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This study was conducted in Oluwa Forest Reserve to assess and predict its aboveground carbon

sequestration potentials using LandSat Thematic Mapper data. The Oluwa Forest Reserve, Ondo State,

Nigeria, is recognized for its rich biodiversity and extensive size. To estimate its forest aboveground

biomass and carbon should be complex and costly endeavour requiring the expertise of various

professionals and equipment. Consequently, this study explored the use of Geographic Information

System (GIS) and Remote Sensing (RS) technology using LandSat bands to estimate spectral indices in

�tting linear models to predict the aboveground carbon sequestration potentials of the tropical

rainforest ecosystem of Oluwa Forest Reserve. The observed aboveground carbon from sample plots

and the estimated spectral indices were used to model the spread of aboveground carbon of Oluwa

Forest Reserve. Positive linear relationship exists between the observed and the spectral indices data

estimated. Therefore, linear models were �tted and the best-�t was determined using statistical

measures. The aboveground carbon average estimated from the sample plots and the predicted were

150.70 t/ha and 149.80 t/ha, respectively. The coef�cient of determination 94% and Root Mean Square

Error = 6.38E-16, respectively were obtained statistically. The chosen model predicts the aboveground

carbon spread of Oluwa Forest Reserve adequately. The study revealed that spectral data, GIS and RS

are critical for large forest aboveground carbon modelling and mapping for ef�ciency.
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Introduction

Tropical rainforest ecosystems possess substantial stores of carbon, both aboveground and belowground

(Yadav et al. 2022). Typically, these carbon reservoirs are held in the form of biomass found in various

components such as tree trunks, roots, woody vegetation, organic matter in the soil, and litter on the

forest �oor. Among these components, the aboveground biomass of living trees contains the most

extensive carbon stock (Adeniyi and Ajayi, 2017). It is also the component that is directly impacted by

activities related to forest degradation and deforestation (Adewoye et al. 2015). This has sparked an

interest in forest management for global climate mitigation, focusing on the estimation of carbon stock

within forests (Akhlaq et al. 2015; Adeniyi and Ajayi, 2017). Within the tropical rainforest ecosystem, it is

established that approximately 50% of tree biomass consists of carbon, primarily stored within the

aboveground biomass of trees (Adewoye et al. 2015). As a result, the measurement of aboveground carbon

stock play pivotal roles in obtaining precise estimates of forest carbon stocks for the United Nations'

Reducing Emissions from Deforestation and Forest Degradation (UN-REDD) program, which focuses on

measurement, reporting, and veri�cation of forest carbon.

Various methods have been employed to estimate the aboveground biomass of tropical rainforests,

including �eld-based inventory (both direct and indirect approaches), remote sensing, and the use of

allometric equations. Among these methods, the direct �eld inventory is widely regarded as the most

accurate for estimating aboveground biomass and carbon stock. However, it's worth noting that this

method is time-consuming, labour-intensive, and expensive (Onyekwelu, 2004; Adewoye et al. 2015;

Adeniyi and Ajayi, 2017). Nonetheless, remote sensing, which is an indirect method, is typically applied to

extensive land areas and provides the potential for assessing forest carbon stocks through satellite data,

as demonstrated by Baccini et al. in (2008). But, the accuracy and reliability of the results depend on the

availability of ground-based inventory data (Adewoye et al. 2015).

Estimations and mapping of aboveground carbon using remote sensing data commonly involve the

correlation of ground-based inventory data with spectral re�ectance, including vegetation indices such

as the Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and

Enhanced Vegetation Index (EVI), etc (Sarker and Nichol, 2011). Despite this, challenges related to data

saturation can arise when utilizing remote sensing imagery for aboveground carbon modelling in

tropical rainforests, particularly in areas with substantial biomass but can be amended (Foody et al. 2003;

Adewoye et al. 2015; Adeniyi and Ajayi, 2017).
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The primary objective of this study is to evaluate the carbon stocks present in the Oluwa Forest Reserve

and employ remote sensing data to model and create a comprehensive map illustrating the forest

reserve's carbon sequestration potential. The goal is to precisely depict the distribution of carbon based

on the most strongly correlated spectral index re�ectance values. By amalgamating precise �eld

inventory data with remote sensing information, we developed a highly accurate and dependable model

for assessing carbon sequestration potential of Oluwa Forest Reserve. This method is crucial for

reporting of forest carbon to the Clean Development Mechanism (CDM) under the Kyoto Protocol of the

United Nations Framework Convention on Climate Change, as it enhance understanding of carbon

balance within the forest ecosystems (Akhlaq et al. 2015; Adeniyi and Ajayi, 2017).

Study Area

This study was carried out in Oluwa Forest Reserve, Ondo State, Nigeria. This forest reserve is situated in

Odigbo Local Government Area of Ondo State, Nigeria and lies between Latitude 6° 38' 24'' - 6° 57' 36'' N

and Longitude 4° 28' 48'' - 4° 52' 48'' E and covers an area of 829 km2. Annual rainfall in Oluwa Forest

Reserve ranged between 1700 and 2200 mm with mean annual temperature of 26°C (Ogunjemite and

Olaniyi, 2012). The relative humidity is high and uniform, ranged between 75% and 95%. Oluwa Forest

Reserve soils are predominantly ferruginous tropical, typical of the variety found in intensively

weathered areas of the rainforest ecosystem of South-western, Nigeria. The soils are well-drained,

mature, red, stony and gravely in upper parts of the sequence (Ogunjemite and Olaniyi, 2012). Again,

Onyekwelu et al. (2008) reported that Oluwa Forest Reserve has a texture of topsoil with mainly sandy

loam. The vegetation of the reserve belongs to tropical rainforest with species such as Melicia excelsa,

Terminalia superba and Triplochiton scleroxylon, etc.

Ground-based Biomass and Carbon Assessment

The materials used for this study include girth tape, meter tape, compass, ranging poles, �agging tape,

Global Positioning System (GPS), relaskop and recording sheet. The girth tape was used to measure the

Diameter at Breast Height (Dbh) and diameter at the base of trees. The metre tape, compass, �agging tape

and ranging pole were used to lay temporary plots. Relaskop was used to measure upper diameters, and

the tree height.

qeios.com doi.org/10.32388/EBUPOF 3

https://www.qeios.com/
https://doi.org/10.32388/EBUPOF


Plot layout and selection

Square grids of 30 m x 30 m was created in ArcGIS and overlaid on the shape�le of study area. Grids that

fell out from the boundary of the shape�le were removed and the remaining grids were numbered.

Twenty (20) grids were randomly selected from the forest reserve shape�le and laid as temporary sample

plots for data collection purpose using the southwest corner coordinates value as starting point.

Data Collection

All the tree species within the sample plot with Dbh ≥10 cm were measured. Stems with forked or

branched at Dbh point or below were considered as two individual trees as report by Ibrahim et al. (2018).

In the plots, the trees were identi�ed by forest taxonomist and their scienti�c names recorded.

Measurements was restricted to the following tree variables; Dbh, diameter at the base (Db), diameter at

the middle (Dm), diameter at the top (Dt) and tree height.

Wood Density

Tree species densities were obtained from literatures (African wood density and International Council for

Research in Agroforestry databases). The forest reserve mean density was adopted for trees that the

density was not found from the density database.

Methods and Data Analysis

Volume Estimation

The Newton’s formula was used to estimate the tree species volumes for this study (Equation 1).

Where:

Volume = Volume of tree (m3),  , h = Tree height (m), Db = Diameter at the base (m), Dm =

Diameter at the middle (m), Dt = Diameter at the top (m).

 Volume  = ( + 4 + )
πh
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D

2
b

D
2
m D

2
t

(Equation 1)

π = 3.142
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Estimation of biomass

Biomass of each tree was estimated using the volume and density as obtained for respective tree species

and Equation 2 was employed.

Estimation of Carbon

Tree biomass obtained in Equation 2 was used to estimate carbon stock for each tree. The standard

multiple factor of 0.5 was used for conversion of biomass to carbon stock (Equation 3) as adopted by Losi

et al. (2003).

GIS and Remote Sensing Biomass/Carbon Mapping

The plot biomass/carbon values obtained from the ground-based assessment were correlated with the

spectral indices values calculated from the respective points of the corresponding plots as used for this

study.

Spectral indices Extractions

Four (4) spectral indices (Table 1) were selected for this study because they indicate one biophysical

characteristic or the other and conditions of vegetation as re�ected as true nature depict. These four

spectral indices are; Normalised Difference Vegetation Index (NDVI), Greenness Normalised Difference

Vegetation Index (GNDVI), Soil Adjusted Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI).

These spectral indices represent quanti�cation of vegetation as well as vegetation greenness (Adeniyi

and Ajayi, 2017). In addition, these various spectral indices have statistical correlation with

biomass/carbon data (Deo 2008).

 Biomass  =  Density  ×  Volume  (Equation 2)

 Carbon  = 0.5 ×  Biomas  (Equation 3)
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Table 1. LandSat-derived spectral indices and their equations

Regression and Evaluation

The models employed in this study were constructed in a linear fashion, and this formation depended on

the data distribution observed in the scatter plots. To assess the performance of the model(s), various

statistical measures of goodness of �t were utilized, including Root Mean Square Error (RMSE),

coef�cient of determination (R2), and residuals, among others.

The most strongly correlated spectral indices were selected as independent variables to predict the

aboveground carbon content within the study area. Furthermore, the chosen model was applied to create

a spatial distribution of aboveground carbon within the study area.

Results

The values of aboveground biomass and carbon vary across the plots. Plot 2 had the highest aboveground

carbon with 195.31 t/ha, followed by plot 9 with 185.54 t/ha. The lowest plot aboveground carbon was

recorded for plot 20 with 118.98 t/ha (Table 2).
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Plot Number Observed Aboveground Carbon (t/ha) Predicted Aboveground Carbon (t/ha)

1 143.47 153.41

2 195.31 165.32

3 127.09 134.75

4 136.55 144.35

5 135.41 153.48

6 138.78 141.39

7 122.85 112.43

8 146.31 138.41

9 185.54 178.44

10 121.77 122.34

11 171.45 183.45

12 160.31 149.21

13 185.43 147.38

14 170.16 190.01

15 125.94 115.64

16 174.37 169.74

17 158.22 161.81

18 155.81 167.21

19 140.33 138.98

20 118.98 128.18

Mean 150.704 149.797

Table 2. Plots aboveground carbon (AGC)
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Modelling Using Geographic Information System and Remote Sensing

There were moderate correlations observed between the recorded aboveground carbon (AGC) data and

some of the spectral indices, ranging from 0.29 to 0.60 within the Oluwa Forest Reserve. However, a

majority of the calculated spectral indices exhibited strong correlations with the observed AGC,

surpassing the 0.5 threshold, indicating robust linear relationships among them. Worthy of note, the

Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), and Green Normalized

Difference Vegetation Index (GNDVI) showed the highest correlations with the observed AGC values for

the Oluwa Forest Reserve. Consequently, these spectral indices were selected as candidates for

explanatory variables (as shown in Table 3).

However, only EVI exhibited a high level of signi�cance in model construction, particularly when applied

to transformed AGC data. Among the various models developed, a logarithmically transformed model

with a single explanatory variable (EVI) was judged the most suitable for the study. This decision was

based on the model's simplicity, signi�cance, and its alignment with other prede�ned criteria.

To verify the predictive capacity and accuracy of the chosen model, a comparison was made between the

generated data and the observed data, as well as an analysis of the residual plot distributions. Among the

models evaluated, model number 4, emerged as the best spectral model, achieving a coef�cient of

determination (R2) value of 0.94. This indicates that the selected model can predict the aboveground

carbon content of the Oluwa Forest Reserve with a high level of accuracy, estimated at 94%.

No. MODEL R2 AdjR2 RMSE SIG.

1 AGC = 12.06 + 21.64 (EVI) - 102.94 (GNDVI) + 5.44 (NDWI) 0.93 0.92 1.25E-15 *

2 LnAGC = 2.98 + 5.46 (EVI) - 24.96 (GNDVI) + 2.29 (NDWI) 0.93 0.92 9.16E-16 *

3 AGC = 6.76 + 13.81 (EVI) 0.93 0.92 5.55E-16 ***

4 LnAGC = 2.24 + 4.38 (EVI) 0.94 0.94 6.38E-16 ***

Table 3. AGC Spectral Indices Models
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Spatial Distribution of AGC

The aboveground carbon (AGC) values, derived from the spectral indices model within the study area,

were utilized to create a spatial distribution map of aboveground carbon in the study area. The chosen

spectral indices model yielded AGC estimates for the forest reserve that exhibited minor differences

when compared to the observed values, and these differences were not statistically signi�cant (P < 0.05).

Speci�cally, the selected spectral indices model estimated the average aboveground carbon to be

approximately 149.80 metric tons per hectare, while the observed AGC was 150.70 metric tons per hectare.

Using these AGC values from the model, an AGC map of the Oluwa Forest Reserve was generated. The

colours on the map corresponded to the AGC content as predicted by the model, with green indicating

higher carbon content and decreases as carbon content decreased (Fig. 1).

This study harnessed Landsat 8 Thematic Mapper data to develop a straightforward linear model, and

employed to map the spatial distribution of aboveground carbon within the forest reserve. The

logarithmically transformed data with a single explanatory variable (the spectral index) was identi�ed as

the most suitable for this study.

Additionally, an allometric equation, incorporated with spectral indices data as explanatory variables,

was re-presented as Equation 4 for this study. Consequently, this allometric equation is recommended for

accurately predicting aboveground carbon in the Oluwa Forest Reserve and other forest reserves sharing

similar characteristics.

LnAGC = 2.24 + 4.38(EV I) (Equation 4)
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Fig. 1: Spatial distribution of aboveground Carbon of Oluwa Forest Reserve

Discussions

The density of green leaves, which represents the carbon accumulation of trees in optical sensors, is

determined by the ratio and quantity of chlorophyll within the leaves, as well as the re�ection of near-

infrared (NIR) radiation and the absorption of red radiation (Ji et al. 2009; Adeniyi and Ajayi, 2017). The

spectral indices model with the highest coef�cient of determination (R2) value, measuring 0.94, was

adjudged to be the most suitable for the study area. This �nding aligns with the results of Adewoye et al.

(2015), who reported a coef�cient of determination (R2) of 0.936 in their study titled "Estimating

Aboveground Biomass of the Afromontane Forests of Mambilla Plateau Using Quickbird and in Situ

Forest Inventory Data". The model featuring EVI as the explanatory variable demonstrated the most

effective predictive capacity, producing results that closely aligned with the observed data, with no

signi�cant differences noted. This outcome is in line with the conclusions drawn by Gizachew et al.

(2016) in their paper titled "Mapping and Estimating the Total Living Biomass and Carbon in Low-
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Biomass Woodlands using Landsat 8 CDR Data." In their study, they also found that spectral indices

models were pro�cient in predicting biomass and carbon. The correlation of EVI to aboveground carbon

was 60% for this study. The result of the study is higher than what was reported by Gizachew et al. (2016)

who reported correlation coef�cient of 0.50. The observed variation could stem from variances in the tree

species found within the forest estate, as the level of re�ectance is primarily in�uenced by leaf structure

and the quantity of intercellular space within the leaves (Itkonen, 2012; Gizachew et al. 2016; Dupiau et al.

2022). Logarithmic transformation was applied to models using EVI as the independent variable to

predict AGC and the outcome of this investigation align with the �ndings of certain authors who

identi�ed logarithmic transformation as the optimal approach when constructing biomass and carbon

models (Onyekwelu, 2004; Adeniyi and Ajayi, 2017).

Spatial Distribution of Carbon with Spectral Indices Model

The aboveground carbon value obtained for this study is higher than the �ndings of Adeniyi and Ajayi,

(2017) who reported mean aboveground carbon of 81.20 t/ha in Omo Biosphere Reserve. In addition, the

result of this study is higher than the �ndings of authors (e.g. Baccini et al. 2008; Gizachew et al. 2016).

These study reported 80±7 t/ha and 138 t/ha, respectively. Furthermore, the result of this study is higher

than what Vroh et al. (2015) who reported 173.59 ± 50.85 t/ha for Yapo protected forest and 122.55 ± 15.84

t/ha as the above-ground biomass accumulation of Natural Voluntary Reserve (NVR) forest. However, the

carbon �ndings in this study exhibited a favorable comparison with the report of Adewoye et al. (2015),

who reported an aboveground biomass of 300.10 t/ha, considering that this study applied a 50%

conversion of biomass to carbon. The differences and similarities in the �ndings of these studies could be

attributed to the methodologies utilized as reported by Oke et al. (2020) and biophysical characteristics of

the forest landscape (Petrokofsky et al. 2012; Akhlaq et al. 2015). The aboveground carbon distribution

within Oluwa Forest Reserve was produced by employing AGC values derived from plot data and spectral

indices modelling. The resulting map illustrates the variance in carbon accumulation within the study

area. Consequently, this research has showed areas with higher carbon accumulation, providing valuable

insights for forest managers regarding regions with greater carbon sequestration potential within the

forest reserve landscape.
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Conclusion and Recommendation

This study was conducted to model and map the aboveground carbon content within Oluwa Forest

Reserve, utilizing a combination of forest inventory data and Landsat imagery data through remote

sensing techniques. Within this research, the application of Landsat 8 data was explored to establish a

straightforward linear model, serving as the foundation for estimating carbon stocks, and map the

spatial distribution.

This study speci�cally used logarithmic model developed and adjudged the best to create distribution

map of aboveground carbon in the study area. Consequently, this approach suggests that the allometric

equation developed in conjunction with the spectral index can be effectively utilized to estimate the

aboveground carbon content of Oluwa Forest Reserve with a satisfactory level of accuracy with 94%

con�dence level. Hence, the study recommend the adoption of this equation for the study area and other

forest reserves sharing similar characteristics.
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