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1 Hecke modular relation for generalized eta-
functions

Rademacher’s “Topics” [Rademacher (1973)], along with Siegel’s “Advanced
analytic number theory”[Siegel (1961)], has been the masterpiece classic of
the theory of algebraic aspect of analytic number theory and widely read by
researchers. [Rademacher (1973), Chapter 9] is devoted to the theory of the
transformation formula for the Dedekind eta-function 7(7); hereafter abbre-
viated as ETF. The main concern is about the ETF under a general Mobius
transformation, not restricted to the Spiegelung S : 7 — 77!. The corre-
spondence between the transformation formula under the Spiegelung and the
functional equation for the associated zeta-, L-functions has been known as
the Hecke correspondence or more generally as the Riemann-Hecke-Bochner
correspondence, RHB correspondence, also referred to as modular relation.
This is developed by many authors [Berndt and Knopp], [Bochner (1951)],
[Hecke (1936)], [Hecke (1983)], [Knopp (2000)], [Ogg (1969b)], [Riemann (1859)],
[Weil (1968)], [Weil (1971)], [Weil (1979)], culminated by [Kanemitsu and
Tsukada (2014)].

Rademacher [Rademacher (1973), Chapter 9], however, incorporates Iseki’s
paper [Iseki (1957)] for the proof of ETF under a general substitution. [Iseki (1957)]
depends on the partial fraction expansion (PFE) for the cotangent function
and [Rademacher (1973)] gives an impression that ETF must be proved by
PFE. But it is known that PFE is equivalent to the functional equation for the
Riemann zeta-function ((s), [Kanemitsu and Tsukada (2007)], which natu-
rally implies that ETF is also a consequence of RHB correspondence. Indeed,
Rademacher himself [Rademacher (1932)] developed the integral transform
method to prove ETF prior to Hecke’s discovery of RHB correspondence
and his method was used by many subsequent authors [Apostol (1950)],
[Dieter (1959)], [Meyer (1957)], [Schoenberg (1967)], [Schoenberg (1974)], et
al. all of whom used Rademcaher’s method not RHB correspondence. Iseki
[Iseki (1961)] seems to be the first who revived Rademacher’s method [Rademacher (1932)]
to prove the functional equation, which was extended to the case of Lambert
series by Apostol [Apostol (1964)]. Both used the gamma transform (5.3) of
the Estermann type zeta-function but RHB correspondence does not seem
to be perceived.

Thus the real starter of the proper use of RHB correspondence is [Gold-
stein and de la Torre (1974)], which cites [Hecke (1936)] and proves the gen-



eral ETF from the generating zeta-function satisfying the ramified (Hecke)
functional equation. [Goldstein and de la Torre (1975)], a sequel to [Gold-
stein and de la Torre (1974)] treats a more general eta-function on a totally
real field of degree n by similar argument based on RHB correspondence. On
the other hand, [Schoenberg (1979)] adopted RHB correspondence, stream-
lining [Schoenberg (1967)] and [Schoenberg (1974)].

Our main aim is to elucidate the (Hecke) modular relation structure in-
volved in earlier works by Rademacher, Dieter, Schoenberg et al. and make
further developments. In this paper we confine ourselves to the case of Lam-
bert series but as we will see, there appear the Koshlyakov transforms which
are used recently, cf. [Li et al. (2024)].

Notation and symbols. Let
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be the Lerch zeta-function and
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1
ra)=Y —— 0O0<a<l1
¢, ) ; E
the Hurwitz zeta-function, respectively. For z =1 (and o > 1), they reduce
to the Riemann zeta-function

1
((s) = — o=Res>1
ns
n=1
We make use of the vector space structures in the scone variable x of both
these functions for which we refer to [Li et al. (2023)], [Mehta et al. (2023)],
[Wang et al. (2024b)]. Let C(s) = {a(n)} be the vector space of all periodic

arithmetic functions with period ¢(€ N) and let D(c) be the corresponding
space of Dirichlet series f(s) = > 7, aflf) both of dimension c. It is shown
that one basis of C(c) is the set of characters and the other is their orthog-
onality relation, which yields the bases of D(c): {{; (%) |v =1,---,c} and

{¢ (s, %) lv=1,--- ¢}, respectively. One of the base change formulas
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will play an important role.
¢, (x) is not defined at integer points x and needs separate consideration.
E.g. its odd part

1

(1.2) :

(01(x) — 01(1 — 5)) = —7iBy(z)

is discontinuous at integer points x but has the value 0. The same applies to

éo (l’)
Another important vector space is the space K, of Kubert functions which
are periodic functions with period 1 satisfying the Kubert relation (x):

(%) lef (x;T) = mi = f(a).

r=0

cf., Milnor [Milnor (1983)]. K is of dimension 2 and is spanned by ¢s(z) and
ls(1 — z) for s # negative integers while by ((s,z) and ((s,1 — ) for s #
non-negative integers. The Kubert relations

(1.3) iés (m +“> = (x), O<az<l

p=1

EC:C (S,QHC—N> =c""%(s,2), O0<x<1

hold for s € C except for singularities.
Since every element of IC; is a linear combination of these two zeta-
functions, we write

f(s,2) < C(s,2), g(s,2) & Ly()

to mean that f(s,z) is of Hurwitz zeta-type resp. ¢(s,z) of Lerch zeta-type
satisfying the same conditions as ((s,z) resp. ¢s(x) does. This in particular

applies to their even and odd parts.
Define

w0 a5 (- {2))s(-1-{2))



(1.4) is Estermann’s type of Dedekind sum whose concrete case will ap-
pear in the second proof of Theorem 1. We substitute the functional equation

D(w) (s S
FO = ww) = o (7 g(w.) + ¥y, 1 - 2)
> () (s %
9(1=20) = ooz (e =0 + e ()

as the case may be to deduce

['(w)T'(z)

(15) f(l - w,x)g(l - Z>y) = (27T)w+z

(e 7@+ f(w, 1 — 2)g(2,y)

+ e%i(w“)f(w, 2)g(z,1 —y)+e2 @ f(w,2)g(z, y)
e T f(w,1 - 2)g(z,1—y))

This will appear in §5.

It is Mikolds [Mikolds (1956)] who first introduced the transcendental
generalization of the Dedekind sums in which instead of (1.4), the f, f-type
zeta functions are considered as with almost all preceding papers. In the
second proof of Theorem 1, we will reveal that the Estermann type zeta-
functions makes things simpler.

2 The Rademacher-Apostol case

In this section we illustrate the elucidation of Rademacher’s integral trans-
form method by showing the functional equation for the zeta-function and the
general ETF as developed in Rademacher [Rademacher (1932)] (for eta func-
tion) and also by Apostol [Apostol (1950)] (for Lambert series). The residual
function in Theorem 1 is the corrected form of that of [Apostol (1950)] in the
form nearest to Apostol’s. This corrected form was first proved by Mikolas
[Mikolds (1957a), p.106] and shortly thereafter by Iseki [Iseki (1957)], both
of whom treated the case p > 1. Then as stated above, [Iseki (1961)] proved
the Hecke functional equation in the case p = 1 and Apostol [Apostol (1964)]
used the same method to treat the case p > 1, without mentioning RHB cor-
respondence.

Toward the end we shall briefly explain the case of Krétzel [Kratzel (1981)].



Let ¢ € N, p > 1 be an odd integer and let A be an integer such that
(h,c) = 1. Define the Rademacher-Apostol zeta-function

1) Zy(s.h) - Zc (s 2Y ¢ (s40.Y).

Let

-iz+h

(2.2) gp(T) = gp <e2mT) L /(7) [(5)Z,(s, h)c™ ! (2mez)~* ds,
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be the Hecke gamma transform of Z,(s, h) as in [Rademacher (1932), (1.14)],
where 7 > 1.

Theorem 1. The zeta-function Z,(s, h) satisfies the Hecke functional equa-
tion

(2.3) (2m¢) T D(s)Z,(s, h) = (2m¢)*" " (=1)"F D(=8)Z,(1 — p — s, H),
where H 1s an integer such that

(2.4) hH = —1 mod c.

. The Lambert series (2.2) satisfies the transformation formula

iz _ P
(25) 9 (6271'2 ‘c"h> _ (ZZ)p 1gp <627rz C+H> 4 Pp(z)’
where

(2.6)  P,(z) = Resse—p.. 011'(5)Z,(s, h)c P(2mez) "

1 /212\” —1)7 [2r\" _,
- Byt~ () ;1B
2<p+1>!( > p“+2<p+1>!(c>z

—_;((2])7;?1)31,71(0, h) + %5,3,1 loga + % (1 - (_1)112;1> ¢(p)
(-1 ey —(2mipt

and where 0,1 s the Kronecker symbol.



Proof. We combine the Hurwitz formula (2.7) and the base change formula
(2.8) with f = x, to deduce (2.9): The Hurwitz formula (i.e., the functional
equation for the Hurwitz zeta-function): for o > 1,0 < x <1,

['(s)
(2m)°

(2.7) C(1—s,2) = (e—%” Oy(x) + e 6,(1 — x)) .

The base change—linear combination expression—formula reads

(2.8) éia(n){ (s, %) = D(s,a) \/_ Za < )

— e it () + % (5),

n=1

where a(n) is the DFT (discrete Fourier transform) of a(n). Choosing a(n) =
Xu(n), xp being the characteristic function of p, we see that its DFT is the
character, which implies (1.1).

Combining (2.7) and (1.1), we deduce

(2.9)
W
= =T1-5)———
T = 2T A T ~— . 27T\ A
X (sm ES /\él cos . ¢ (1 — s, E) + cos 55 )?:1 sin . ¢ (1 — s, E)) )

Substituting (2.9) in (2.1) and using

Cc

2mihpv 27T)\ c 27Th/,”/ 27T)\/.L
2.10 c =
( ) Z e coS Z CoS .

= pn=1

S 27r)\u : 2rhpy . 2wAp
¢ sin Z sin sin ,
c c

pn=1 pn=1



we conclude that

(2.11)
- 21h 2 1 A
Zy(s,h) = c1(27rc)s< Z cos WC'LW cos Wc ,ucos ESC (1 — s, E) ¢ (p + s, %
A p,v=1 2
E 21h 2mApn 1 A
+ Z sin 7T'stin WM, WC(l—S,—)C(p—l—S?z) :
Nt c c sings c c

Changing s by 1 —p—s and u by Hpu, where H is as in (2.4), then the second

factor remains unchanged up to the additional factor (—1)%1. Hence
Z,(1—p—s, H) = (21c) 7 2(=1)"7 Z,(s, ),
which is (2.3).
Substituting (2.11) in (2.2), we derive that

(2.12)

1
gp(@) = Qe+t

- 2rh 2 1 1 A
X Z cos Y s £1 'u—, — ((1—5,—)§<3+p,z) z%ds
c c 2m ) COS 58 & c

A p,r=1 (v

- 2rh 2mAp 1 1 A
+ Z sin m ’uysin m M—, — g(l—s,—)g<5+p,z>z‘fds )
c c 2m (v) SN 5 S c c

A p,v=1 2

which is [Rademacher (1932), (1.27)].

Shifting the integration path to ¢ = 1 — p — v and applying (2.3), we
conclude [Rademacher (1932), (1.29)], which is (2.5).

Incorporating the residual function found in [Apostol (1950)] with correc-
tion calculated in [Li et al. (2024)], we arrive at the general transformation
formula, entailing ETF [Rademacher (1932), (1.45)], completing the proof.

Second proof.
We may give a more lucid proof of (2.3) using the Estermann type Dedekind



sum

e ewas & ({2 (- {7])

A mod ¢

- < (w2} e (2) + ctonr

Estermann [Estermann (1930), (19)] established the functional equation
(2.14)
EPM(s,5) = —2(2m)* 7 T?(1—5) (cos(ms)Er (1 — 5,1 —s) = €1 — 5,1 — 5)) ,

which is a special case of the more general functional equation

2 (w)T'(2)
(2m)wtz

X (COS g(w + 8)EP 7 (2, w) + cos g(w — 5)E2 (2, w)) :

(2.15) E(1—w,1—2) =

We consider the sum slightly more general than (2.1):
(2.16)

sy ) (42) = e () S (),
pv=1 p=1 v=1

The inner sum on the right of (2.16) is ¢*(, () in view of the base change
formula (1.1) becomes

(2.17) (w2, k) = ¢ Zc( ) (h:) = EEM (w, 2),

which becomes
(218) Zp(S,h) = IP(878+p7 h) = Cs+pgcl7h(373+p)7

on specifying w = s, z—p+s. Hence, substituting (2.15) in (2.17), we deduce
that

(2.19)

(w2 h) = 22—l = 2)

(27T>2—w—z
X (— Cosg(w +8) &7 (1 — 2,1 —w) + cos g(w —8)EM (1 — 2,1 - w)) :




Specifying w = s, z — p + s, (2.19) reads
(2.20)

Zp(S, h) = ]p(,g’ S +p, h) — Cs+p2F(1 — S)F(l —p— S)

(2,”)272571)

X (— 0055(23 +p)EH (1 —p—5,1—5) + cos gpé’ch’l(l —p—s,1— s)) :

Taking oddness of p into accout, this reduces to

21 =s)I'(1 —p—s) p=1

Zy(s,h) =¢* G (1) = sinmasE, (1 —p—s5,1—5),

whence

I'l—p—s p—1
W(—l) SEM(1—p—s1-5s).

(2.21)  T(s)Z,(s,h) = P
Now let H be as in (2.4). Then
EMM1—p—s51—5)=E"1-p—s51—-5)=c"2Z,(1-p—s,H)

by (2.18). Substituting this in (2.21) proves (2.3).

Third proof. We may restore the argument of [Rademacher (1932)] (and
[Apostol (1950)]) to prove (2.5) and the proof entails the proof of (2.3)., cf.
[Li et al. (2024)]. O

3 The Kratzel case

[Krétzel (1981)] deals with a generalization (3.12) of the eta-function which
depends on the Hecke gamma transform of the zeta-function

(3.1) Zuls) = 1)1 e (és) ¢ (—%s) |

b

where a,b are natural numbers, (a,b) = 1. Z,;(s) satisfies the Hecke func-
tional equation

(3.2) ['(8)Zab(s) = T(—=s)Zpa(—S).

Kratzel’s method is essentially that of Rademacher although he does not
refer to [Rademacher (1932)] and we give a brief account on this point.

10



Theorem 2. The Krdtzel-Rademacher method yields the modular relation
(3.2) as well as the transformation formula

(3.3) Nas(2) = 27 2 e (i) :

Proof. For the moment, we work with (Rez > 0 and |arg z| < 55)
oo a—1
(34) 77ab H H < 27rzazu+1 4a)nax > :
m=1v=1

where £9,,41(4a) = €*" %", Then for » > %, we have by the Hecke gamma
transform

(3.5)
1ogf] (./I/') — _L F(S)g(s + ]_)C ES az_i <27Ti67;2,:1?:1>75 (27T$b) —S dS
@b 210 J o a ) & '
Now the sum becomes
a—1 -
() = G
— sm%s
Hence (3.5) becomes
1 sin Zs b —s
. log 7 =——— [ T 2 D¢ | =s) (2rzb) " ds.
(3.6) 08 Tap(T) omi o (S)Sm;_asg(s +1)¢ (as) ( T ) s

Now we apply the functional equation only to one factor {(s + 1):
¢(=s).

™

(3.7) ((s+1) = _(QW)SF(S +1)sin Zs

Substituting (3.7) in (3.6), we obtain

09 ool = o [t (1) () as

2mi s+ 1)sing-s

Note that the factor mds being 1ds remains invariant under the change

of variable s — as, so that (3.8) becomes as in Krétzel,

0g Na.p(x :L L(s) w((—as s) () " ds
39 tominle) = g | e ) (57) s

2mi s+ 1)sin §s

11



where s > % These two are the main ingredients of Kréatzel and corresponds
to Rademacher’s (2.12).
Changing the variable s — abs, (3.9) becomes

1
(3.10) log lap(2) = —/ ['(s)Zap(s)z™*ds,
(522)

Comi

i.e., the Hecke gamma transform of Z, ,(s), where 52 > a. As usual, shifting
the integration path to 0 = —s1y < —%, we encounter poles and we are to find
residues. The resulting integral is the same as (3.10) with x changed by %
Krétzel writes [Krétzel (1981), p. 116] “Then under the substitution s — —s,
the functional equation (3.2) follows on symmetry grounds” meaning that he
proves (3.2) at this stage.

Kritzel treats (3.9) and shifts the line to —35 < —1 finding the sum of
residues

1 1 b
(3.11) ~Yab(T) + Vba <—> + —(b—a)log2m — a—a:,

x 2 2
where )

™
7a,b(~r> = T r C (——) CL’b.
sin o a
Hence defining

(3.12) Muo(x) = (2m) T i 2),
we conclude (3.3). O

4 Unification of Rademacher and Dieter cases

In this section we prove the modular relation structure of the zeta-functions
and the general ETFs contained in [Rademacher (1932)], [Apostol (1950)]
and [Dieter (1959)]. We work in the framework of Dieter with slight mod-
ifications. Let p,d, f, a, f be integers satisfying the conditions p > 1 being
odd, (h,e) =1, f > 1,0 < a < f. f works as a fixed aixiliary modulus and
d = —h in §2. In Dieter’s case, «, § Z 0 mod f is also assumed. Then the

12



Dieter zeta-function is defined by

(4.1)
c—1 fc
— mizEh\ i vty H «Q v
where
—ha —
(42) ’Y<_057 _5) = —’)/(Oé,ﬁ), Y= 7(057 B) = QTCB

We assume y(—a, —f) = v(a, 8) for o, = 0 mod f, which we abbrviate
7(0,0). We also assume that p varies 1,--- ¢ in the case of v(0,0). Then
(4.1) with p = 1 amounts to (2.1). In almost all susequent researches after
Rademacher, it is necessary to consider the even part [Dieter (1959), (2,11)],
which is

(43) ga,ﬁ(svw) = foc,ﬁ(sax) +f—o¢,—5(sax)‘
One speculated reason for this is stated in [Li et al. (2024)].
Let
o izth 1 -1 —s
(14)  Gyla) = Gy (7 ) = — | T()gus(s,2)(cf) 7 (2mez) " ds,
21 J )

be the Hecke gamma transform, where v > 1.

Theorem 3. Rademacher’s transform yields the transformation formula

(4.5) G <e2m'“ih> = (i2)" "G <e2m“_i*”) +P(2),
where
(4.6) P(z)= > ResI(s)gasls,z)(cf) " (2mcz) ",

S=P, 7071

as well as the Hecke functional equation for the even part g p(s,x) of the
Dieter zeta-function
(4.7)

_g_pol spp=l p=1
(2mcf) T 1(s)gpap(s, z) = (2mcf) 5 (=1) 2 T'(1—p—5)gpo g (1—p—s,2),

where H is an integer as in (2.4) and

» ()-(0 ) 6)

The theoem also covers Theorem 1.

13



Proof. We give a proof verbatim to that of Theorem 1. We employ (2.9) as

(4.9)

g 2 LT = noo« A
C(S’E—I—J)_F(l_S)W<Sm§SZCOSQW)\(E—'_J)g<1_8’3)

A=1

—i—cos—sZstw)\( ;})((1—5,%))

Substituting (2.9) in (2.3), we find that

(4.10)

c(2mef) ( )fa5(s, )

< — Qg lvtyv M o 1 A v
= Z e e Ccos2mA Cll-s5—])Clp+ts —
“a\= c f cos 55 cf cf
+Ci it o (L4 L) L (1-5, 2 ) ¢ (pts, 2
M:oe St e cf sin I % cf P cf) |

To proceed further with the non-degenerated (4.10) we need a counterpart
of (2.10) and for this we need to consider the even part [Dieter (1959), (2,11)],
which is (4.3).

Then we are to incorporate

(4.11

-1

o =

Qg vty lu’ Qg =y aQ
c 2mA c o | B — —
e Ccos 27 ( Cf>+Ze COS 2T ( cf)

c
=0

c—1

c—1
i v tav 1% [0 o —huv—v «
E c 2mA + + E c 2mA
(& COS 27" ( Cf) (& COS 47" ( Cf>

c—1
Re( QWZhHVj’YV) COS27T)\ (H + g))
c cf

h
=2 Cos QWM cos 27 ()\'u + )
c c cf

=

I
S

14



and

c—1 c—1
(4.12) Z&’” S Sin 2\ (’”‘ Cf) + Zemh“”c ~ sin 27\ (Z - %)
n=0 p=
hpuv
= -2 Zsm 27ru sin 27 ()\H + —>
c c cf
p=0
Substituting in (4.10), we obatin

(4.13)

c(2mef) T (s)gas(s, )

fc c—1
huv + yv ,u 1 A v
=2 Z Zcos 27Tf cos 27 ()\ 3) _— _SC (1 s, J) ¢ <p + s, 3)

s
Av=1 u=0 2

A hpv + yv b o 1 A v
_QZZZSIH27T7 sin 27 ()\ cf) - SC(l—s,E)C(ZH—S,J),

Av=1 pu=0

Changing s by 1 — p — s and u by Hu, where hH = —1 mod ¢, then the
right-hand side of (4.13) is changed into the one with the factor (—1)pT and
with the new pair of parameters o/, '. Hence

c@ref) 1) T D1~ p — 8)gu (s, 2) = c(2mef) T (s)gas(s, 7).

which is (4.7).

Shifting the integration path in (4.4) to ¢ = 1 — p — v and applying
(2.3) establishes the assertion. The residual function (4.6) may be found on
[Dieter (1959), p. 48].

The degenerate case of (4.10) leads to a generalization of Rademacher’s
functional equation. Indeed, (4.10) with f = 1, v(0,0) reads

(4.14)  ¢(2me)"°T'(s) foo(s, x)

‘ ¢ 2nihuv 2 )\ ]. )\
:Z <Ze s SR M — C(l—s,—)((p—l—&ﬂ)
c cosgs c c

Av=1 pn=1
C\ aminw | 2mAp 1 A

—l—ZeQ # sin T ,u. Cll1—s,—-)C p—l—s,K .
= c smgs c c

15



Substituting (2.10) in (4.14) proves Rademacher-Apostol case [Wang et al. (2024b)]:

(4.15) (2m¢) T T(8)Z, (s, h) = (2m¢)*" "7 (=1)"7 T(=8)Z,(1—p—s, H),

where
271'2h/,u}
Ze c <, >C<s+p, )
p,v=1
(4.15) reduces to (2.3) for p = 1. O

Other papers dealing with generalizations of the eta-function use

= 3 e () e (3).

pv=1

instead of (2.1) and are feasible for description in the form of the Hecke
correspondence. We hope to return to the study of this aspect and more
general Dedekind sums including one with Kubert functions elsewhere. But
we shall mentions one type of Estermann type in the nect section.

5 The Schoenberg case

This section is concerned with [Schoenberg (1967)], which is reproduced in
[Schoenberg (1974), pp. 184-202, Chapter VIII|. On [Schoenberg (1974), p
184] it is stated that the transition is made from Hecke’s Eisenstein series
of weight —2 [Schoenberg (1974), p. 164] to a linearly equivalent system
containing non-analytic function Gs.

We stick to [Schoenberg (1967), p. 5 ], which is directly related to (1.5).

In particular,

. 2s

6D s a)en(8) = 20 (L emingms,1- (@)

‘ sins
+ emsg(_& B)gl—s(l - CY) + C(_Sa I B)él—s(l - a)
- C(—S, ﬂ)gl—s(a»'
We write £ = ¥ and define the Lambert series [Schoenberg (1967),

(20)]
(5.2) Uz; o, B) = Z ¢ e~(mrame 0,

n>0
m>—«

16



Then [Schoenberg (1967), (26)] considered the gamma transform of the Es-
termann type zeta function

(5.3) U 0, 8) = —— / D(8)C(5, 0)ups (B) ds,
()

211

where s > 1. If we substitute (5.1) into (5.3), then the integral is hardly
tractable. This is why Schoenberg deduced only an asymptotuc formula for

Uz, B).
Let
64)  a=(aw)€Z a=afa)= %+ F=pa)=¢.
where
(5.5) & = e%i(erT), ay = aay + cas.

Then we consider
(5.6)  X(a) = X(an,a) = Ulz;a, ) = U (2m; % + 2 gT) .

But what is needed eventually is an expression for the even part X (ay, as)+
X (—ay, —as) ([Schoenberg (1967), p. 8]) and we prove the following theorm
for the zeta-function of the even part.

Theorem 4. For

Z<S7 «, ﬂ) = <<S7 O[)ES-H(ﬂ) + Q(S, I a)&-&-l(l - 6)

and
Z(s,0,8) = ((s,1 = B)lyra(a) + (=5, B)1_s(1 — o)

the functional equation

(57) (s, 0, ) = 2(2m)" Z(=5, 0, )
holds.

Proof. On [Schoenberg (1967), p. 7], Schoenberg defined
(58) g = ()

17



and noted

(5.9) & =6

Hence

(5.10) X(—a)=U(z;1—a,1-p).

It follows that when substituting from (5.1) in X(a) + X(—a), the sums
with the third and the fourth terms vanish and we sum only first two terms
of (5.1) and the sine function cancels. Hence the zeta-function Z(s, a, ) of
X(a)+ X(—a) is
G11)  Z(s,a,8)

—i(2m)*

— : (_e—wzs +€7rzs)
S s

(¢(=s5.1 = al@)tr-s(~a(@)) + ¢(=s. B(a))r-.(a(a)))
= 2(2m)% (¢(=s,1 = A)1-s() + (5. B)la-(1 — ).
which proves (5.7). O

Hence what comes out is the Hecke gamma transform of a tractable func-
tion and the process onwards is verbatim to that of the preceding sections
and we do not go into details.
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