wave velocity in elastic continuum 

 longitudinal wave velocity in elastic continuum 

 Planck density, i.e., the mass density of the PK-C 

 
mass density of the particle , as the equivalent 
of the  
energy density  in the PK-C 

 Planck constant in terms of angular frequency 
h Planck constant,  
m equivalent mass of the wave, i.e., mass of the particle 

 length of the particle wave 
 frequency of the particle wave 
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