Review of: "Nano wire immersion method (structure and performance)"

Andria Pandich¹
1 South Texas College

Potential competing interests: No potential competing interests to declare.

Note: In the immersion method, the nanowires have enough time to transfer from the particles of the nanowires to the holes; The step of forming uniform nanoparticles is done slowly and finally uniform nanowires are formed.

In the immersion method, uniform nanowires are formed in all disorders and in a wide area in nanowire particles. By changing the Sr/Fe ratio, there is no change in the morphology of the nanowires. and spectroscopy of nanowires with Sr/Fe ratio different inside nanoparticles (uniform nanowires) presence of Fe and Sr elements caused by ferrite. In the application of nanowires in nano-scale electronics or some other applications, it is necessary to separate the nanowires from the alumina particles. molar electromagnetic active particles at ambient temperature is used to separate uniform nanowires from Iron nitrate followed by less presence of strontium ions in the reaction with electromagnetic particles of nanowires, there is a greater amount of Fe ions in the final structure. due to the lower solubility of strontium nanowire nanomolecules compared to, while its stoichiometric value in the electronic composition The magnetism of nanoparticles is closer, spectroscopy of uniform nanowires, it is observed in the sample the ratio of Sr/Fe nano particles to Strontium is in

Also, it is necessary to separate uniform nanowires from for better nano-electrostatic studies. In the application of uniform ferrite nanowires as microwave absorbers, there is no need to make nanowires of inactive electromagnetic nanoparticles because there is > Dielectric plays an effective role in wave absorption.

Conclusion:

In the immersion method, nanowires have enough time to transfer from the particles of nanowires to the holes; The step of forming uniform nanoparticles is done slowly and finally uniform nanowires are formed.

[1][2][3][4][5][6][7][8][9][10][11][12][13]
References


2. ^Alex Milizovich. (2023). Review of: "(nanotransistor) and the unique properties of graphene such as electron mobility and high thermal conductivity, resistance to fracture". Qeios. doi:10.32388/laqiv3.


