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Abstract: The results presented here are based on the concepts of the Cauchy continuum and, the elementary 
cell at the Planck scale. The symmetrization of quaternion relations and the postulate of quaternion velocity 
have been crucial in driving significant advancements. They allowed considering the momentum of the ex-
panding Cauchy continuum, ( )0 ,u t x . The momentum expansion/compression is the apparent result of the 
scalar potential of the expansion/compression: ( )0 ,t xσ . The key new results are listed below: 
The vectorial ( )( )0 0

ˆG m σ φ+ , ( )0
ˆG m φ  and scalar: ( )0 0,G m σ  ( ) *

0 ,G m σ σ⋅  propagators are postulated and used to 
generate the 2nd order PDE systems for the proton, electron and neutron. The scrupulous assessment of the 2nd 
order PDE systems allows postulating the two 2nd order PDE systems for the u and d quarks from the up and 
down groups. It was verified that both the proton and the neutron obey experimental findings and are formed 
by three quarks. The proton and neutron are formed by d-u-u and d-d-u complexes, respectively. All particle 
systems comply with the Cauchy equation of motion and can be considered as stable particles. The u and d 
quarks do not meet the Cauchy relations. The inconsistencies of the quarks’ PDE with the quaternion forms of 
the Cauchy equation of motion account for their lifetime and the observed Quarks Chains. That is, explain the 
Wilczek phenomenological paradox: “Quarks are Born Free, but Everywhere They are in Chains”. Symme-
trizing the variables led to the derivation of the Maxwell’s equations at the macro-scale and the quarks at the 
Planck scale.  
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1. Introduction 

 
Already in 1936 Birkhoff and Von Neumann suggested a quaternionic quantum mechanics, QQM, where 

wave functions or probability amplitudes are quaternion valued [1]. But systematic work on the quaternionic 
extension of standard quantum mechanics has not begun. The key results relevant to the present paper are by 
Lanczos. His dissertation was on a quaternionic field theory of classical electrodynamics [2,3]. In his derivation 
of the Dirac’s equation [4], there is a doubling in the number of solutions and the concepts that still remain at the 
front of the fundamental theory. These articles were unnoticed by contemporaries; Lanczos abandoned qua-
ternions and never returned to quaternionic field theory. 

Almost immediately, it was demonstrated that the Cauchy-Riemann type conditions in the quaternion 
representation are identical in the shape to vacuum equations of electrodynamics [5] and that Dirac transition 
amplitudes are quaternion valued [6]. Christianto derived an original wave equation from the correspondence 
between Dirac equation and the Maxwell electromagnetic equations via the biquaternionic representation [7]. 
The Adler’s schema of the quaternionizing the quantum mechanics inspired the Harari-Shupe’s preon model 
for the composite quarks and leptons [8,9] and the substantial progress in the QQM and QFT [10]. Adler 
presented a major conceptual advance for the purpose of determining whether quaternionic Hilbert space is the 
suitable for the unification of the standard model forces with gravitation. He provided an introduction to the 
problem of formulating quantum field theories and concluded that the QQM may fit into the physics of uni-
fication and measurement theory issues [11]. 
  The focus here is on quaternion quantum mechanics and quaternionic field theory, QFT. The QQM pre-
sented here is ontological in a sense that it starts with being, that is the Cauchy ideal elastic continuum at the 
macro-scale (> 10-20 m) and the “Planck unit cell” at the microscale (~10-35 m) [14,12]. The basic categories of 
being and their relations are governed by the quaternion algebra [14]. The operator algebras as well as special 
operators are not used here. 
    The evolution of the P-KC model and the development of the QQM are shown in succeeding papers 
[13,14,15]. In this article we present the QQM in the completed, refined form: 
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• Without heuristically trying to find analogies with the classical operator quantum mechanics and the 
field equations, we use the ontology-based formalism which is constructed on the Planck-Kleinert 
crystal concept [12] and the quaternion algebra introduced by Hamilton, section 1.1. 

• The widely used Helmholtz decomposition is used in the general form in 4
 , section 2. 

• The all vectors are in the 4
  representation, e.g., the four-velocity is the “new” variable that allows 

for the symmetrization of the Hamiltonian [16] and the 1st and 2nd order wave equations. 
• The Standard Model of elementary particles lack adequate description for the mechanism of quark 

charges and their force fields. It is showed here that the quark particle waves do exist and two their 
PDE systems are presented. 

• The further studies in order to verify or refute those propositions are suggested. 
The Cauchy model of the elastic continuum is presented in Section 1.2. We construct a Lagrangian with the 
use of the Cauchy–Riemann operator and introduce the key new concept, the quaternion valued velocity, 
section 2. Abbreviations used in the text are presented in Appendix A.  
 
1.1. Quaternions 
The elements of the quaternion algebra used in the QQM and QFT were presented in previous papers [13-15]. The basic 
definitions and formulas of the quaternions and functions are limited to those already used [17,18]. 
   In Hamilton’s own words, he created the 4

  analog of complex numbers as the equivalent of the 
time-space continuum [19]: 
“Time is said to have only one dimension, and space to have three dimensions. The mathematical quaternion partakes of 
both these elements; in technical language it may be said to be ’time plus space’…’: and in this sense it has, or at least 
involves a reference to, four dimensions.” 
   We demonstrate here that, the Hamilton’s ’time plus space’ is consistent with the Cauchy model of ideal 
elastic continuum in the quaternionic representation. 
The algebra of quaternions, ℚ, owns all laws of algebra with unique properties: 
(1) the multiplication of quaternions is noncommutative; 
(2) the quaternionic deformation potential, i.e., the deformation four-potential or q-potential, which is a 
relativistic function from which the displacement field can be derived. It combines both a compression sca-
lar potential (pressure) and a torsion vector potential (twist) into a single quaternion (four-vector);  
(3) the quaternionic deformation potential is Lorentz invariant.  
The quaternion is regarded as the sum of a real (scalar 0q ) and an imaginary (vector q̂ ) parts: 

[ ]0 0ˆ ˆ,q q q q q= + = ∈1  . The following algebraical notation is useful: 0 11, ,e e i= = 2 ,e j= 3e k= . Thus, an 
arbitrary quaternion q, i.e., q ∈ , can be written in terms of its basis components, 

( )0 1 2 3 0 1 2 3 0 1 2 3, , ,q q q q q q q i q j q k q q i q j q k= = + + + = + + + ∈1   (1) 

where the unit vector 1 can be ignored as a factor, the unit vectors, , ,i j k , are called the imaginary units. 
  The component-wise addition and component-wise scalar multiplication are the conventional operations. 
Multiplication is the fundamental operation that is defined by the multiplication of the unit vectors: 
-  The real quaternion 1 is the identity element; 
-  The real quaternions commute with all other quaternions, that is a q q a⋅ = ⋅ , for every quaternion q 
and every real quaternion a; 
-  The Hamilton product is not commutative, p q q p⋅ ≠ ⋅ , but it is associative, ( ) ( )p q r p q r⋅ ⋅ = ⋅ ⋅ . 
Thus, the quaternions form an associative algebra over the real numbers; 
-  Every nonzero quaternion has an inverse with respect to the Hamilton product. 
The quaternions form division algebra. The non-commutativity of multiplication is the equation reference goes 
here only property that makes quaternions different from a real and complex numbers. The unit vectors obey 
the following relations: 

2 2 2  1, , ,  .i j k ij ji k jk kj i ki ik j= = = − = − = = − = = − =  (2) 
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The multiplication is associative but not commutative. Instead of the simple commutative law, p q q p⋅ = ⋅ , 
in quaternion algebra we have the following law: 

 ( )0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ p q p q p q e p q p q q p⋅ = − + × + + . (3) 

From the multiplication law (3) follows the convenient formula ( )* * *p q q p⋅ = ⋅ . A conjugate quaternion is 
defined as follows: 

 *
0 0 1 2 3ˆq q q q q i q j q k= − = − − − , (4) 

where the asterisk means the following: one goes over to the “conjugate” of the quaternion, that is to say, 
one gives the imaginary units the opposite sign. The conjugate means one gives the vector components (the 
space part), 1 2 3q̂ q i q j q k= + + , the opposite sign: 

 *
0 0 1 2 3ˆq q q q q i q j q k= − = − − − . (5) 

It is easy to see that the quantity *q q⋅  is a scalar number, and all spatial components vanish,. From Equa-

tions (1) - (5), it can be seen that 
3* * 2

0 ii
q q q q q

=
⋅ = ⋅ = ∑ , so the Euclidian norm can be denoted as follows: 

 *q q q= ⋅ . (6) 

Consequently the quaternion algebra, 


 is a normed algebra. 
The scalar and vector products are operations defined by: 

 ( ) ( ) ( )3
2 3 3 2 3 1 1 3 1 2 2 11

ˆ ˆ ˆ ˆ;i ii
p q p q p q p q i p q p q j p q p q kp q

=
× = − + − + −= ∑  (7) 

The vector space 4


 with the multiplication (3) is a noncommutative algebra with unity and it is named 
quaternion algebra 


. The commutator of two elements, p and q, is defined by the following: 

 [ ] ˆ ˆ, 2p q p q q p p q= ⋅ − ⋅ = ×  (8) 

and can be looked at as a measure of noncommutativity. Two quaternions commute , 0p q   =  if, and only 
if, their vector parts are collinear. 
The quaternions typically are represented as the matrices or the exponent functions that have trigonomet-
rical representation: ( )0 ˆ ˆ ˆ ˆcos sinqqe e q q q q= + . 

Functions of a quaternion variable represent useful physical models, e.g., the electric and magnetic fields 
described by Maxwell are functions of a quaternion variable [20], section 3. 
Let Ω ⊂ 3



 be a bounded set. The so-called 


-valued functions may be written as 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 1 2 31 , , , Ωq x q x q x i q x j q x k x x x x= + + + = ∈ , (9) 

where the functions ( ) ( )0 , ,  1, 2,3lq x q x l =  are real-valued.  

Similarly, the functions ( ),q t x , depending on time t, may be considered.  
We use the Cauchy–Riemann operator D in 4

  acting on the quaternion-valued functions 

 ( ) 0 0
ˆ ˆ ˆdiv grad rot ,Dσ φ σ φ σ σ φ= − + + = + . (10) 

  Properties such as continuity, differentiability, integrability, and so on, have to be possessed by all the 
components ( ) ( )0 , , , ,  1, 2,3lq t x q t x l = . In this manner, the Banach, Hilbert, and Sobolev spaces of 



-valued functions can be defined [20], e.g., in the Hilbert space over 


: 



 

( ) { }2 2 2
0Ω Ω

L Ω : Ω d , d , 1,2,3lq q x q x l= → < ∞ < ∞ =∫ ∫ , (11) 

and allow introducing the inner product as follows: 

 ( )2
1 2 1 2 1 2Ω
, d , , L Ωq q q q x q q= ⋅ ∈∫  (12) 

Fourier series, Lebesgue measure, Gelfand triples, Laplace transform, and many others on the vector space of 


-valued functions over 


 can be defined in a standard way as in the real and complex cases. 
Remark 1. Hurwitz’s theorem says that there are only four normed division algebras: , ,  

and the octonions al-
gebra. Lagrange’s four-square theorem in number theory states that every non-negative integer is the sum of four in-
teger squares. This theorem may have applications in quaternion algebra. 
 
1.2. The Cauchy Dispacement Field: the Classical Theory of Elasticity and the Properties at the Planck 
Scale 
Cauchy finished the theory of the ideal elastic continuum in 1822 [21], right away Poisson [22] studied the 
elementary waves. In 1885 Neumann [23] gave the proof of the uniqueness of solutions of some  
boundary-initial value problems. The rigorous completeness proof was given by Duhem [24]. Cauchy 
theory is the first real, well posed theory of elasticity using the continuum approach, where the macroscopic 
phenomena are described in the terms of field variables [25]: the compression div u , and the twist rot u . The 
stress tensor of the ideal elastic continuum is given by 

 ( )tr 2λ µ= +D IT D  (13) 

where ( )tr D  is the trace of the strain tensor, I is the identity matrix and the two moduli of elasticity, 𝜆𝜆 and 
𝜇𝜇, are the material-dependent constants. It was shown by Cauchy and Saint Venant that if the particles 
composing a regular crystal interact pairwise through central forces, then there is an additional symmetry 
requiring C44 = C12 that implies the Poisson ratio 0.25 and equal Lamé’s coefficients: λ µ=  [26]. The 
identity: grad div divgrad  + rot rot ,=u u u implies that the stress tensor becomes: 

 
div 2 graddiv divgrad
           3 graddiv rot rot .

µ µ
µ µ

= + =
−

T u u
u u

 (14) 

Cauchy equation of motion generalizes: (1) the Newton’s laws of motion (the conservation of the linear and 
angular momenta) to an ideal elastic solid, and (2) the concept of stress in terms of the gradients in the dis-
placement field ( ) 3,t x ∈u  : 

 
2

3
2 3 grad div rot rot

t
r µ µ∂

= − + ∈
∂

u u u F
d

 , (15) 

where F


 is the force.  

From Equation (15), the vectorial representation of the energy density in the deformation field can be com-
puted [25,27] 

 ( )22 2 31 3 1div rot rot
2 2 2

e c c= + + ∈u u u u u 

   , (16) 

where t= ∂ ∂u u . 

In the following, we consider Cauchy continuum with FCC structure. The Young’s modulus Y describes 
tensile elasticity which is axial stiffness of the length of a body to deformation along the axis of the applied 
tensile force. It is related to Lamé’s two moduli of elasticity by 

 ( ) ( )2 .53 2Y
λ µ

µµ λ µ λ µ
=

= + =+ . (17) 
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If lP denotes the dimension of the FCC elementary cell that consists of the four interacting Planck particles 
showing the mass mP, the Planck density equals: 34 .P P Pm l constρ = = ,  The computed Planck density, the 
Young modulus and, the other properties of the Cauchy continuum at the Planck scale are shown in Table 1. 

Table 1. The physical constants of the Cauchy continuum (fcc ideal isotropic crystal). 

Label Used in This Work Planck Constants Symbol for Unit Value SI Unit Reference 
Lattice parameter Planck length Pl  1.616229(38) × 10−35 m [32] 
Poisson ratio  ν   0.25 - [26] 
Mass of the Planck particle Planck mass Pm  2.176470(51) × 10−8 kg [32] 
Duration of the internal 
process 

Planck time Pt  5.39116(13) × 10−44 s−1 [32] 

Transverse wave velocity 
Light velocity 
in vacuum 

c 82.99792458 10×   m∙s−1 P Pc l t=  
[32] 

Planck density  Pρ   2.062072 × 1097 kg∙m−3 [32] 
Young modulus, 
intrinsic energy density 

 Y 4.6332447 × 10114 kg∙m−1s−2 22.5 PY cρ=  

 
The extreme density allows considering the small deformation limit and the negligible density changes allow 

assuming, e.g., the constant transverse wave velocity: .Pc constµ ρ= =  [25] and Equation (15) becomes : 

 
2

3
2 2 2

1 13grad div rot rot   
c t c

∂
= − + ∈

∂
u u u F

d

 . (18) 

The Cauchy and to the same degree the majority of physical problems cannot be reduced to vectorial models 
(the vector product does not permit the formulation of algebra with unity, for example, the division operation 
is not defined). By acting on the equation (18) by rot and div operators we separate the transverse and the longitudinal 
processes: 

 

( ) ( )

( ) ( ) ( )

2 2
2 2 2

2 2 0 02 2

22
22 2

2 22 2

1 1div 3 div 3 div div ,

11 rot rot rot .rot 3

c c c
t c t c

cc c
t ct c

φ φ φ φ
∇× ∇× =−∆

 ∂  ∂= ∇ ∇ ⋅ − ∇× ∇× + = ∆ +  ∂ ∂  ⇒ 
∂ ∂  = ∆ += ∇ ∇ ⋅ − ∇× ∇× +  ∂∂  

u u

u u u F u u F

u u u Fu u F

d

d

d

d

(19) 

The Cauchy equation of motion combined with the Helmholtz decomposition theorem results in four sec-
ond-order scalar differential equations, “quattro cluster”, and implies the transverse and longitudinal waves in 
the Cauchy elastic solid. This decomposition does not exist for all vector fields and is not unique.[28]. 
Remark 2   

1. The mathematical analysis confirms that Cauchy model is well posed, i.e., has a solution, the solution 
is unique and its behavior changes continuously with the initial conditions [24].  

2. The Hamilton algebra of quaternions and its relation to the four-dimensional space allow combining 
Cauchy theory with the electrodynamics, gravity and quantum mechanics. 

3. The Helmholtz decomposition does not exist for all vector fields and is not unique.[29] 
 
2. The Cauchy Deformation Field in the Quaternion Representation 
The Cauchy classical theory of elasticity is an elegant starting point to show the physical reality and the sig-
nificance and beauty of quaternions. The Hamilton algebra   allows recoupling the compression and twist 
that are separated in (19). Upon denoting ( )0 0 0div , 0, 0, 0σ σ= =u  and ( )1 2 3

ˆ rot 0, , ,φφ φ φ φ= =u  we get 



 

2
20

02 2
2 2 4

022
2

2

3 ,
2 0ˆ ˆ.

c
t

c c
t

c
t

σ σ
σ σ

φ φ

∂
= ∆ ∂  ∂ ⇔ − ∆ − ∆ = ∈  ∂∂   = ∆ ∂

  (20) 

The decomposition 0= +u u uφ  in Equation (18) results in four equations in Equation (19) and implies the 

existence of the deformation field 0
ˆσ σ φ= +  that represents the twist and compression fields as a superpo-

sition of real (scalar compression 0σ ) and imaginary (twist vector φ̂ ) field parts at each point 

 *
0 0

ˆ ˆ:    and   σ σ φ σ σ φ= + ∈ = − ∈ 
. (21) 

Adding equations in (20) we get the quaternion form of the motion equation 

 
2

0 02 2

1 ˆ2 0,   where   
c t

σ σ σ σ σ φ∂
− ∆ − ∆ = = +

∂
 (22) 

Since *ˆ ˆ ˆ ˆ ˆ ˆu u u u u u= =− ⋅ = ⋅u u       

  , where 1 2 3ˆ ˆ ˆ ˆu u i u j u k= + +  and ( )1 2 3, ,u u u=u    , the overall energy of the 

deformation field, the relation (18) takes the form 

 * 2 * 2 2 41 1
02 2

ˆ ˆe u u c cσ σ σ= ⋅ + ⋅ + ∈ 


. (23) 

The above relation is non-symmetric. The kinetic energy has the vectorial form: *1
2

ˆ ˆu u⋅  , that can be regard-

ed as 3
  representation, that does not describe the volume changes. Contrary, the deformations have qua-

ternion representation in 4
 . We will symmetrize the energy formula (23), where velocity is represented by 

the imaginary part only and postulate the quaternionic representation of the velocity. The energy density per 
mass unit of in the quaternionic representation equals 

 * 2 * 2 2 41 1
02 2 ,e u u c cσ σ σ= ⋅ + ⋅ + ∈ 

  (24) 

where, e.g., the four-velocity within the particle wave is given by Cauchy-Riemann derivative: 

 ( ) 0D   where   ˆ ˆdiv grad rotu
m

Dσ σ φ σ φ= − = − + +

 . (25) 

In (21) the quaternion potential, i.e., the deformation four-potential, is defined by 

 
0

0

     div-potential,
deformation compression

rot
twist

ˆ

q f

ssf 
   
   
      

= +

= +
u u  (26) 

In (24) and (25) we symmetrized the formula (23). The quaternionic velocity represents now the all de-
formations in 4

 . We demonstrate the practical application with example of the particle wave showing the 
equivalent mass m: 

 ( )

[ ]

0

0

ˆ

ˆD div

   velocity of  the 
compression

q-potential changes,
   velocity

deformation velocity

ˆgrad rot

twist velocity

u u u

m m m
sf  sf

= +

- = - +

= +

+

 
  
      

  

    (27) 

The overall energy in arbitrary volume Ω follows from Eq. (24): 



 

 ( ) ( )* 2 * 2 2 21 1
02 2, d dE PE t x x u u c c x mcρρ  σ σ σ

Ω Ω
= = ⋅ + ⋅ + =∫ ∫   , (28) 

where the external potential, e.g., ( )V x , is not shown. 

The energy is conserved, so relation (28) leads to the nonlocal boundary condition for Equation (22) [13]. 
Remark 3. The generalized Helmholtz decomposition in (27) does not affect 2nd order equations. It is ob-
ligatory in Maxwell electrodynamics and 1st order equation systems. 
 
3. Maxwell Equations in the Cauchy Continuum 

Upon introducing the potentials definitions: 0 0: divϕ σ= = u  and ˆ: rot φφ= =A u  where they denote the 

irrotational scalar and solenoidal vector potentials, we get four-potential 

 4
1 2 3A i A j A k Ajj = + = + + + ∈A 1  . (29) 

In the system (19), the rot 0≠F


 and div 0≠F
d

 imply the 4-potential due to the presence and, e.g., the 
flux of the charged particles: 

 . 4
0 0 1 2 3

ˆf f f f i f j f k f= + = + + + ∈1  . (30) 

The scalar potentials 0, fϕ  quantify the compression/expansion, the vectorial potentials 1 2 3f̂ i f j f k f= + +  

and 1 2 3i A j A k A= + +A , the twists in all three axes. The force D f= −F  in (19) is induced solely by the 

charged particles and follows from the Cauchy-Riemann derivative of their 4-potential f: 

 

( )

0
4

0

.
ˆ ˆD div grad rotf f f f

= +
⇓ ⇓ ⇓ ∈

− = + − −

F F F
d

  (31) 

The system (19), using definitions 0divϕ = u  and rot φ=A u  and, the relation (31) becomes 

2

2 2 2
4

2

0 02 2 2

1 1 ˆrot rot ,   where  rot ,
.

1 13   where  div ,

f
c t c

f
c t c

f

ϕ ϕ ϕ

 ∂
= ∆ + = ∂ ∈

∂ = ∆ + ∆ = ∂

A A A u

u
  (32) 

By noting that 2
0f cϕ =  implies 2

0c fϕ −∆ = ∆ , the scalar equation in (32) might be symmetrized: 

 

2

2 2 2

2

02 2 2

1 1 ˆrot rot ,

1 3 .

f
c t c

f
c t c

ϕ ϕ

 ∂
− + ∆ = − ∂


∂− + ∆ = − ∆ ∂

A A
 (33) 

The microscopic, vacuum version. As a first step we consider the empty crystal space (no charged particles 
and the irrotational deformations are negligible) consequently, the systems (32) and (33) reduce to 

 
2

3
2 2

1 rot rot 0
c t

∂
+ = ∈

∂
A A   (34) 



 

We introduce definitions:    

 1: ,
c t

∂
= −

∂
AE  (35) 

 : rot ,=H A  (36) 

Upon combining (34) - (36) and by taking the rotation of the definition (35): ( )1rot c t− ∂ ∂ = −A E  the 

Maxwell system for vacuum follows: 

 

1 rot 0,

1 rot 0.

c t

c t

∂ − = ∂
 ∂ + =
 ∂

E H

H E
 (37) 

The macroscopic version. The charged particles affect the volume changes, i.e., the particles and their 
fluxes imply nonnegligible irrotational deformations. By adding equations in system (33) one gets: 

 
2

4
2 2

1 ,A J
c t

µ
 ∂

− + ∆ = ∈ ∂ 
 , (38) 

where 2 2
0 0

ˆˆ 3 rot rotJ J J c f c fµ − −= + = − ∆ −  and ,A ϕ= + A  

In the condensed representation also: A Jα αµ= ,  where the operator  is called D’Lambertian and can 

be written: 
( )

2 2 2 2

2 2 2 2x y zct
α

α
∂ ∂ ∂ ∂

= ∂ ∂ = − + + +
∂ ∂ ∂∂

 .  

The time invariant assembly of the charged particles means: 0tϕ∂ ∂ = , and the scalar equation in the sys-

tem (33) becomes the Gauss law: 

 2
03divgradc fϕ∆ = − . (39) 

The scalar force ˆdiv f  in the relation (31) results in an expansion/compression process and when compared 

with the 2nd order scalar equation in system (32), allows relating the vector and scalar potentials 

 
2

ˆdiv 0, 1 div 0
ˆ ,

c f
t

c t
f c

ϕ
ϕ

∂ + = ∂ ∂ ⇒ + = ∂ =

A
A

. (40) 

Above relation is the Lorentz gauge that relates the scalar and vector potentials in Maxwell electrodynamics. 
The notation used in the equations (38)-(40) was introduced by Lanczos who obtained the equivalent rela-
tions [30]. 
 
 

4. The bosons, fermions, quarks and their q-potentials 
 
4.1 The Quaternionic Propagators 
The coupling of the transverse and the longitudinal waves takes place in the elementary cell of the Cauchy 
continuum, i.e., at the Planck scale. The quaternionic oscillator controls the acceleration of the all q-potential 



 

components during the propagation, e.g., in the particle wave in Ω: 0 1 2 3, , ,σ φ φ φ  

 . The function 0 ,G ∈  will 
be called the intensity of the oscillator. In the earlier papers, we disregarded that the twists 1 2 3,  and φ φ φ  form 
the twist vector 1 2 3

ˆ i j kφ φ φ φ= + +  [31] and are controlled by the oscillator G0. Thus, the relation between the 
q-potential and its scalar component 0σ  will be corrected and consider the two q-potential constituents, 0σ  

and φ̂  [31]: 

 
22

20
2 22 8 Pf f

t t
σσ π∂∂

= =
∂ ∂

, (41) 

and the power of the quaternionic oscillator equals 

 ( ) 2
0 8 PG f f fπ= . (42) 

The particle wave frequency depends on the particle mass, ( )f f m= , and follows from the 1
  schema, e.g., 

see Fig. 1 in [15]. The sum of moments of all the Planck masses forming the particle wave in Ω (at the arbitrary 
time t and solely due to the particle wave) equals the momentum of the particle m itself. On the other hand, we 
may estimate the average momentum of the arbitrary single Planck mass mP in the elementary cell during the 
whole particle cycle: T = f-1. The complete cycle implies that every Planck mass mP returns to its initial con-
ditions: ( ) ( )P Pt t T= +u u  and ( ) ( )P Pt t T= +u u  . The overall distance of the Planck mass during the wave 
cycle T equals 2 Plπ . Thus, the average momentum of the Planck mass ( )Pp m  during the particle wave 
cycle equals 

 ( ) 2 2 .P
P P P P

lp m m m l f
T
p

p= =  (43) 

The momentum of the particle wave m results from the particle wave propagation velocity, e.g., c in the 
system (50): 

 ( )p m mc=  (44) 

The both moments must equal: ( )p m  = ( ):Pp m , and the frequency of the particle wave becomes: 
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 where  
2 2 P P

P P

mc c mcf m cl
m l cπ π

= × = =


, (45) 

where upon using the NIST data [32] for the Planck’s natural units , ,P P pm l t  and the light velocity c, the 
constant   introduced in relation (45) equals the Planck constant [12]. 
 
Combining the relations (42), (45) and the definition 1P Pf t= , the overall power of the quaternionic os-
cillator when the particle mass is known equals: 

 ( )2
0 ( ) 4 PG m mc tπ= 

. (46) 

The oscillator might generate the lower frequencies f of the particle wave and, the families of propagators:  

( )2
0 h1 1( ) 4 ,  w ere  1, 2,...n PG G m mc t

n
n

n
π == =   (47) 

where n can be interpreted as the measure of the propagator volume, e.g., n Pl nl= .  

The quaternionic oscillator ( )0 ,G m  controls four propagators: 

• the scalar I (spin 0),   ( ) *
0 ,G m σ σ⋅  

• the scalar ½ (spin 1/2),   ( )0 0 ,G m σ  



 

• the vectorial (spin 1/2),  ( )0
ˆ,G m φ  and 

• the quaternion (spin 1/2), ( )( )0 0
ˆ .G m σ φ+  

The above propagators generate the particle wave and simultaneously, the particles produce different force 
fields that are represented by the Poisson equation: 

           ( ) ( )( ) ( )2
0 0  where   denotes the quaternion variablenc G m∆ + =  

 (48) 

Remark 4. Substituting 2
0mc E=  in (45), the Planck–Einstein relation follows: 0E h f= , where 2h π=  . 

 
4.2. Bosons 
The family of the scalar 2nd order PDE systems of the spin 0 particles result from Equations (20), (47) and (48) 
In (49), we show the core set of the three 2nd order PDE and its equivalent, the set of two 2nd order equations: 
the particle wave and the force field produced by the particle. This schema will be used in the following sec-
tions. 
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 (49) 

where 0
ˆ

n n φσ σ= +  and, n denotes integer, n ≠ 0. 
At n = 1, the system (49) results in [14]:  
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     (50) 

Above two systems are identical, five equations and five unknowns: 0 1 2 3, , ,σ φ φ φ  and m. If mass m is unknown 
it may be treated as the parameter in the Poisson equation above. The equation (50) corresponds to 
Klein-Gordon equation, i.e., the spin 0 boson particle.  
   The 2nd order PDE systems on the right hand site of equations (49) and (50) comply with the Cauchy 
equation of motion, i.e., by adding the Poisson and wave equations, the equation (20) results. 
   The Poisson equation in (50) describes the irrotational potential 0σ  of the deformation field 

 ( ) *
2

2 *
0 0 4

P

G mc
t

mc σ σ π σ σσ= − = −⋅ ⋅∆


,  (51) 

where .P Pm cl=  It can be expressed as a function of the particle mass density: * 3
Pm lρ σ σ= ⋅ : 

 
3

2
0 24 4P

P P

l G
m t

c πρ π ρσ = − = −∆ , (52) 

using data in Table 1, the gravitational constant equals: ( )2 113 6.674082 10P P PG l t m −= = ⋅  3 -1 -2m kg s .⋅ ⋅     



 

The particle mass center, equals its wave energy center. The “space-localized” particle is defined in the 
sense given by the Bodurov definition [33]:  
   “A singularity-free multi-component function ( )0 1 2 3, , ,= ∈σ σ φ φ φ  of the space ( )1 2 3, ,x x x x=  and time t 

variables will be called space-localized if ( ), 0t xσ →  sufficiently fast when x → ∞ , so that its Her-
mitean norm 

( )3* 2 *
0 1

d dl ll
x xσ σ σ φ φ σ σ *

=Ω Ω
 , = + ⋅ = ⋅ < ∞∑∫ ∫               (53) 

    remains finite for all time.”(50) 
 
4.3. The particles formed by the odd number of quarks 
The strong coupling only is considered in the following sections: 1n =  in the relation (47).  

The vectorial propagator. We begin with vectorial potential, where the term ( )0
ˆG m φ  fixes the density of 

the rate of twist change and is called vectorial propagator 
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                 (54) 

Upon the rearrangement, the particle wave (electron) and the vectorial Poisson equations are evident. The 
adding equations in system (54) shows that it complies with the Cauchy equation of motion (20): 
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             (55) 

Note that the wave propagation velocity in system (54) equals the velocity of longitudinal waves in the 
Cauchy continuum: 3Lc c=  [12]. The vectorial Poisson equation in (54) confirms that it’s the 2nd order 
PDE system for electron. 

The quaternionic propagator. In the quaternion propagator, ( )( )0 0
ˆG m σ φ+ , the vectorial, ( )0

ˆG m φ , and 

scalar, ( )0 0G m σ , propagators are “merged” and form the strongly coupled system. The rearrangement of the 

system (56) is shown below and display different forms of the 2nd order PDE systems: 
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   (56) 

The comparison of the scalar, vectorial and quaternionic propagators shows that the q-propagator offers 
the strongest coupling, Eq. (56). The quaternionic Poisson equation in (56) reveals that it is the 2nd order 
PDE system for proton. The sum of equations in (56) shows that system complies with Cauchy equation of 
motion (20): 
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Note that the propagation velocity in system (56) exceeds the transverse wave velocity: 2c c′ = .  
 
The quarks. The comparison of the systems (50), (54) and (56) allows postulating the 2nd order PDE for the 
quarks from the up and down groups. Explicitly, the 2nd order system of the u quark from the up group 
equals: 

( )

( )

2

0
2

2
2

0

 

1 2 ˆ 0,
3 3

2 ˆ 0,ˆ2
3 3

c G m

mc

t

G

φσ

φ φ

 ∂
− ∆ + =  ∂ 

=− −


∆

                                   (58) 

and the system of the d quark from the down group: 
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The sum of equations in the above quark systems (58) and (59) does not comply with the Cauchy equation 

of motion (20) and may indicate their short lifetime. The terms ( )0
2 ˆ
3

G m φ  and ( )0
1 ˆ
3

G m φ−  in the systems 

(58) and (59) respectively, are related to the charge, Table 1 
 

Table 1. The basic properties of the quarks in baryons. 
 

Group Quarks Charge Spin 
up u,c,t 2/3 1/2 
down d,s,b -1/3 1/2 

 
 
4.4. The quarks 

There are two groups of hadrons: baryons (containing three quarks or three antiquarks); and mesons 
(containing a quark and an antiquark). In the following we show that systems (54) - (59) comply with the 
experimental findings shown in Table 1. 

Proton is formed be the two up and the single down quarks: d u u− −  . Thus by computing the sum of 
two systems (58) and one system (59) we may expect the proton, the system (56): 
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          (60) 

and the result is in agreement with equations (56) and (57): 
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Neutron is formed by the one up and the two down quarks: d d u− −  
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and the result is in agreement with neutron system (50): 
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The systems (54), (61) and (63) represent coupled 2nd order PDE’s and show the different coupling 
strengths. The strongest coupling of the proton is related to its enormously long lifetime, Equation (61). 

 
5. The Quaternion Schrödinger Equation 

The vectorial Poisson equation indicates that it’s the 2nd order PDE system for electron. We will apply the 
schema in the system (54) in the integral form of the energy conservation, in Equation (28). We treat the wave 
as a particle in an arbitrary volume Ω [14]. The energy per mass unit, e, in the volume occupied by the particle 
wave defines its overall energy: dO p V pE E E e xρ

Ω
= + = ∫ , 

* 2 * 2 2 *1 1
0 02 2

ˆ  where   e u u c cσ σ σ σ σ φ= ⋅ + ⋅ + = −   ,                (64) 
where Ep and EV denote energies of the particle and of its force field respectively, ρP is the Planck mass den-
sity. 

The 1st step in deriving the Schrödinger equation is the choice of the symmetrization scheme for the 
particle energy, Ep. Equation (64) can be written in the equivalent form: 

* 2 * 2 *1 3 ˆ ˆ
2 2

e u u c cσ σ φ φ= ⋅ + ⋅ − ⋅  ,                        (65) 

upon comparing with the system (54) we separate the Ep and EV terms in integral formula 
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The mass of the particle, 2 ,pm E c=  follows from the particle wave energy in (66) 
*
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The terms *3σ σ⋅  and * 2u u c⋅   oscillate and depend on the time and position. The symmetry in (67) allows 
normalizing the deformation and mass velocity with respect to the overall particle mass: 
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                    (68) 

The quaternionic particle mass density ψ  can be called the quaternionic probability because the relation 
* d 1xψ ψ

Ω
⋅ =∫  in (68) is satisfied. Obviously, terms ( )3 ,P m t xψ ρ σ=  and *,ψ ψ⋅  vary in time. 
We analyze the evolution of the wave as in relations (66) and (67) in the time-invariant potential field, 

e.g., the particle wave in the field generated by other particles. The overall particle energy is now a sum of the 
ground and excess energy Q, 
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We consider the low excess energies, and the impact of Q on the overall particle mass in (67) is marginal. 
Thus, the relation (69) becomes 
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Both the pE  and m are constant; thus, it is enough to minimize the relation 

( )* *1 d
2 PQ u u V x xρ ψ ψ

Ω
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 ∫                           (71) 

The above relation contains two unknowns: u u t= ∂ ∂  and ψ . By relating the local lattice velocity u  to the 
force, specifically to the normalized Cauchy–Riemann derivative of the deformation: Pl Dσ , one gets 

pu D
m m

σ= = −


 .                                     (72) 

By introducing (72) and the normalization (68), the relation (71) becomes the functional 
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The functional [ ]Q ψ , Eq. (73), was minimized with respect to a quaternion function, such that ψ  satisfies 
the normalization introduced in the relation (68). One may follow the schema used in [14]. In simple terms, 
we seek a differential equation that has to be satisfied by the ψ  function to minimize the energies allowed 
by (73). Given the functional (73), the conditional extreme is found using the Lagrange coefficients method 
and the Du Bois Reymond variational lemma [34]. In such a case, ψ  satisfies the time-invariant Schrö-
dinger equation satisfied by the particle wave in the ground state of the energy E  [14]: 
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m
ψ ψ λψ− ∆ + =

 ,                            (74) 

where a constant factor on the right-hand side can be considered as extra energy of the particle in the pres-
ence of the field V = V(x). For E λ= , Equation (74) is clearly the time-independent Schrödinger equation 
satisfied by the particle in the ground state of the energy E, 
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m
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6. The First-Order PDE in the Cauchy Continuum 

The operator quantum mechanics base on the complex number algebra, the matrices, and the matrix al-
gebra. Canonical quantization starts from classical mechanics and assumes that the point particle is described 
by a “probabilistic wave function”. Dirac applied complex combinations of the displacements and velocities in 
the linear problem of secondary quantization [35] and replaced the second-order Klein–Gordon equation by 
an array of first-order equations. He recognized the problem of medium for the transmission of waves:  
    ”It is necessary to set up an action principle and to get a Hamiltonian formulation of the equations 

suitable for quantization purposes, and for this the aether velocity is required” [36]. 
In this section we follow Dirac comment. We derive the formulae basing on the aether concept. Explicitly, the 
Cauchy continuum and the quaternionic oscillator ( )G mλ  for the 1st order PDE and the separated Planck time 
scale. The 2nd order particle wave equation, e.g., in the electron PDE system (55), contains two parts: 
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We will comply with above schema for the 1st order PDE: 
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      (77) 

 
6.1. The 1st order wave term. 

We consider the system (54) and the relation between the wave velocity and the Cauchy–Riemann de-

rivative Equation (72): D .m uσ = − 



 The expression for the overall particle energy, Equation (66), implies: 

• the deformation velocity as the alternative variable: 
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u
mc
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 ,                                       (78) 

• the longitudinal wave velocity as the wave propagation velocity: 
3Lc c= . (79) 

The motionless particle is considered, thus its wave is at a steady state. The 2nd order time derivative of the 
q-potential in (77) we express as follows: 

2

2t t t

σ σ∂ ∂ ∂
= ⋅

∂ ∂ ∂
 
 
 

.                                      (80) 

The term in the bracket on the right-hand side is the rate of the q-potential changes. We want to express 
this term by the new variable and separate the time scales. The rate of changes of the deformation potential 

tσ∂ ∂  is due to the wave propagation within the particle space. The propagation process must follow the ex-
tremum principle, i.e., it is the brachistochrone problem [37]. The good example of “local principle” ap-
proximation is by Derbes [38]. 

We know that wave path fulfills the extremum principle, i.e., the wave path follows its unique trajectory 
given by the Cauchy–Riemann derivative Dσ . The trajectory which has the minimum property globally in the 
whole volume Ω occupied by the particle must have the same property locally. This path grants the shortest 
possible travelling time for the waves identified in QQM. Consequently from (78) - (80) we postulate the 
following: 
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 .                    (81) 

From the relation (78) we get 

D DD D .
m m

u uσ σ σ= − ⇒ D = − =

 

                        (82) 

Combining the relations (81) and (82), we get the 1st order particle wave term consistent with the 2nd order 
formula (76): 
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             (83) 

Thus, the 1st order particle wave term in (77) equals: 
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                                     (84) 

 
 
6.2. The 1st order quaternionic oscillator. 

The power of the 2nd order quaternionic oscillator, ( ) 2
0 8 PG f f fπ= , results from two time scales in 

PK-C. We consider the macro scale only and 1st order PDE equation thus, by eliminating the Planck frequency 
from the relation (42), results in the power formula of the 1st order quaternionic oscillator when the particle 
mass is known: 

( )
2

4 2 6L
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

.                         (85) 

By introducing the relations (84) and (85) in the schema (77), the 1st order PDE for electron equals 
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By substituting (78) 
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The relations in (68): P Lm u cψ ρ=   and 3 P mψ ρ σ= , imply that by multiplying the particle wave 

equation (86) by P mψ ρ= , it will be expressed as a function of probability 
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The comparison of the first-order wave equations in quaternion formulation, Equation (89), with the form in 
the Dirac algebra formalism: 
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The Electron Spin. The energy relations (65) are symmetrical and, in the case of the electron: 
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Particle is stable and its energy must be conserved. Thus, it’s justified to assume that the constrain: ˆdiv 0φ =  

holds for the completed particle cycle. In the static particle we postulate zero dissipation of the twist energy: 

ˆdiv 0φ = . It implies the necessity of the spin, Ŝ , the process that will provide the energy conservation:  

 ( )ˆ ˆ ˆdiv div 0Sφ φ′= + = . (92) 

The equipartition of energy between the twists, ˆ Ŝφ′ = , implies the equipartition of moments: ˆ Ŝφ′ = . 

Thus, the overall momentum per mass unit equals: ˆ2 S α= .  

 
7. Results 
In this section we show the spin simulations. 



 

 
 
Figure 1: To simplify the visualization of the twist, the planar cut is indicated by the grid lines. 

 

 
 
Figure 2. Spin 1/2 has two orthogonal axis of rotation. The first axis (shown in red) can be viewed as 

"winding of space". The images show a progress, the more and more winding up to T/2. 



 

 
 
Figure 3: The second axis of rotation (shown in blue) can be viewed as the phase and is a function of time. The 

images show a spin progress around a central point. 
 

 
 
Figure 4. Two spin 1/2 waves are shown next to each other, both pointing in the same direction so that North 
aligns to South. The red circles indicate the oscillating movement of selected points in the elastic solid. (The 
spheres are only visual aids to show the center of each spin ½ wave). 
 



 

 
 
 
Figure 5: The images show the transverse wave spin ½ at ( )0, 2t T∈ . The wave rotates around a central 

(blue) axis. Note that the elastic solid stays fully intact. Each point in the elastic solid twists around 
a central point. The resulting motion results in the well known “Dirac Belt” or “Wine dance” trick, 
which looks like a rotation, but is in fact only an oscillation of the transverse twists. 

 
 
 
 
 
 



 

7. Conclusions 
The presented results are based on the ontological model of the QQM and QFT, on the Cauchy continuum 

and the Planck unit cell concepts. The major progress is due to the symmetrization of quaternion relations. 
Explicitly, due to the postulate of the quaternion velocity. It allows considering the momentum of the ex-
panding Cauchy continuum, ( )0 ,u t x  and, is the apparent result of the scalar potential of the expan-
sion/compression: ( )0 ,t xσ . 
The key new results are listed below: 
• The vectorial ( )( )0 0

ˆG m σ φ+ , ( )0
ˆG m φ  and scalar: ( )0 0,G m σ  ( ) *

0 ,G m σ σ⋅ propagators are postulated and 
used to generate the 2nd order PDE systems for the proton, electron and neutron. 

• The scrupulous assessment of the 2nd order PDE systems allows postulating the two 2nd order PDE 
systems for the u and d quarks from the up and down groups. 

• It is shown that both the proton and the neutron obey experimental findings and are formed by three 
quarks. Namely, the proton and neutron are formed by d u u− −  and d d u− −  complexes, respectively. 
All above PDE systems comply with Cauchy equation of motion (20) and can be considered as stable 
particles. 

• The u and d quarks do not meet the relations of the Cauchy equation of motion. Also experimental efforts 
to find the individual quarks were without success. Observed were the bound states of the three quarks – 
the baryons and a quark and an antiquark – the mesons. Wilczek calls it the phenomenological paradox: 
“Quarks are Born Free, but Everywhere They are in Chains” [39]. The inconsistency of the quarks PDE 
with the Cauchy equation of motion elucidates the observed Quarks Chains. 

The results indicate the following targets for an immediate future: 
• The particles and quarks in the case of higher coupling coefficients: 1n > . 
• The ratios between the constants for the different force fields. 
• The rigorous derivation of the 1st order PDE basing on the extremum principle. 
• The multivalued coordinate transformation to determine the properties of space with curvature and tor-

sion produced by 2nd order PDE systems representing the QFT [40]. 
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Appendix A 

Abbreviations 
PDE partial differential equation 
QQM quaternion quantum mechanics 
QFT Quaternion field theory 
T deformation tensor 

,λ µ  Lamé coefficients; 
σ ′  stress tensors 

Eρ  density of the deformation energy 
( )1 2 3, ,u u uu  displacement in 3


 

( )0 1 2 3, , ,σ σ φ φ φ  q-potential in 4


, the quaternion deformation potential 
*σ σ⋅  strain energy density 



 

0G  power of the quaternionic oscillator 
*

0G σ σ⋅  density of the rate of momentum change, i.e., the 
quaternionic scalar propagator I 

0G σ  density of the rate of momentum change, i.e., the 
quaternionic scalar propagator II 

0
ˆG φ  quaternionic vectorial propagator 

( )( )*
0

ˆG m σ σ φ⋅ +  quaternionic q-potential propagator 

P mψ σ ρ=  
quaternionic particle density, i.e., the particle wave func-
tion 

*ψ ψ⋅  probability, i.e., the normalized particle mass density 
n coupling coefficient in the oscillator 

Pl  Planck length 
1P Pf t=  Planck frequency, inverse of the Planck time 

Pm  Planck mass 
P Pc l t=  transverse wave velocity in elastic continuum 

3Lc c=  longitudinal wave velocity in elastic continuum 
34P P Pm lρ =  Planck density, i.e., the mass density of the PK-C 

ρ  mass density of the particle 2
E cρρ = , as the equivalent of 

the energy density Eρ  in the PK-C 
  Planck constant in terms of angular frequency 
h Planck constant, 2h π= 

 
m equivalent mass of the wave, i.e., mass of the particle 
λ  length of the particle wave 
f  frequency of the particle wave 
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