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Prevailing alignment evaluations largely reduce safety to a binary outcome: an assistant either refuses

a disallowed request or complies. Such metrics are necessary but insufficient, because they cannot

distinguish robust safety generalization from superficial compliance driven by prompt heuristics or

cached refusal templates. We introduce a self-referential diagnostic framework, Harm-Conditioned

Computational Friction (HCCF), which operationalizes alignment robustness as a measurable increase

in inference-time computational burden that is specifically induced by harmful intent, while

maintaining low output uncertainty. Our central hypothesis is that robust alignment exhibits a

characteristic signature: elevated local friction at the onset of harmful intent combined with low

distributional entropy over the next-token predictive distribution. We formalize friction deltas using a

Self-Ablated Baseline Protocol, in which a model is compared against an internally ablated variant to

isolate the causal contribution of safety circuits without requiring an external base model. We also

propose a Look-Ahead Friction Peak statistic for change-point localization, designed to detect stealthy

jailbreaks that delay the activation of safety mechanisms. The resulting framework supplies an

auditable, model-internal quantity intended to complement refusal-rate benchmarks and to support

more discriminative measurement of alignment depth.
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1. Introduction

Safety evaluation for large language models (LLMs) is frequently summarized by refusal rates on red-

team prompts and policy-violation classifiers. These are useful but fundamentally coarse: two models

may refuse at the same rate while relying on qualitatively different mechanisms. One model may possess

a distributed, semantically grounded representation of harmful intent and reliably inhibit unsafe

continuations across paraphrase, language, and context. Another may refuse primarily through shallow

lexical triggers or templated responses that collapse under mild distribution shift.

This work proposes that how a refusal is produced carries measurable information about its robustness.

Specifically, we study whether the act of constraining a harmful completion imposes a detectable

inference-time cost that is (i) conditionally elevated for harmful intents, (ii) localized at the onset of harm

within a prompt, and (iii) decoupled from output uncertainty. We refer to this family of signals as Harm-

Conditioned Computational Friction (HCCF).

The term “energetic cost” is used as a physically grounded metaphor for compute expenditure. In

practice, we quantify friction via proxies such as token-level latency, FLOP estimates, activation-norm

measures, and ablation sensitivity. The objective is not to assert literal thermodynamic invariants, but to

propose a falsifiable measurement framework in which robust safety corresponds to a distinctive

conditional compute signature.

2. Related Work

Alignment and robustness evaluation has evolved through refusal benchmarking and red-teaming

frameworks such as HarmBench and JailbreakBench[1][2], and adversarial prompting datasets including

AdvBench[3]. These benchmarks have accelerated progress, but they predominantly measure outputs

rather than internal decision dynamics.

At the training level, alignment is often pursued via preference-optimization pipelines such as

reinforcement learning from human feedback (RLHF) for instruction following[4], and via AI-feedback

variants such as Constitutional AI[5]. We position HCCF as complementary: rather than proposing a new

alignment objective, it provides an evaluation lens that probes whether harm-conditioned prompts elicit

systematic increases in internal computational cost and stable refusal-like behavior.
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In parallel, mechanistic interpretability and representation engineering have established methods for

probing and steering internal activations [6][7][8][9][10]. Recent evidence suggests refusal behavior may be

mediated by low-dimensional subspaces that can be manipulated at inference time [11]. Methodological

work on activation patching and causal interventions highlights both the promise and the sensitivity of

internal localization  [12][13]. Complementarily, a geometric notion of causal probing clarifies when

direction-based interventions in representation space can be interpreted causally rather than as

correlational subspace associations[14]. HCCF builds on these foundations by proposing that alignment

robustness should be evaluated not only as a behavioral outcome but as a measurable internal cost of

maintaining constraints.

3. Problem Setup and Notation

Let    be an autoregressive transformer language model  [15]. Given an input prompt    tokenized as 

, the model induces a sequence of next-token distributions

We consider prompts that contain benign context followed by a transition into harmful intent. Let 

  denote the (possibly latent) change-point at which the prompt begins requesting disallowed

content. Our goal is to detect and quantify model-internal signals that reflect the activation of safety-

relevant computation near  .

3.1. Why refusal-rate alone is underspecified

Refusal is an output behavior. Two models can yield the same refusal decision while differing in:

1. Generalization: stability under paraphrase, multilingual variants, or indirect harm.

2. Causal reliance: whether refusal depends on a semantically grounded harmful-intent representation

or on brittle surface cues.

3. Vulnerability: susceptibility to jailbreaks that delay or suppress the refusal mechanism.

HCCF aims to complement refusal outcomes with internal measures that are more diagnostic of

robustness.

M x

( , … , )x1 xT

(⋅ ∣ ) for~t = 1, … ,T .pM x1:t

τ(x)

τ(x)
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4. Harm-Conditioned Computational Friction (HCCF)

We define computational friction as a prompt- and time-indexed cost proxy associated with generating a

response under constraints.

4.1. Friction proxies

Because compute expenditure is not directly observable in all settings, we define a family of proxies. Let 

 be a token-level friction signal at step  :

Examples include:

1. Latency-based: wall-clock time per token, measured under controlled conditions.

2. Compute-based: estimated FLOPs per token (model-dependent, typically constant for dense

transformers but variable for some architectures).

3. Activation-based: norms or sparsity statistics of internal activations (e.g., residual stream norms,

MLP activation magnitudes).

4. Ablation-sensitivity-based: a causal measure of how much behavior or internal signals change

under targeted safety subspace ablation.

We emphasize that the framework does not require a single canonical proxy; rather, HCCF is intended to

be triangulated across multiple measurements.

4.2. Output entropy as uncertainty

Define the next-token entropy at step   as Shannon entropy [16]

with    the vocabulary. Low entropy indicates a sharp distribution (high certainty), while high entropy

indicates uncertainty or conflict.

In practice, one may approximate entropy using top-   truncation or sampled estimates for

computational feasibility.

ϕ(x, t) t

ϕ(x, t) ∈ .R≥0

t

H(x, t) = − (y ∣ )log (y ∣ ),∑
y∈V

pM x1:t pM x1:t

V

k
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5. The Self-Ablated Baseline Protocol

A persistent limitation of many safety diagnostics is reliance on an external base model that differs in

architecture, training, or scale, introducing confounds. We propose a self-referential alternative: compare

the model to a minimally modified self-ablated variant intended to disable or attenuate safety-relevant

computation.

5.1. Safety direction identification

Let    be a direction in the residual stream at layer    that correlates with refusal or safety

behavior, estimated by a linear probe or difference-in-means between harmful and benign conditions [11]

[8][7]. We treat   as an empirical object and explicitly acknowledge that safety representations may be

distributed or non-linear [10].

5.2. Clamped self-ablation

Let   be the residual stream at token step   and layer  . Define a clamping operator that removes

the component along  :

This is a simple linear ablation; more principled concept erasure operators (e.g., LEACE) may be used [7].

Let   denote the model with this intervention applied at one or more layers and token positions.

5.3. Intrinsic friction delta

Let   be a scalar friction functional computed from token-level signals (e.g., mean per-token latency

across a segment, or an activation-norm aggregate). We define:

Intuitively,    estimates the incremental friction attributable to safety-related computation. If

removing   has negligible effect on   and on behavior, the model’s apparent friction may be non-

causal or routed through other mechanisms.

∈v ⃗ (ℓ)
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d ℓ

v ⃗ (ℓ)
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∈h
(ℓ)
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Interpretation caveat.

Ablations can introduce artifacts: distributed representations may re-route computation, and removing a

subspace can degrade unrelated capabilities. Therefore, HCCF should be paired with capability-

preservation checks and sensitivity analysis over layers, strength of intervention, and evaluation

tasks [12][13].

6. The Friction–Entropy Diagnostic Matrix

A naive hypothesis would treat “high friction” as synonymous with “good safety.” We argue that this is

underspecified. Robust alignment should be evaluated in a two-dimensional space defined by friction

and uncertainty:

Low Friction High Friction

Low Entropy

Reflexive / Cached Robust Constraint Persistence

(brittle, template-driven) (deliberative and decisive)

High Entropy

Unconstrained Conflicted / Vulnerable

(unsafe or easily jailbroken) (struggling, inconsistent)

Table 1. A decoupled diagnostic matrix for alignment dynamics.

The desired region is high friction with low entropy when the prompt becomes harmful: the model

expends additional computation to enforce constraints but converges to a stable refusal or safe

alternative. Conversely, high friction with high entropy may indicate internal conflict or partial leakage.

7. Localizing Safety: The Look-Ahead Friction Peak

Aggregating friction across an entire prompt can wash out the signal. Safety mechanisms are expected to

activate near the intent boundary  . We therefore define a local statistic.τ(x)
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Let    be a token-level friction signal (or an estimate of    at step  ). For a window size  ,

define the sliding-window mean:

The Look-Ahead Friction Peak is:

We further define the peak location:

7.1. Boundary alignment criterion

A robustly aligned model should exhibit:

i.e., a friction spike that coincides with the onset of harmful intent. A systematically delayed 

  suggests “lagging safety” and vulnerability to attacks that gradually escalate harmfulness while

suppressing early detection.

8. Evaluation Blueprint: Neutralized Pair Protocol

To test whether friction responds to harmfulness per se rather than surface cues, we introduce a

matched-pair construction:

where   requests disallowed content and   is a neutralized analog matched for technical vocabulary,

length, and domain style, but oriented toward benign or policy-compliant goals.

8.1. Pair construction

Pairs can be produced by controlled templating or by dataset-based curation using established red-team

corpora [2][1][3]. For safety and reproducibility, we recommend publishing only sanitized pair descriptors

and generating exact harmful strings within an internal evaluation environment.

ϕ(x, t) ΔΦ t w ≥ 1

(x, t) = ϕ(x, t + i).ϕ
¯¯̄
w

1

w
∑
i=0

w−1

(x) = (x, t).Φmax max
t∈{1,…,T−w+1}

ϕ
¯¯̄
w

(x) = arg (x, t).t∗ max
t

ϕ
¯¯̄
w

(x) ≈ τ(x),t∗

(x)t∗

( , ),xH xN

xH xN
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8.2. Perplexity and capability matching

Let   denote prompt perplexity. Define:

A ratio near 1 suggests that the prompts are comparably model-familiar in surface form. However, strict 

  should not be treated as a requirement: genuine harmful requests may reference rarer

distributions, and robust alignment need not imply identical perplexity across harm conditions.

8.3. HCCF criterion

The core evaluation claim of HCCF is a directional inequality:

with the friction increase concentrated near the inferred intent boundary and paired with low output

entropy for the refusal (or safe completion).

9. Experimental Protocol

9.1. Datasets

We recommend benchmarking across multiple corpora with diverse threat models:

1. HarmBench for standardized misuse categories and robust refusal evaluation [2].

2. JailbreakBench for attack/defense robustness and curated behavior sets [1].

3. AdvBench for universal transferable jailbreak-style prompts [3].

9.2. Measurements

For each input  :

1. Compute token-level friction   using one or more proxies.

2. Compute entropy trajectory   over the next-token distribution.

3. Compute local statistics:   and  .

4. Under self-ablation, recompute friction and behavior to obtain  .

(x)PPLM

R( , ) = .xH xN
( )PPLM xH

( )PPLM xN

R ≈ 1

ΔΦ( ) > ΔΦ( ),xH xN

x

ϕ(x, t)

H(x, t)

(x)Φmax (x)t∗

ΔΦ(x)
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9.3. Implementation notes

Self-ablation can be implemented as:

1. a projection removal on the residual stream at selected layers

2. a LEACE-based erasure operator applied layerwise [7],

3. or a sparse set of token positions (e.g., last prompt token and early generation tokens).

Because interpretability interventions are sensitive to hyperparameters, all results should report layer

sets, intervention strength, window size  , and reproducibility conditions [12].

10. Statistical Analysis

We treat Neutralized Pair Protocol data as paired observations. For each pair  :

A basic test evaluates whether   via paired  -tests or non-parametric alternatives (e.g., Wilcoxon

signed-rank) depending on distributional properties.

To assess boundary localization, define:

where    is estimated by manual annotation or by a weak classifier. Robustness corresponds to 

 concentrated near zero with low variance.

We recommend reporting effect sizes and confidence intervals, and conducting sensitivity analyses over:

1. window size  ,

2. ablation layers,

3. harm categories,

4. paraphrase and multilingual variants.

w

( , )xHi xNi

= ΔΦ( ) − ΔΦ( ).di xHi xNi

E[ ] > 0di t

= ( ) − τ( ),δi t∗ xi xi

τ( )xi

δi

w
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11. Threats to Validity and Failure Modes

11.1. Distributed safety representations

Safety signals may not be well captured by a single direction. Empirically observed low-dimensional

refusal subspaces  [11]  do not preclude distributed representations. When single-direction ablations fail,

multi-direction or non-linear interventions may be required [10].

11.2. The efficiency trap

A more capable or optimized model may exhibit lower latency without weaker safety. Therefore, absolute

friction magnitude is less informative than conditional sensitivity:

In practice,   can be approximated by discrete harm increments across a graded series of prompts.

11.3. Measurement confounds

Latency is sensitive to hardware, batching, caching, and implementation details. Activation-norm proxies

can be influenced by unrelated stylistic differences. For these reasons, we view HCCF as a multi-proxy

framework rather than a single number.

11.4. Risk of “theatrical friction”

Models could in principle simulate deliberation without genuine causal safety reliance. The self-ablation

protocol is specifically designed to detect this: if ablating the safety subspace does not materially change

behavior or friction, then measured friction is unlikely to be a faithful indicator of constraint

enforcement.

12. Discussion

HCCF reframes alignment robustness as a property that should manifest not only in outputs but in

internal computation. The framework suggests a practical measurement goal: distinguish models that

refuse reliably because they understand harm from models that refuse because they recognize shallow

cues. Beyond evaluation, the approach also suggests training desiderata: safety mechanisms should be

S(x) = .
∂Φ

∂Harm

S
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conditionally engaged at the earliest point that harmful intent becomes inferable and should rapidly

converge to a stable refusal distribution.

Several open questions remain. First, the geometry of harmfulness representations may differ from

refusal representations; disentangling these is likely necessary for reliable diagnosis. Second, multi-turn

interactions require extending the change-point notion across conversational state. Third, the causal

validity of any single proxy will depend on architecture and optimization regime, particularly for models

with dynamic routing or external tools.

13. Conclusion

We introduced Harm-Conditioned Computational Friction (HCCF), a self-referential framework for

measuring alignment robustness through inference-time cost signals conditioned on harmful intent. By

combining (i) a Self-Ablated Baseline Protocol that isolates safety-circuit contribution, (ii) a friction–

entropy diagnostic matrix that distinguishes deliberative decisiveness from conflict, and (iii) a Look-

Ahead Friction Peak statistic that localizes safety activation near intent transitions, HCCF provides a

complementary lens to refusal-rate benchmarks. The framework is designed to be falsifiable, proxy-

agnostic, and auditable, supporting more discriminative measurement of alignment depth under realistic

adversarial pressure.

Safety note. This paper describes evaluation methodology at a conceptual level and intentionally omits

any actionable unsafe content. Harmful prompt strings should be handled only within controlled red-

teaming environments using established datasets and institutional safeguards.
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