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Abstract: The results presented here base on the Planck-Kleinert crystal concept. The rigorous use of the 9 

quaternion algebra allows postulating the scalar, vectorial and the quaternion propagators in the ideal elastic con- 10 
tinuum. The propagators are used in constructing the proton, electron and the neutron 2nd order partial differen- 11 
tial equation systems, PDES’s. The results generate the two 2nd order PDES’s for the u and d quarks from the up 12 
and down groups. It was verified that both the proton and the neutron obey experimental findings and are formed 13 
by three quarks. The proton and neutron are formed by d-u-u and d-d-u complexes, respectively. All particle 14 
PDES’s comply with Cauchy equation of motion and can be considered as stable particles. The u and d quarks do 15 
not meet the relations of the Cauchy equation of motion. The inconsistencies of the quarks PDES’s with the qua- 16 
ternion forms of the Cauchy equation of motion account for their lifetime and the observed Quarks Chains. That 17 
is, explain the Wilczek phenomenological paradox: “Quarks are Born Free, but Everywhere They are in Chains”. 18 
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1. Introduction 22 
     The focus here is the quaternion quantum mechanics, QQM, and the quaternionic field theory, QFT. 23 
The quaternion algebra is attributed to many physical systems and laws, sporadically to quantum me- 24 
chanics. Lanczos dissertation was on a quaternionic field theory of the classical electrodynamics [1,2]. In 25 
his derivation of the Dirac’s equation [3], there is a doubling in the number of solutions and several con- 26 
cepts that still remain at the front of the fundamental theory. These articles were unnoticed by contem- 27 
poraries; Lanczos abandoned quaternions and never returned to the quaternionic field theory. Fueter 28 
demonstrated that the Cauchy-Riemann type conditions in the quaternion representation are identical 29 
in shape to vacuum equations of electrodynamics [4]. Yefremov described the Newtonian mechanics in 30 
rotating frame of reference [5] and the motion of non-inertial frames [6]. Adler shows that the Dirac 31 
transition amplitudes are quaternion valued [7]. Christianto derived an original wave equation from 32 
the correspondence between Dirac equation and Maxwell electromagnetic equations via the biquaterni- 33 
onic representation [8].  34 
    The Adler’s method of the quaternionizing the quantum mechanics was avoided in the Harari- 35 
Shupe’s preon model for the composite quarks and leptons [9]. However, the composite fermion states 36 
were later identified with the quaternion real components [10]. In spite of the lack of progress in ad- 37 
vancing the Harari-Shupe scheme, the substantial progress in the QQM and QFT was made [11,12]. 38 
    The evolution of the P-KC model and the subsequent development of the QQM are shown [13,14,15]. 39 
The QQM presented here is ontological in a sense that it starts with being, that is the Planck-Kleinert 40 
ideal regular crystal [14,16]. The basic categories of being and their relations are governed by the qua- 41 
ternion algebra [14]. The stress tensor of Planck-Kleinert crystal is given by 42 

 ,                                  (1) 43 
where D denotes the deformation tensor (the symmetrical part of the strain tensor) and  and  are 44 
the Lamé coefficients of an ideal regular crystal. It was shown by Cauchy and Saint Venant that if the 45 
particles composing a regular crystal interact pairwise through central forces, then there is an addition- 46 
al symmetry requiring C44 = C12 that implies the Poisson ratio 0.25 and  [17] 47 
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   .                              (2) 48 
Using the identity: the stress tensor in the Planck-Kleinert crystal becomes 49 
[16]: 50 

.           (3) 51 
    The motivation for writing this paper was to explicate the stress field origin of the QQM and QFT. 52 
The Standard Model of elementary particles lack adequate description for the mechanism of quark 53 
charges. It is showed here that the quark particle waves do exist and two their PDES, are presented. The 54 
further studies in order to verify or refute those propositions are suggested.  55 
 56 
1.1. Quaternions 57 

The elements of the quaternion algebra used in the QQM and QFT were already presented in previous pa- 58 
pers [13-15]. Only the two definitions are recalled here. In the ideal elastic continuum the quaternion potential, 59 
i.e., the deformation four-potential, is defined by 60 

,                        (4) 61 

where denotes the displacement,  is the q-potential and the constraint  62 

holds. 63 
We use the Cauchy–Riemann operator D in  acting on the quaternion-valued functions 64 

.                                  (5) 65 

Under the constraint:  D corresponds physically to the nabla operator in : 66 

                                                    (6) 67 

The exponent function has its trigonometrical representation 68 

                                              (7) 69 

1.2. The critical review of the earlier results.  70 
The Cauchy equation of motion and the overall energy density of the deformation field in the quaternion formu- 71 
lation equal [14] 72 

  (8) 73 

  (9) 74 

where  denote the deformation energy and the mass densities in the P-KC respectively, 75 
 is the mass velocity in the quaternion representation: 76 

 . (10) 77 

The overall energy of the particle wave in arbitrary volume Ω follows from Eq. (9) and is given by integral: 78 

 ,   (11) 79 
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where for the sake of clarity, the external potential, , is not shown [14]. 80 

In the previous paper [15] upon substituting , we introduced in (11) the transformed, q- 81 
potential,  and expressed the particle mass by the symmetrical relation 82 

 .       (12) 83 

The combining (10) and (12) resulted in the energy functional and allowed considering the existence of the 84 
stable particle m in the potential field . Subsequently, the quaternionic particle density was defined,  85 

  (13) 86 

and proved that  satisfies the time-independent Schrödinger equation [14] 87 

 .                                 (14) 88 

The quaternionic particle density  is also called the quaternionic probability because the relation  89 

holds [15]. 90 
Remark. The q-potential definition,  is incompatible with the derived quaternionic oscillator formu- 91 
la where only integral coupling coefficients n are allowed, e.g.,  in [15].   92 

The 2nd order boson PDES’s presented in [13,14] base on the postulate of the scalar propagator, 93 
 providing the coupling between the longitudinal and transverse waves. The coupling is ev- 94 

ident upon expressing the quaternionic Klein-Gordon system in the equivalent form, e.g., 95 

      (15) 96 

Above two systems are identical, five equations and five unknowns:  and m, see defini- 97 
tion (4). If mass m is unknown it may be treated as the parameter in the Poisson equation above.  98 

In [15] we further developed the propagator concept and postulated the family of the second- 99 
order quaternionic wave equations: 100 

   (16) 101 

where n is coupling coefficient.  102 
It’s evident that at n = 0, the coupling (15) for boson particle follows. The propagator term 103 

 in (16) corresponds to the density of the rate of the momentum change, the  term is 104 
referred to as power of the harmonic oscillator. The coupling coefficient n can be elucidated as the radi- 105 
us R of quaternionic oscillator in the Cauchy crystal expressed in Planck length: . In the system 106 
(16), the generalized q-potential can be introduced  107 

  (17) 108 
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Upon the  substitution into the system (16), the two 2nd order PDE’s are evident: 109 

  (18) 110 

Remark. The problem of the coupling coefficients  and resulting different particles is not presented here.  111 
The harmonic oscillator controls the acceleration of q-potential in the particle wave. The acceleration of the sca- 112 
lar part  of the q-potential was estimated in [15]: 113 

 . (19) 114 

Using the equipartition theorem and common frequency postulate for the all four q-potential compo- 115 
nents: , the relation (19) was extended to  116 

 . (20) 117 

The acceleration of the q-potential will be called the power of the quaternionic oscillator in the particle 118 
wave: 119 

 , (21) 120 

where  is an unknown particle frequency that may be postulated or computed. 121 
Remark. The power of the oscillator , Equation (21), does not take into account both, the con- 122 
straint  and pseudovector character of twist .  123 

The 1st order particle wave equation in the quaternion formulation obtained in [15] is consistent with its 124 
form in the Dirac algebra formalism. However the 1st order system is generated by the invalidated substitution 125 

 in [14]. The 2nd order PDES following the schema (18), where  and  equals: 126 

  (22) 127 

The system (22) consists of the two 2nd order scalar PDE’s while the vector potential is not present. In 128 
the next sections the solutions of the presented problems are given. 129 
Remark. The Equation (22) is mistaken and will be reformulated in the next sections. 130 
 131 
2. The Baryons, Quarks and their q-potentials  132 

2.1. The Quaternionic Oscillator  133 

The coupling of the transverse and the longitudinal waves takes place in the PKC elementary cell, 134 
i.e., at the Planck scale. The quaternionic oscillator controls the acceleration of all the q-potential con- 135 
stituents in the particle wave in Ω: . The function , is called the power of the quaterni- 136 
onic oscillator. In the earlier papers we neglected the facts that twists  form the pseudovector 137 

 [18], and that the constraint  holds. Thus, the relation (19) for the scalar q- 138 
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potential component  extended for  in (20) must be corrected and consider the two 139 
independent q-potential constituents,  and : 140 

  (23) 141 

and the power of the quaternionic oscillator equals 142 

 . (24) 143 

The particle wave frequency depends on the particle mass, , and follows from the  144 
schema, see Fig. 1 in [15]. The sum of moments of all the Planck masses forming the particle wave in Ω 145 
(at the arbitrary time t and solely due to the particle wave) equals the momentum of the particle m it- 146 
self. To simplify, we may estimate the average momentum of the arbitrary single Planck mass  dur- 147 
ing the whole particle cycle  The complete cycle implies that the every Planck mass returns to its 148 
initial conditions:  and . The overall distance which the arbitrary mass mP 149 
passes during the wave cycle T equals .  The average momentum of the Planck mass during 150 
the particle wave cycle equals 151 

  (25) 152 

The momentum of the particle m results in the same way from the particle wave propagation velocity, 153 
e.g., c in the system (15): 154 

 . (26) 155 

The both, the moment (25) and (26) must equal, and the frequency of the particle wave becomes: 156 

  (27) 157 

Combining the relations (24), (27) and the definition , the overall power of the quaternionic os- 158 
cillator when the particle mass is known equals: 159 

 . (28) 160 

By substituting  in (27), the Planck–Einstein relation follows: , where . The fami- 161 
ly of the scalar 2nd order quaternionic wave equations when the corrected propagator is used becomes 162 
now: 163 

  (29) 164 

where n denotes integer and n ≠ 0. 165 
It’s evident that at n = 1, the coupling in (15) for the boson particle follows. The corrected propaga- 166 

tor results in symmetry of coupling equation in system (29). I t does not have an effect on the 167 
scalar 2nd order PDES’s and gravitational constant in (15)-(18) 168 
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 172 
 173 
. 174 

2.2. The baryon particles formed by the odd number of quarks 175 

The strong coupling only is considered here, e.g.,  in the system (29). The quaternionic oscillator  al- 176 
lows postulating three propagators: the scalar, the vectorial,  and the quaternion, 177 

.  178 
The term  fixes the density of the rate of twist change and is called vectorial propagator. We postu- 179 

late the vectorial Poisson equation in system (29): . Upon the rearrangement of the new sys- 180 
tem, the particle wave (electron) and the vectorial Poisson equations are evident: 181 

  (30)  182 

Note that the wave propagation velocity in system (30) equals the velocity of longitudianl waves in the Couchy 183 
continuum:  [16]. By adding equations in system (30) it is clear that it complies with the Cauchy equa- 184 
tion of motion (8): 185 

  (31) 186 

The above vectorial Poisson equation hints at the Equation (30) as the 2nd order PDES for electron. Note that the 187 
wave propagation velocity in electron system in Equation (31) equals the velocity of longitudinal wave in Couchy 188 

Equation (15):  189 

In the quaternion propagator, , the vectorial, , and scalar, , propagators are  190 

“merged” and form the strongly coupled system. The rearrangements of the system (32) is shown below and 191 
display different forms of the 2nd order PDES: 192 

      (32) 193 

The comparison of the scalar, vectorial and quaternionic propagators shows that the q-propagator offers 194 
the strongest coupling, Eq. (32). The quaternionic Poisson equation in (32) reveals that it is the 2nd order PDES for 195 
proton. The sum of equations in (32) shows that system complies with Cauchy equation of motion (8): 196 
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                  (33) 197 

The scrupulous assessment of systems (15), (30) and (32) allows postulating the 2nd order PDES’s for the quarks 198 
from the up and down groups. Explicitly, the 2nd order PDES of the u quark from the up group equals: 199 

  (34) 200 

and the 2nd order PDES of the d quark from the down group: 201 

  (35) 202 

The sum of equations in the quark systems (34) and (35) does not comply with the Cauchy equation of motion 203 
(8) and may indicate their short lifetime.  204 
 205 
2.3. The quarks 206 
There are two groups of hadrons: baryons (containing three quarks or three antiquarks); and mesons 207 
(containing a quark and an antiquark). In the following we show that systems (30) - (35) comply with the 208 
experimental findings shown in Table 1. 209 

 210 
 Table 1. The basic properties of the quarks in baryons. 211 

Group Quark
s 

Charg
e 

Spin 

up u,c,t 2/3 1/2 
down d,s,b -1/3 1/2 

The terms  and  in the systems (34) and (35) respectively, are related to the charge, see Ta- 212 

ble 1. 213 
Proton is formed be the two up and the single down quarks:  . Thus by computing the sum of two sys- 214 
tems (34) and one system (35)  we may expect proton, system (32): 215 

                  (36) 216 

and the result is in agreement with equation (33): 217 

        (37) 218 

Neutron is formed by the one up and the two down quarks:  219 
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              (38) 220 

and the result is in agreement with neutron system (15): 221 

                                           (39) 222 

The systems (30), (37) and (39) represent coupled 2nd order PDE’s and show the different coupling strengths. The 223 
strongest coupling of the proton, Equation (37), is related to its enormously long lifetime. 224 
 225 
3. The Quaternion Schrödinger Equation 226 
The vectorial Poisson equation indicates that it’s the 2nd order PDES for electron. We will apply this 227 
schema in the system (30) in the integral form of the energy conservation. We treat the wave as a parti- 228 
cle in an arbitrary volume Ω [14]. The energy per mass unit, e, in the volume occupied by the particle 229 
wave defines its overall energy: , 230 

 ,                            (40) 231 
where Ep and EV denote energies of the particle and of its force field respectively, ρP is the Planck mass 232 
density.   233 
The 1st step in deriving the Schrödinger equation is the choice of the symmetrization scheme for the par- 234 
ticle energy, Ep. Equation (40) can be written in the equivalent form: 235 

 ,                                            (41) 236 

upon comparing with the system (30) we separate the Ep and EV terms in integral formula 237 

               (42) 238 

The mass of the particle,  follows from the particle wave energy in (42) 239 

 .                                       (43) 240 

The terms  and  oscillate and depend on the time and position. The symmetry in (43) al- 241 
lows normalizing the deformation and mass velocity with respect to the overall particle mass: 242 

                                 (44) 243 

The quaternionic particle mass density  can be called the quaternionic probability because the rela- 244 
tion  in (44) is satisfied. Obviously, terms  and  vary in time.  245 

We analyze the evolution of the wave as in relations (42) and (43) in the time-invariant potential field, 246 
e.g., the particle wave in the field generated by other particles. The overall particle energy is now a sum 247 
of the ground and excess energy Q, 248 

 . .                       (45) 249 
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We consider the low excess energies, and the impact of Q on the overall particle mass in (43) is margin- 250 
al. Thus, the relation (45) becomes 251 

                         (46) 252 

Both the  and m are constant; thus, it is enough to minimize the relation 253 

 .                                       (47) 254 

The above relation contains two unknowns:  and . By relating the local lattice velocity  to 255 
the force, specifically to the normalized Cauchy–Riemann derivative of the deformation: , one 256 
gets 257 

 .                                                   (48) 258 

By introducing (48) and the normalization (44), the relation (47) becomes the functional 259 

 .                                 (49) 260 

The functional , Eq. (49), was minimized with respect to a quaternion function, such that  satis- 261 
fies the normalization introduced in the relation (44). We follow the schema used in [14]. In simple 262 
terms, we seek a differential equation that has to be satisfied by the  function to minimize the ener- 263 
gies allowed by (49). Given the functional (49) and the constraint , the conditional extreme is 264 
found using the Lagrange coefficients method and the Du Bois Reymond variational lemma [19]. In 265 
such a case,  satisfies the time-invariant Schrödinger equation satisfied by the particle wave in the 266 
ground state of the energy  267 

 ,                                     (50) 268 

where a constant factor on the right-hand side can be considered as extra energy of the particle in the 269 
presence of the field V = V(x). For , Equation (50) is clearly the time-independent Schrödinger 270 
equation satisfied by the particle in the ground state of the energy E,  271 

  .                                       (51) 272 

It has to be satisfied together with the condition 273 
 .                                  (52) 274 

Upon using the NIST data [20] for the Planck’s natural units  and the light velocity c, the con- 275 
stant  introduced in relation (48) equals the Planck constant [16]. 276 
The particle mass center, equals its wave energy center. The “space-localized” particle is defined in the 277 
sense given by the Bodurov definition [21]: “A singularity-free multi-component function 278 

 of the space  and time t variables will be called space-localized if  279 
sufficiently fast when , so that its Hermitean norm 280 

                             (53) 281 

remains finite for all time.” 282 
 283 
4. The First-Order PDE in the P-KC 284 
The operator quantum mechanics base on the complex number algebra, the matrices, and the matrix 285 
algebra. Canonical quantization starts from classical mechanics and assumes that the point particle is 286 
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Pl Ds

ˆˆ pu D
m m

s= = -
!

"

[ ] ( ) ( ) ( )
2

* * d
6

Q D D V x x
m

y y y y y
W

æ ö
= × + ×ç ÷

è ø
ò
!

[ ]Q y y

y
ˆdiv 0f =

y
E

( )
2

2
V x

m
y y ly- D + =

h

E l=

( )
2

2
V x E

m
y y y- D + =

h

0ˆ ˆdiv 0  where  y y y y= = +

, ,P P pm l t
!

( )0 1 2 3, , ,= Î§s s f f f ( )1 2 3, ,x x x x= ( ), 0t xs ®

x ®¥

( )3* 2 *
0 1

d dl ll
x xs s s f f s s *

=W W
 , = + × = × <¥åò ò

https://www.bing.com/ck/a?!&&p=0a579233b84674c1JmltdHM9MTY4MzY3NjgwMCZpZ3VpZD0wMTE5MGNiNS04MmJhLTY3ZmEtMjQzYi0xZWQ1ODNjMjY2NTEmaW5zaWQ9NTgyNg&ptn=3&hsh=3&fclid=01190cb5-82ba-67fa-243b-1ed583c26651&u=a1L3NlYXJjaD9xPUNsYXNzaWNhbCUyMG1lY2hhbmljcyUyMHdpa2lwZWRpYSZmb3JtPVdJS0lSRQ&ntb=1


 

described by a “probabilistic wave function”. Dirac applied complex combinations of the displacements 287 
and velocities in the linear problem of secondary quantization [22] and replaced the second-order 288 
Klein–Gordon equation by an array of first-order equations. He also recognized the problem of medium 289 
for the transmission of waves: ”It is necessary to set up an action principle and to get a Hamiltonian formula- 290 
tion of the equations suitable for quantization purposes, and for this the aether velocity is required” [23]. 291 
   In the earlier work [15] we have not separated the Planck and the particle time scales in quaternionic 292 
oscillator  i.e., both the Planck and the particle frequencies were running oscillator. In the fol- 293 
lowing we derive the proper formula of the quaternionic oscillator  for the 1st order PDES and 294 
the separated time scales. We base on the concept of the medium as a solid “aether” [16] and implement 295 
the quaternion algebra [14]. The 2nd order particle wave equations in QQM, e.g., in the system (31), con- 296 
tains two characteristic terms: 297 

           (54) 298 

We will comply with above schema for the 1st order PDES: 299 

        (55) 300 

 301 
4.1. The 1st order wave term.  302 
We consider the system (30) and the relation between the wave velocity and the Cauchy–Riemann de- 303 

rivative,  The expression for the overall particle energy, Equation (42), implies: 304 

• the displacement velocity as the alternative variable: 305 

 ,                                       (56) 306 

• the longitudinal wave velocity as the wave propagation velocity: 307 
 . (57) 308 

The stable particle is considered, thus its wave is at a quasi-steady state. The 2nd order time derivative of 309 
the q-potential in (55) we express as follows: 310 

 .                                        (58) 311 

The term in the bracket on the right-hand side is the rate of the q-potential changes. We want to express 312 
this term by new variable, i.e., separate the time scales. The rate of changes of the deformation potential 313 

 is due to the wave propagation within the particle space. The propagation process must follow 314 
the extremum principle, i.e., it is the brachistochrone problem [24]. The good example of “local princi- 315 
ple” approximation is by Derbes [25].   316 
We know that wave path fulfills the extremum principle, i.e., the wave path follows its unique trajecto- 317 
ry given by the Cauchy–Riemann derivative . The trajectory which has the minimum property 318 
globally in the whole volume Ω occupied by the particle must have the same property locally. This path 319 
grants the shortest possible travelling time for the waves identified in QQM. Consequently from (57) 320 
we postulate the following:  321 
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  .                     (59) 322 

From the relation (56) we get 323 

                              (60) 324 

Combining the relations (59) and (60), we get the 1st order particle wave term consistent with the 2nd or- 325 
der formula (54): 326 

           (61) 327 

Thus, the 1st order particle wave term in (55) equals: 328 

                                           (62) 329 

4.2. The 1st order quaternionic oscillator.  330 
The power of the 2nd order quaternionic oscillator, Equation (28), follows from two time scales in PK-C, 331 
namely from the relations (24) and (27):   and . Combining the relations 332 
(24), (27) and removing the Planck frequency results in the power formula of the 1st order quaternionic 333 
oscillator when the particle mass is known: 334 

 .                                       (63) 335 

By introducing the relations (62) and (63) in the schema (55), the 1st order PDE for electron equals 336 

                     (64) 337 

Relation (44), , implies that by multiplying the particle wave equation (64) by 338 
, it will be expressed as a function of probability 339 

                                         (65) 340 

or 341 

                            (66) 342 

Equation (66) may require the  time dependence. This dependence results from the continuity equa- 343 
tion presented in [15]. The comparison of the first-order wave equations in quaternion formulation, 344 
Equation (66), with the form in the Dirac algebra formalism: 345 

            (67) 346 

 347 
5. Conclusions 348 
The new results of the QQM and QFT make firmer the concept of the P-KC. The fine tuning of our 349 
model allowed obtaining new results and next targets:  350 
• The symmetrical formula of the scalar force field:  is consistent with the sca- 351 
lar coupling between transverse and longitudinal waves in [13] and [14].  352 
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• The quaternion, , scalar,  and vectorial,  propagators are postu- 353 

lated and used to generate the 2nd order partial differential equation systems, PDES’s, for the proton, 354 
electron and the neutron  355 
• The scrupulous assessment of the 2nd order PDE systems allows postulating the two 2nd order 356 
PDES for the u and d quarks from the up and down groups.  357 
• It was verified that both the proton and the neutron obey experimental findings and are formed 358 
by three quarks. Namely, the proton and neutron are formed by  and  complexes, re- 359 
spectively. All above systems comply with Cauchy equation of motion (8) and can be considered as sta- 360 
ble particles. 361 
• The u and d quarks do not meet the relations of the Cauchy equation of motion. Also experimental 362 
efforts to find the individual quarks were without success. Observed were the bound states of the three 363 
quarks – the baryons and a quark and an antiquark – the mesons. Wilczek calls it the phenomenological 364 
paradox: “Quarks are Born Free, but Everywhere They are in Chains” [26]. The inconsistency of the quarks 365 
PDES with the quaternion forms of the Cauchy equation of motion might account for the observed 366 
Quarks Chains.  367 
• The gravitational waves propagate at the velocity of the transverse wave in Cauchy continuum, c.  368 
• The electron wave propagate at the velocity of the longitudinal wave in Cauchy continuum, √3c. 369 
  370 
The results indicate the following targets for an immediate future: 371 
• The particles and quarks in the case of higher coupling coefficients: . 372 
• The ratios between the constants for the different force fields. 373 
• The rigorous derivation of the 1st order PDES’s basing on the extremum principle. 374 
• The multivalued coordinate transformation to determine the properties of space with curvature 375 
and torsion produced by 2nd order PDES’s of the QFT [27]. 376 
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 381 

Abbreviations 382 
P-KC Planck-Kleinert crysta 
PDE partial differential equation 
PDES partial differential equation systems 
QQM quaternion quantum mechanics 
QFT Quaternion field theory 
D deformation tensor  

 Lamé coefficients; 
 stress tensors 

 density of the deformation energy 
 displacement in  

 q-potential in , the quaternion deformation potential 

 strain energy density 
 power of the quaternionic oscillator 
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density of the rate of momentum change, i.e., the  
quaternionic scalar propagator 

 quaternionic vector propagator 

 quaternionic q-potential propagator 

 
quaternionic particle density, i.e., the particle wave 
function 

 probability, i.e., the normalized particle mass density 
n coupling coefficient in the propagator 

 Planck length 
 Planck frequency, inverse of the Planck time 

 Planck mass 
 transverse wave velocity in elastic continuum 
 longitudinal wave velocity in elastic continuum 

 Planck density, i.e., the mass density of the PK-C 

 
mass density of the particle , as the equivalent 
of the  
energy density  in the PK-C 

 Planck constant in terms of angular frequency 
h Planck constant,  
m equivalent mass of the wave, i.e., mass of the particle 

 length of the particle wave 
 frequency of the particle wave 
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