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This research was carried out within the Oluwa Forest Reserve to evaluate and

forecast its capacity for aboveground carbon sequestration using data from the

Landsat Thematic Mapper. The Oluwa Forest Reserve, situated in Ondo State,

Nigeria, is renowned for its abundant biodiversity and vast expanse. Assessing

the forest's aboveground biomass and carbon traditionally involves intricate

and expensive processes necessitating the expertise of diverse professionals

and specialized equipment. Hence, this study investigated the utilization of

Geographic Information System (GIS) and Remote Sensing (RS) technology,

employing Landsat bands to calculate spectral indices and construct linear

models for predicting the aboveground carbon sequestration potential of the

tropical rainforest ecosystem within the Oluwa Forest Reserve. The measured

aboveground carbon from sample plots, alongside the estimated spectral

indices, was utilized to simulate the distribution of aboveground carbon across

the Oluwa Forest Reserve. A positive linear correlation was identified between

the observed data and the estimated spectral indices. Consequently, linear

models were developed, and the most suitable model was determined through

statistical analysis. The average aboveground carbon estimated from the

sample plots was 150.70 tons per hectare (t/ha), closely aligning with the

predicted value of 149.80 t/ha. Statistical analysis yielded a coefficient of

determination of 94% and a Root Mean Square Error of 6.38E-16. These results

indicate that the selected model accurately predicts the distribution of

aboveground carbon within the Oluwa Forest Reserve. This study underscores

the importance of spectral data, GIS, and RS in the efficient modelling and

mapping of aboveground carbon in extensive forest ecosystems.

Corresponding author: Ezekiel Ajayi, ezekiel.ajayi@aaua.edu.ng

Introduction

Tropical rainforest ecosystems harbour significant reserves of carbon, both

above and below the ground[1]. Typically, these carbon stores exist in various

forms within different components such as tree trunks, roots, woody vegetation,

organic material in the soil, and litter on the forest floor. Among these

components, the aboveground biomass of living trees holds the largest carbon
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stock[2], making it particularly susceptible to activities associated with forest

degradation and deforestation[3]. This has prompted increased interest in forest

management strategies for global climate mitigation, with a focus on estimating

carbon stocks within forests[4][2].

Within tropical rainforest ecosystems, it is well established that approximately

50% of tree biomass consists of carbon, and it is primarily stored within the

aboveground biomass[3]. Consequently, accurate measurement of aboveground

carbon stocks plays a crucial role in obtaining precise estimates of forest carbon

stocks for initiatives such as the United Nations' Reducing Emissions from

Deforestation and Forest Degradation (UN-REDD) program, which emphasizes

the measurement, reporting, and verification of forest carbon.

Although various approaches have been utilized to estimate the aboveground

biomass of tropical rainforests, including field-based inventory methods (both

direct and indirect), remote sensing techniques, and the utilization of allometric

equations, among these methodologies, direct field inventory is widely

recognized as the most precise for estimating aboveground biomass and carbon

stock. However, it is important to acknowledge that this method is characterized

by being time-consuming, labour-intensive, and costly[5][3][2].

Nevertheless, remote sensing, an indirect method, is commonly applied to vast

land areas and offers the potential for evaluating forest carbon stocks using

satellite data, as demonstrated by Baccini et al.[6]. The accuracy and reliability of

these results are contingent upon the availability of ground-based inventory

data[3].

The process of estimating and mapping aboveground carbon using remote

sensing data often involves correlating ground-based inventory information

with spectral reflectance, which may include various vegetation indices such as

the Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation

Index (SAVI), Enhanced Vegetation Index (EVI), among others[7]. However,

challenges related to data saturation can emerge when employing remote

sensing imagery for aboveground carbon modelling in tropical rainforests,

particularly in regions with substantial biomass. Nevertheless, these challenges

can be addressed[8][3][2].

In recent years, there has been a significant global push to enhance the efficiency

of optical data for the precise estimation of forest aboveground biomass and

carbon, focusing on leveraging object features. Extensive literature reviews

demonstrate a consistent enhancement in aboveground biomass and carbon

estimations with object features. Texture extracted from moderate-resolution

Landsat data has proven effective in modelling aboveground biomass and

carbon across numerous forests[9][2]. Likewise, textural features derived from

high-resolution data sources such as Worldview-2, IKONOS, and QuickBird have

been successfully employed in modelling and estimating forest aboveground

biomass and carbon[3]. The utilization of derived object features in biomass

modelling exhibits variability across geographical regions and the types of

optical data employed. However, there is a prevailing consensus that object

features extracted from images may offer greater suitability for biomass and

carbon modelling, particularly in the diverse and complex landscapes of tropical

rainforests.

The Oluwa Forest Reserve is renowned for its abundant biodiversity and vast

expanse of land with tree species that have high carbon stock values[10]. The
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main aim of this study is to assess the carbon stocks within the Oluwa Forest

Reserve and utilize remote sensing data to construct a comprehensive map

illustrating the reserve's potential for carbon sequestration. Our objective is to

accurately depict the distribution of carbon based on spectral index reflectance

values with the strongest correlation. By integrating precise field inventory data

with remote sensing information, we have developed a highly precise and

reliable model for evaluating the carbon sequestration potential of the Oluwa

Forest Reserve. This methodology is essential for reporting forest carbon to the

Clean Development Mechanism (CDM) under the Kyoto Protocol of the United

Nations Framework Convention on Climate Change, as it enhances our

understanding of the carbon balance within forest ecosystems[4][2].

Study Area

This research was conducted within the Oluwa Forest Reserve, located in the

Odigbo Local Government Area of Ondo State, Nigeria. The reserve spans an area

between Latitude 6° 38' 24'' - 6° 57' 36'' N and Longitude 4° 28' 48'' - 4° 52' 48'' E,

covering approximately 829 square kilometres. The annual rainfall in the reserve

varies from 1700 to 2200 mm, with an average annual temperature of 26°C[11].

The relative humidity remains consistently high, ranging from 75% to 95%. The

soils in the Oluwa Forest Reserve are predominantly ferruginous tropical, typical

of extensively weathered regions within the rainforest ecosystem of South-

western Nigeria. These soils are well-drained, mature, and characterized by a

reddish colour, stones, and gravel in their upper layers[11]. Additionally,

Onyekwelu et al.[12]  noted that the topsoil texture in the reserve is primarily

sandy loam. The vegetation in the reserve is classified as tropical rainforest and

includes species such as Melicia excelsa, Terminalia superba, and Triplochiton

scleroxylon, among others.

Ground-based Biomass and Carbon Assessment

The equipment utilized in this study comprised a girth tape, meter tape,

compass, ranging poles, flagging tape, Global Positioning System (GPS), relaskop,

and recording sheets. The girth tape facilitated the measurement of Diameter at

Breast Height (Dbh) and the diameter at the base of trees. The meter tape,

compass, flagging tape, and ranging poles were employed in setting up

temporary plots. The relaskop was employed to measure upper diameters and

tree height.

Plot Layout and Selection

Square grids of 30 m x 30 m were created in geographic information system

software (ArcGIS) and overlaid on the shapefile of the study area. Grids that fell

outside the boundary of the shapefile were removed, and the remaining grids

were numbered. Twenty (20) grids were randomly selected from the forest

reserve shapefile and laid out as temporary sample plots for data collection

purposes using the southwest corner coordinates value as the starting point.

Data Collection

All the tree species within the sample plot with Dbh ≥10 cm were measured.

Stems that forked or branched at the Dbh point or below were considered as two

individual trees, as reported by Ibrahim et al.[13]. In the plots, the trees were
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identified by a forest taxonomist, and their scientific names were recorded.

Measurements were restricted to the following tree variables: Dbh, Diameter at

the base (Db), Diameter at the middle (Dm), Diameter at the top (Dt), and tree

height.

Wood Density

Tree species densities were obtained from literature (African wood density and

International Council for Research in Agroforestry databases). The forest reserve

mean density was adopted for trees whose density was not found in the density

database.

Methods and Data Analysis

Volume Estimation

Newton’s formula was used to estimate the tree species volumes for this study

(Equation 1).

Where:

Volume = Volume of tree (m3),   = 3.142, h = Tree height (m), Db = Diameter at the

base (m), Dm = Diameter at the middle (m), Dt = Diameter at the top (m).

Estimation of Biomass

Biomass of each tree was estimated using the volume and density as obtained for

the respective tree species, and Equation 2 was employed.

Estimation of Carbon

Tree biomass obtained in Equation 2 was used to estimate the carbon stock for

each tree. The standard multiple factor of 0.5 was used for the conversion of

biomass to carbon stock (Equation 3) as adopted by Losi et al.[14].

GIS and Remote Sensing Biomass/Carbon Mapping

The plot biomass/carbon values obtained from the ground-based assessment

were correlated with the spectral indices’ values calculated from the respective

points of the corresponding plots as used for this study.

Spectral Indices Extractions

Four (4) spectral indices (Table 1) were selected for this study because they

indicate one biophysical characteristic or another and conditions of vegetation as

reflected as true nature depicts. These four spectral indices are; Normalised

Difference Vegetation Index (NDVI), Greenness Normalised Difference Vegetation

Index (GNDVI), Soil Adjusted Vegetation Index (SAVI), and Enhanced Vegetation

Index (EVI). These spectral indices represent quantification of vegetation as well

Volume = ( + 4 + ) (Equation 1)
πh
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2
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Biomass = Density × Volume (Equation 2)

Carbon = 0.5 × Biomas (Equation 3)
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as vegetation greenness[2]. In addition, these various spectral indices have a

statistical correlation with biomass/carbon data[15].

Table 1. LandSat-derived spectral indices and their equations

Regression and Evaluation

The models employed in this study were constructed in a linear fashion, and this

formation depended on the data distribution observed in the scatter plots. To

assess the performance of the model(s), various statistical measures of goodness

of fit were utilized, including Root Mean Square Error (RMSE), coefficient of

determination (R2), and residuals, among others.

The most strongly correlated spectral indices were selected as independent

variables to predict the aboveground carbon content within the study area.

Furthermore, the chosen model was validated with an independent data set

before being applied to create a spatial distribution of aboveground carbon in the

study area.

Results

The values of aboveground biomass and carbon vary across the plots. The

average aboveground carbon estimated from the sample plots was 150.70 tons

per hectare (t/ha), closely aligning with the predicted value of 149.80 t/ha (Table

2).
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Variable Observed Carbon Predicted Carbon

Mean 150.70 149.80

Standard Error 7.32 3.66

Median 85.94 42.97

Mode 149.30 148.09

Standard Deviation 131.78 65.89

Sample Variance 17366.18 4341.54

Kurtosis 16.16 16.16

Skewness 3.28 3.28

Range 1044.46 522.23

Minimum 12.66 6.33

Maximum 1057.12 528.56

Sum 41349.54 20674.77

Count 324.00 324.00

Table 2. Aboveground carbon (AGC)

Modelling Using Geographic Information System and Remote Sensing

There were moderate correlations observed between the recorded aboveground

carbon (AGC) data and some of the spectral indices, ranging from 0.29 to 0.60

within the Oluwa Forest Reserve. However, a majority of the calculated spectral

indices exhibited strong correlations with the observed AGC, surpassing the 0.5

threshold, indicating robust linear relationships among them. Worthy of note,

the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index

(NDVI), and Green Normalized Difference Vegetation Index (GNDVI) showed the

highest correlations with the observed AGC values for the Oluwa Forest Reserve.

Consequently, these spectral indices were selected as candidates for explanatory

variables (as shown in Table 3).

However, only EVI exhibited a high level of significance in model construction,

particularly when applied to transformed AGC data. Among the various models

developed, a logarithmically transformed model with a single explanatory

variable (EVI) was judged the most suitable for the study. This decision was

based on the model's simplicity, significance, and its alignment with other

predefined criteria.

To verify the predictive capacity and accuracy of the chosen model, a comparison

was made between the generated data and the observed data, as well as an

analysis of the residual plot distributions. Among the models evaluated, model

number 4 emerged as the best spectral model, achieving a coefficient of

determination (R2) value of 0.94. This indicates that the selected model can

predict the aboveground carbon content of the Oluwa Forest Reserve with a high

level of accuracy, estimated at 94%.
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No. MODEL R2 AdjR2 RMSE SIG.

1
AGC = 12.06 + 21.64 (EVI) - 102.94 (GNDVI) + 5.44

(NDWI)
0.93 0.92 1.25E-15 *

2
LnAGC = 2.98 + 5.46 (EVI) - 24.96 (GNDVI) + 2.29

(NDWI)
0.93 0.92 9.16E-16 *

3 AGC = 6.76 + 13.81 (EVI) 0.93 0.92 5.55E-16 ***

4 LnAGC = 2.24 + 4.38 (EVI) 0.94 0.94
6.38E-

16
***

Table 3. AGC Spectral Indices Models

Spatial Distribution of AGC

The aboveground carbon (AGC) values, derived from the spectral indices model

within the study area, were utilized to create a spatial distribution map of

aboveground carbon in the study area. The chosen spectral indices model

yielded AGC estimates for the forest reserve that exhibited minor differences

when compared to the observed values, and these differences were not

statistically significant (P < 0.05).

Specifically, the selected spectral indices model estimated the average

aboveground carbon to be approximately 149.80 metric tons per hectare, while

the observed AGC was 150.70 metric tons per hectare. Using these AGC values

from the model, an AGC map of the Oluwa Forest Reserve was generated. The

colours on the map corresponded to the AGC content as predicted by the model,

with green indicating higher carbon content and decreasing as carbon content

decreased (Fig. 1).

This study harnessed Landsat 8 Thematic Mapper data to develop a

straightforward linear model and employed it to map the spatial distribution of

aboveground carbon within the forest reserve. The logarithmically transformed

data with a single explanatory variable (the spectral index) was identified as the

most suitable for this study.

Additionally, an allometric equation, incorporated with spectral indices data as

explanatory variables, was re-presented as Equation 4 for this study.

Consequently, this allometric equation is recommended for accurately predicting

aboveground carbon in the Oluwa Forest Reserve and other forest reserves

sharing similar characteristics.

LnAGC = 2.24 + 4.38(EVI) (Equation 4)
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Figure 1. Spatial distribution of aboveground Carbon of Oluwa Forest Reserve

Discussions

The density of green leaves, which represents the carbon accumulation of trees

in optical sensors, is determined by the ratio and quantity of chlorophyll within

the leaves, as well as the reflection of near-infrared (NIR) radiation and the

absorption of red radiation[16][2]. The spectral indices model with the highest

coefficient of determination (R2) value, measuring 0.94, was adjudged to be the

most suitable for the study area. This finding aligns with the results of Adewoye

et al.[3], who reported a coefficient of determination (R2) of 0.936 in their study

titled "Estimating Aboveground Biomass of the Afromontane Forests of

Mambilla Plateau Using Quickbird and in Situ Forest Inventory Data". The model

featuring EVI as the explanatory variable demonstrated the most effective

predictive capacity, producing results that closely aligned with the observed data,

with no significant differences noted. This outcome is in line with the

conclusions drawn by Gizachew et al.[17]  in their paper titled "Mapping and

Estimating the Total Living Biomass and Carbon in Low-Biomass Woodlands

using Landsat 8 CDR Data." In their study, they also found that spectral indices

models were proficient in predicting biomass and carbon. The correlation of EVI

to aboveground carbon was 60% for this study. The result of the study is higher

than what was reported by Gizachew et al.[17]  who reported a correlation

coefficient of 0.50. The observed variation could stem from variances in the tree

species found within the forest estate, as the level of reflectance is primarily

influenced by leaf structure and the quantity of intercellular space within the

leaves[17][18]. Logarithmic transformation was applied to models using EVI as the

independent variable to predict AGC, and the outcome of this investigation aligns

with the findings of certain authors who identified logarithmic transformation

as the optimal approach when constructing biomass and carbon models[5][2].
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Spatial Distribution of Carbon with Spectral Indices Model

The aboveground carbon value obtained for this study is higher than the

findings of Adeniyi and Ajayi,[2]  who reported a mean aboveground carbon of

81.20 t/ha in Omo Biosphere Reserve. In addition, the result of this study is

higher than the findings of authors (e.g. [6][17]). This study reported 80±7 t/ha and

138 t/ha, respectively. Furthermore, the result of this study is higher than what

Vroh et al.[19] reported, 173.59 ± 50.85 t/ha for Yapo protected forest and 122.55 ±

15.84 t/ha as the above-ground biomass accumulation of Natural Voluntary

Reserve (NVR) forest. However, the carbon findings in this study exhibited a

favourable comparison with the report of Adewoye et al.[3]  who reported an

aboveground biomass of 300.10 t/ha, considering that this study applied a 50%

conversion of biomass to carbon. The differences and similarities in the findings

of these studies could be attributed to the methodologies utilized, as reported by

Oke et al.[20] and the biophysical characteristics of the forest landscape[21][4]. The

aboveground carbon distribution within Oluwa Forest Reserve was produced by

employing AGC values derived from plot data and spectral indices modelling.

The resulting map illustrates the variance in carbon accumulation within the

study area. Consequently, this research has shown areas with higher carbon

accumulation, providing valuable insights for forest managers regarding regions

with greater carbon sequestration potential within the forest reserve landscape.

Conclusions and Recommendations

This study was conducted to model and map the aboveground carbon content

within Oluwa Forest Reserve, utilizing a combination of forest inventory data

and Landsat imagery data through remote sensing techniques. Within this

research, the application of Landsat 8 data was explored to establish a

straightforward linear model, serving as the foundation for estimating carbon

stocks and mapping the spatial distribution. This study revealed the potential

capacity of the forest reserve to sequester carbon. It is, therefore, imperative to

manage this endowment properly to ensure the continuous provision of these

forest services.

This study specifically used a logarithmic model developed and adjudged the

best to create a distribution map of aboveground carbon in the study area.

Consequently, this study recommends that the allometric equation developed in

conjunction with the spectral index be used to estimate the aboveground carbon

content of Oluwa Forest Reserve with a satisfactory level of accuracy and a 94%

confidence level.
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