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This study was conducted in Oluwa Forest Reserve to assess and predict its

aboveground carbon sequestration potentials using LandSat Thematic Mapper

data. The Oluwa Forest Reserve, Ondo State, Nigeria, is recognized for its rich

biodiversity and extensive size. To estimate its forest aboveground biomass

and carbon should be complex and costly endeavour requiring the expertise of

various professionals and equipment. Consequently, this study explored the

use of Geographic Information System (GIS) and Remote Sensing (RS)

technology using LandSat bands to estimate spectral indices in �tting linear

models to predict the aboveground carbon sequestration potentials of the

tropical rainforest ecosystem of Oluwa Forest Reserve. The observed

aboveground carbon from sample plots and the estimated spectral indices

were used to model the spread of aboveground carbon of Oluwa Forest Reserve.

Positive linear relationship exists between the observed and the spectral

indices data estimated. Therefore, linear models were �tted and the best-�t

was determined using statistical measures. The aboveground carbon average

estimated from the sample plots and the predicted were 150.70 t/ha and 149.80

t/ha, respectively. The coef�cient of determination 94% and Root Mean Square

Error = 6.38E-16, respectively were obtained statistically. The chosen model

predicts the aboveground carbon spread of Oluwa Forest Reserve adequately.

The study revealed that spectral data, GIS and RS are critical for large forest

aboveground carbon modelling and mapping for ef�ciency.
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Introduction

Tropical rainforest ecosystems possess substantial

stores of carbon, both aboveground and belowground

(Yadav et al. 2022). Typically, these carbon reservoirs are

held in the form of biomass found in various

components such as tree trunks, roots, woody

vegetation, organic matter in the soil, and litter on the

forest �oor. Among these components, the

aboveground biomass of living trees contains the most

extensive carbon stock (Adeniyi and Ajayi, 2017). It is

also the component that is directly impacted by

activities related to forest degradation and

deforestation (Adewoye et al. 2015). This has sparked an

interest in forest management for global climate

mitigation, focusing on the estimation of carbon stock

within forests (Akhlaq et al. 2015; Adeniyi and Ajayi,

2017). Within the tropical rainforest ecosystem, it is

established that approximately 50% of tree biomass

consists of carbon, primarily stored within the

aboveground biomass of trees (Adewoye et al. 2015). As
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a result, the measurement of aboveground carbon stock

play pivotal roles in obtaining precise estimates of

forest carbon stocks for the United Nations' Reducing

Emissions from Deforestation and Forest Degradation

(UN-REDD) program, which focuses on measurement,

reporting, and veri�cation of forest carbon.

Various methods have been employed to estimate the

aboveground biomass of tropical rainforests, including

�eld-based inventory (both direct and indirect

approaches), remote sensing, and the use of allometric

equations. Among these methods, the direct �eld

inventory is widely regarded as the most accurate for

estimating aboveground biomass and carbon stock.

However, it's worth noting that this method is time-

consuming, labour-intensive, and expensive

(Onyekwelu, 2004; Adewoye et al. 2015; Adeniyi and

Ajayi, 2017). Nonetheless, remote sensing, which is an

indirect method, is typically applied to extensive land

areas and provides the potential for assessing forest

carbon stocks through satellite data, as demonstrated

by Baccini et al. in (2008). But, the accuracy and

reliability of the results depend on the availability of

ground-based inventory data (Adewoye et al. 2015).

Estimations and mapping of aboveground carbon using

remote sensing data commonly involve the correlation

of ground-based inventory data with spectral

re�ectance, including vegetation indices such as the

Normalized Difference Vegetation Index (NDVI), Soil-

Adjusted Vegetation Index (SAVI), and Enhanced

Vegetation Index (EVI), etc (Sarker and Nichol, 2011).

Despite this, challenges related to data saturation can

arise when utilizing remote sensing imagery for

aboveground carbon modelling in tropical rainforests,

particularly in areas with substantial biomass but can

be amended (Foody et al. 2003; Adewoye et al. 2015;

Adeniyi and Ajayi, 2017).

The primary objective of this study is to evaluate the

carbon stocks present in the Oluwa Forest Reserve and

employ remote sensing data to model and create a

comprehensive map illustrating the forest reserve's

carbon sequestration potential. The goal is to precisely

depict the distribution of carbon based on the most

strongly correlated spectral index re�ectance values. By

amalgamating precise �eld inventory data with remote

sensing information, we developed a highly accurate

and dependable model for assessing carbon

sequestration potential of Oluwa Forest Reserve. This

method is crucial for reporting of forest carbon to the

Clean Development Mechanism (CDM) under the Kyoto

Protocol of the United Nations Framework Convention

on Climate Change, as it enhance understanding of

carbon balance within the forest ecosystems (Akhlaq et

al. 2015; Adeniyi and Ajayi, 2017).

Study Area

This study was carried out in Oluwa Forest Reserve,

Ondo State, Nigeria. This forest reserve is situated in

Odigbo Local Government Area of Ondo State, Nigeria

and lies between Latitude 6° 38' 24'' - 6° 57' 36'' N and

Longitude 4° 28' 48'' - 4° 52' 48'' E and covers an area of

829 km2. Annual rainfall in Oluwa Forest Reserve

ranged between 1700 and 2200 mm with mean annual

temperature of 26°C (Ogunjemite and Olaniyi, 2012). The

relative humidity is high and uniform, ranged between

75% and 95%. Oluwa Forest Reserve soils are

predominantly ferruginous tropical, typical of the

variety found in intensively weathered areas of the

rainforest ecosystem of South-western, Nigeria. The

soils are well-drained, mature, red, stony and gravely in

upper parts of the sequence (Ogunjemite and Olaniyi,

2012). Again, Onyekwelu et al. (2008) reported that

Oluwa Forest Reserve has a texture of topsoil with

mainly sandy loam. The vegetation of the reserve

belongs to tropical rainforest with species such as

Melicia excelsa, Terminalia superba and Triplochiton

scleroxylon, etc.

Ground-based Biomass and Carbon

Assessment

The materials used for this study include girth tape,

meter tape, compass, ranging poles, �agging tape,

Global Positioning System (GPS), relaskop and

recording sheet. The girth tape was used to measure the

Diameter at Breast Height (Dbh) and diameter at the

base of trees. The metre tape, compass, �agging tape

and ranging pole were used to lay temporary plots.

Relaskop was used to measure upper diameters, and the

tree height.

Plot layout and selection

Square grids of 30 m x 30 m was created in ArcGIS and

overlaid on the shape�le of study area. Grids that fell

out from the boundary of the shape�le were removed

and the remaining grids were numbered. Twenty (20)

grids were randomly selected from the forest reserve

shape�le and laid as temporary sample plots for data

collection purpose using the southwest corner

coordinates value as starting point.
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Data Collection

All the tree species within the sample plot with Dbh ≥10

cm were measured. Stems with forked or branched at

Dbh point or below were considered as two individual

trees as report by Ibrahim et al. (2018). In the plots, the

trees were identi�ed by forest taxonomist and their

scienti�c names recorded. Measurements was

restricted to the following tree variables; Dbh, diameter

at the base (Db), diameter at the middle (Dm), diameter

at the top (Dt) and tree height.

Wood Density

Tree species densities were obtained from literatures

(African wood density and International Council for

Research in Agroforestry databases). The forest reserve

mean density was adopted for trees that the density

was not found from the density database.

Methods and Data Analysis

Volume Estimation

The Newton’s formula was used to estimate the tree

species volumes for this study (Equation 1).
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Where:

Volume = Volume of tree (m3),  , h = Tree

height (m), Db = Diameter at the base (m), Dm =

Diameter at the middle (m), Dt = Diameter at the top

(m).

Estimation of biomass

Biomass of each tree was estimated using the volume

and density as obtained for respective tree species and

Equation 2 was employed.

 Volume  = ( + 4 + )
πh

24
D

2
b

D
2
m D

2
t

(Equation 1)

π = 3.142
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Estimation of Carbon

Tree biomass obtained in Equation 2 was used to

estimate carbon stock for each tree. The standard

multiple factor of 0.5 was used for conversion of

biomass to carbon stock (Equation 3) as adopted by Losi

et al. (2003).

GIS and Remote Sensing Biomass/Carbon

Mapping

The plot biomass/carbon values obtained from the

ground-based assessment were correlated with the

spectral indices values calculated from the respective

points of the corresponding plots as used for this study.

Spectral indices Extractions

Four (4) spectral indices (Table 1) were selected for this

study because they indicate one biophysical

characteristic or the other and conditions of vegetation

as re�ected as true nature depict. These four spectral

indices are; Normalised Difference Vegetation Index

(NDVI), Greenness Normalised Difference Vegetation

Index (GNDVI), Soil Adjusted Vegetation Index (SAVI)

and Enhanced Vegetation Index (EVI). These spectral

indices represent quanti�cation of vegetation as well as

vegetation greenness (Adeniyi and Ajayi, 2017). In

addition, these various spectral indices have statistical

correlation with biomass/carbon data (Deo 2008).

Table 1. LandSat-derived spectral indices and their

equations

Regression and Evaluation

The models employed in this study were constructed in

a linear fashion, and this formation depended on the

data distribution observed in the scatter plots. To assess

the performance of the model(s), various statistical

measures of goodness of �t were utilized, including

Root Mean Square Error (RMSE), coef�cient of

determination (R2), and residuals, among others.

The most strongly correlated spectral indices were

selected as independent variables to predict the

aboveground carbon content within the study area.

Furthermore, the chosen model was applied to create a

spatial distribution of aboveground carbon within the

study area.

Results

The values of aboveground biomass and carbon vary

across the plots. Plot 2 had the highest aboveground

carbon with 195.31 t/ha, followed by plot 9 with 185.54

t/ha. The lowest plot aboveground carbon was recorded

for plot 20 with 118.98 t/ha (Table 2).

 Biomass  =  Density  ×  Volume  (Equation 2)

 Carbon  = 0.5 ×  Biomas  (Equation 3)
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Plot Number Observed Aboveground Carbon (t/ha) Predicted Aboveground Carbon (t/ha)

1 143.47 153.41

2 195.31 165.32

3 127.09 134.75

4 136.55 144.35

5 135.41 153.48

6 138.78 141.39

7 122.85 112.43

8 146.31 138.41

9 185.54 178.44

10 121.77 122.34

11 171.45 183.45

12 160.31 149.21

13 185.43 147.38

14 170.16 190.01

15 125.94 115.64

16 174.37 169.74

17 158.22 161.81

18 155.81 167.21

19 140.33 138.98

20 118.98 128.18

Mean 150.704 149.797

Table 2. Plots aboveground carbon (AGC)

Modelling Using Geographic Information System

and Remote Sensing

There were moderate correlations observed between

the recorded aboveground carbon (AGC) data and some

of the spectral indices, ranging from 0.29 to 0.60 within

the Oluwa Forest Reserve. However, a majority of the

calculated spectral indices exhibited strong correlations

with the observed AGC, surpassing the 0.5 threshold,

indicating robust linear relationships among them.

Worthy of note, the Enhanced Vegetation Index (EVI),

Normalized Difference Vegetation Index (NDVI), and

Green Normalized Difference Vegetation Index (GNDVI)

showed the highest correlations with the observed AGC

values for the Oluwa Forest Reserve. Consequently,

these spectral indices were selected as candidates for

explanatory variables (as shown in Table 3).

However, only EVI exhibited a high level of signi�cance

in model construction, particularly when applied to

transformed AGC data. Among the various models

developed, a logarithmically transformed model with a

single explanatory variable (EVI) was judged the most

suitable for the study. This decision was based on the

model's simplicity, signi�cance, and its alignment with

other prede�ned criteria.

To verify the predictive capacity and accuracy of the

chosen model, a comparison was made between the

generated data and the observed data, as well as an
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analysis of the residual plot distributions. Among the

models evaluated, model number 4, emerged as the best

spectral model, achieving a coef�cient of determination

(R2) value of 0.94. This indicates that the selected model

can predict the aboveground carbon content of the

Oluwa Forest Reserve with a high level of accuracy,

estimated at 94%.
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No. MODEL R2 AdjR2 RMSE SIG.

1 AGC = 12.06 + 21.64 (EVI) - 102.94 (GNDVI) + 5.44 (NDWI) 0.93 0.92 1.25E-15 *

2 LnAGC = 2.98 + 5.46 (EVI) - 24.96 (GNDVI) + 2.29 (NDWI) 0.93 0.92 9.16E-16 *

3 AGC = 6.76 + 13.81 (EVI) 0.93 0.92 5.55E-16 ***

4 LnAGC = 2.24 + 4.38 (EVI) 0.94 0.94 6.38E-16 ***

Table 3. AGC Spectral Indices Models

Spatial Distribution of AGC

The aboveground carbon (AGC) values, derived from

the spectral indices model within the study area, were

utilized to create a spatial distribution map of

aboveground carbon in the study area. The chosen

spectral indices model yielded AGC estimates for the

forest reserve that exhibited minor differences when

compared to the observed values, and these differences

were not statistically signi�cant (P < 0.05).

Speci�cally, the selected spectral indices model

estimated the average aboveground carbon to be

approximately 149.80 metric tons per hectare, while the

observed AGC was 150.70 metric tons per hectare. Using

these AGC values from the model, an AGC map of the

Oluwa Forest Reserve was generated. The colours on the

map corresponded to the AGC content as predicted by

the model, with green indicating higher carbon content

and decreases as carbon content decreased (Fig. 1).

This study harnessed Landsat 8 Thematic Mapper data

to develop a straightforward linear model, and

employed to map the spatial distribution of

aboveground carbon within the forest reserve. The

logarithmically transformed data with a single

explanatory variable (the spectral index) was identi�ed

as the most suitable for this study.

Additionally, an allometric equation, incorporated with

spectral indices data as explanatory variables, was re-

presented as Equation 4 for this study. Consequently,

this allometric equation is recommended for accurately

predicting aboveground carbon in the Oluwa Forest

Reserve and other forest reserves sharing similar

characteristics.

Fig. 1: Spatial distribution of aboveground Carbon of

Oluwa Forest Reserve

Discussions

The density of green leaves, which represents the

carbon accumulation of trees in optical sensors, is

determined by the ratio and quantity of chlorophyll

within the leaves, as well as the re�ection of near-

infrared (NIR) radiation and the absorption of red

radiation (Ji et al. 2009; Adeniyi and Ajayi, 2017). The

spectral indices model with the highest coef�cient of

determination (R2) value, measuring 0.94, was adjudged

to be the most suitable for the study area. This �nding

aligns with the results of Adewoye et al. (2015), who

reported a coef�cient of determination (R2) of 0.936 in

their study titled "Estimating Aboveground Biomass of

the Afromontane Forests of Mambilla Plateau Using

Quickbird and in Situ Forest Inventory Data". The model

featuring EVI as the explanatory variable demonstrated

the most effective predictive capacity, producing results

that closely aligned with the observed data, with no

LnAGC = 2.24 + 4.38(EV I) (Equation 4)
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signi�cant differences noted. This outcome is in line

with the conclusions drawn by Gizachew et al. (2016) in

their paper titled "Mapping and Estimating the Total

Living Biomass and Carbon in Low-Biomass Woodlands

using Landsat 8 CDR Data." In their study, they also

found that spectral indices models were pro�cient in

predicting biomass and carbon. The correlation of EVI

to aboveground carbon was 60% for this study. The

result of the study is higher than what was reported by

Gizachew et al. (2016) who reported correlation

coef�cient of 0.50. The observed variation could stem

from variances in the tree species found within the

forest estate, as the level of re�ectance is primarily

in�uenced by leaf structure and the quantity of

intercellular space within the leaves (Itkonen, 2012;

Gizachew et al. 2016; Dupiau et al. 2022). Logarithmic

transformation was applied to models using EVI as the

independent variable to predict AGC and the outcome of

this investigation align with the �ndings of certain

authors who identi�ed logarithmic transformation as

the optimal approach when constructing biomass and

carbon models (Onyekwelu, 2004; Adeniyi and Ajayi,

2017).

Spatial Distribution of Carbon with

Spectral Indices Model

The aboveground carbon value obtained for this study

is higher than the �ndings of Adeniyi and Ajayi, (2017)

who reported mean aboveground carbon of 81.20 t/ha in

Omo Biosphere Reserve. In addition, the result of this

study is higher than the �ndings of authors (e.g. Baccini

et al. 2008; Gizachew et al. 2016). These study reported

80±7 t/ha and 138 t/ha, respectively. Furthermore, the

result of this study is higher than what Vroh et al. (2015)

who reported 173.59 ± 50.85 t/ha for Yapo protected

forest and 122.55 ± 15.84 t/ha as the above-ground

biomass accumulation of Natural Voluntary Reserve

(NVR) forest. However, the carbon �ndings in this study

exhibited a favorable comparison with the report of

Adewoye et al. (2015), who reported an aboveground

biomass of 300.10 t/ha, considering that this study

applied a 50% conversion of biomass to carbon. The

differences and similarities in the �ndings of these

studies could be attributed to the methodologies

utilized as reported by Oke et al. (2020) and biophysical

characteristics of the forest landscape (Petrokofsky et

al. 2012; Akhlaq et al. 2015). The aboveground carbon

distribution within Oluwa Forest Reserve was produced

by employing AGC values derived from plot data and

spectral indices modelling. The resulting map

illustrates the variance in carbon accumulation within

the study area. Consequently, this research has showed

areas with higher carbon accumulation, providing

valuable insights for forest managers regarding regions

with greater carbon sequestration potential within the

forest reserve landscape.

Conclusion and Recommendation

This study was conducted to model and map the

aboveground carbon content within Oluwa Forest

Reserve, utilizing a combination of forest inventory

data and Landsat imagery data through remote sensing

techniques. Within this research, the application of

Landsat 8 data was explored to establish a

straightforward linear model, serving as the foundation

for estimating carbon stocks, and map the spatial

distribution.

This study speci�cally used logarithmic model

developed and adjudged the best to create distribution

map of aboveground carbon in the study area.

Consequently, this approach suggests that the

allometric equation developed in conjunction with the

spectral index can be effectively utilized to estimate the

aboveground carbon content of Oluwa Forest Reserve

with a satisfactory level of accuracy with 94%

con�dence level. Hence, the study recommend the

adoption of this equation for the study area and other

forest reserves sharing similar characteristics.
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