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1. Meta; 2. FAIR at Meta

Compilers are complex, and signi�cant e�ort has been expended on testing them. Techniques such

as random program generation and di�erential testing have proved highly e�ective and have

uncovered thousands of bugs in production compilers. The majority of e�ort has been expended on

validating that a compiler produces correct code for a given input, while less attention has been paid

to ensuring that the compiler produces performant code.

In this work we adapt di�erential testing to the task of identifying missed optimization

opportunities in compilers. We develop a novel testing approach which combines large language

models (LLMs) with a series of di�erential testing strategies and use them to �nd missing code size

optimizations in C / C++ compilers.

The advantage of our approach is its simplicity. We o�oad the complex task of generating random

code to an o�-the-shelf LLM, and use heuristics and analyses to identify anomalous compiler

behavior. Our approach requires fewer than 150 lines of code to implement. This simplicity makes it

extensible. By simply changing the target compiler and initial LLM prompt we port the approach

from C / C++ to Rust and Swift, �nding bugs in both. To date we have reported 24 con�rmed bugs in

production compilers, and conclude that LLM-assisted testing is a promising avenue for detecting

optimization bugs in real world compilers.

Corresponding author: Davide Italiano, davidino@meta.com

1. Introduction

Signi�cant e�ort has been put into testing and fuzzing compilers[1][2]. A common way to test

compilers is to generate random programs that get fed into a compiler, using techniques such as

di�erential testing to validate correctness of the generated binaries[3]. Generating random programs
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is challenging because of the complex nature of code. Random program generators must be written for

each language and maintained as the language evolves with new features. This, in itself, requires a

complex piece of software which requires extensive compiler and programming language expertise to

develop. For example, CSmith[4], a highly e�ective random program generator which has been used to

identify hundreds of bugs in C compilers, comprises well over 40,000 lines of handwritten code, and

requires constantly updating as the language evolves. Such an approach can prove prohibitively

expensive for new programming languages, and can limit the e�ectiveness of testing even popular

languages.

Additionally, test cases generated by random program generators are often large and hard to

interpret, requiring an additional program reduction stage to make them useful in reporting bugs to

compiler developers. This requires further compute and language-speci�c tooling to be built, for

example, using C-Reduce in the case of C programs[5]. As an alternative to generating new programs,

mutation testing takes as input a seed code and modi�es it, such as by mutating the parts of the code

which are not executed over a given set of inputs[6]. As with random program generation, developing

such tools requires a deep understanding of the target programming language features and static and

dynamic analyses.

Prior to the advent of LLMs, there was a strand of research that attempted to leverage machine

learning for test case generation[7][8][9]. The idea was to substitute the rule- and grammar-based test

case generators with a learned generative model that could be stochastically sampled to produce new

code snippets. The main advantage of such an approach is the enormous reduction in human e�ort

required to train a model vs build a random program generator. Early work demonstrated some

promise in generating plausible and interpretable test cases using deep recurrent neural networks, but

the techniques struggled under the load of models that demonstrated a poor grasp of programming

language syntax and semantics. For example, in[7], the Long Short-Term Memory network trained on

OpenCL required on average 20 attempts to generate a single compilable code snippet.

With LLMs, the capabilities of models to generate and reason about code has improved markedly and

there is now a plethora of research directions applying LLMs to di�erent software domains[10]. While

nascent, LLMs have already been used to fuzz the correctness of deep learning libraries[11][12], and

C/C++ compilers[13].
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While there is a great number of traditional compiler test case generators, and while machine learning

and LLMs are being used to simplify their implementation, the automatic generation of compiler test

cases to �nd missed code size optimizations has received little attention. Yet, code size optimization is

critical for embedded computing, mobile applications, and �rmware software, and there is active

research into novel code optimizations[14][15][16]. In this work, we develop novel di�erential testing

methodologies for the express purpose of discovering missed code size optimization opportunities.

Our contributions are as follows:

We present a novel mutation testing methodology which uses large language models to iteratively

modify a starting code seed.

We develop four di�erential testing strategies for �nding missed code size optimizations in

compilers.

We implement our approach in fewer than 150 lines of code and use it to identify 24 bugs in

production compilers across C/C++, Rust, and Swift. We release this tool open source.

2. Methodology

In this section we describe how we identify missed code size optimization opportunities in compilers

using LLMs.

Figure 1 shows a demonstration of our approach. Starting with a simple seed code, we iteratively

instruct an LLM to mutate the code by randomly sampling from a preselected list of mutation

instructions. After each mutation, we compile the resulting code and apply a series of di�erential

testing strategies to identify suspicious compilers. Static and dynamic analyses are used to mitigate

false positives, and once identi�ed, suspicious compilation results are reported to the user. In this

case, after 5 mutations the system identi�ed a 36% code size regression between GCC 15 and GCC 14.
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Figure 1. An example of our technique. We instruct an LLM to incrementally mutate a program by

randomly sampling a predetermined list of instructions. At each mutation step, an automatic di�erential

testing strategy is used to detect missed optimizations. For this particular example one minute of compute

was used and a 36% code size regression was discovered.

Figure 2 illustrates the work�ow of the automated testing methodology. Our approach has two

component stages: a method for mutating code, and a series of di�erential testing strategies to

identify potential missed optimization bugs. We describe each in turn, followed by techniques for

identifying false positives and detecting duplicate issues.
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Figure 2. Work�ow of the automated testing methodology. The system takes two inputs provided by the

user: a seed code and a list of mutation instructions (Section 2.1). Execution iterates until the code mutated

by the LLM no longer compiles, or until a series of di�erential tests and analyses detect a suspicious

compilation and trigger a violation (Section 2.2).

2.1. Mutating code using LLMs

Typical approaches to compiler test case generation requires de�ning a grammar of the target

programming language, and then probabilistically sampling from this grammar, combined with

rigorous static and dynamic analyses so as to generate new code which is both syntactically and

semantically correct[17][4]. Such an approach guarantees that generated test cases are free from

unde�ned behavior, but at the expense of complex generation logic. For example, CSmith[4] comprises

over 40,000 lines of handwritten code.

We take a di�erent approach. By forfeiting the correct-by-construction guarantee of a grammar-

based generator, we are able to use a much simpler engine to generate code for testing. We start with a

trivial input program snippet and use an o�-the-shelf LLM to rewrite it in such a way as to

incrementally add complexity. LLMs make syntactic and semantic errors, and this can make it more

challenging to determine if anomalous compiler behavior is indicative of a true bug or a result of a

mistake made by in the LLM output. We accommodate for this in two ways: �rst, because we target

missing optimization opportunities, we can permit a greater class of programs than functional tests,

and second, by using heuristics and analyses to detect false positives, described in Section 2.3.

Seed program

As in prior mutation-based testing approaches, we start with a seed program. Because our iterative

approach accumulates mutations, our seed programs can be very simple, shown in Listing 1.
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Listing 1. Seed programs for di�erent programming languages, used as the starting point for mutation. In

all three languages the seed code contains a single empty function with an integer argument. From this,

the LLM incrementally expands the scope and complexity of the code, directed by our mutation prompts.

Mutation prompts

At each step of the iterative testing process we build a prompt that instructs the model to mutate the

code by randomly sampling from a list of predetermined instructions. We then assemble the

instruction and current code state into a prompt using the template shown in Listing 2, and feed it to

an o�-the-shelf LLM, which responds with mutated code.

In this work we use the freely available Llama 3.1 models[18]. These models have been pre-trained and

instruction �ne tuned on vast corpora of data, with a “knowledge cuto�” of December 2023. For

language features added late, one would need a more recently trained LLM.

Listing 2. Template used to generate LLM prompts.

Mutation instructions

We sample uniformly from a list of predetermined mutation instructions, shown in Table  1. We

curated several di�erent kind of instructions, that can be divided into four logical categories:

qeios.com doi.org/10.32388/EFW1XZ 6

https://www.qeios.com/
https://doi.org/10.32388/EFW1XZ


Control �ow modi�cations: we instruct the model to inject some new control �ow into the code. This

comes in two form: loops or conditional controls statements (if statements). Additionally we

control the nesting factor asking the model to generate either a top-level structure or a nested

structure inside existing code.

Aggregate mutations: we instruct the model to add code that contains aggregate structures. In our

code we take in consideration 4 classes of aggregates: arrays, unions, structures and classes. For

languages that don’t support C-style unions, e.g. Swift, we replace them with enumerations.

Pointer code: We instruct the model to add code that contains pointers to variables de�ned in the

code.

Mutation of existing conditionals: if for loops and if statements are already present in the program,

we instruct the model to modify the existing condition to make it more complicated without

changing the semantics. For example, a transformation that the model has made in response to

this prompt is: if (x == 10) {...}   if (x >= 10 && x <= 10){...}.

Many of the code mutation instructions come in two �avors: dead code and live code, where dead code

is a mutation that changes code that is not executed as part of the regular �ow of the program.

The list of mutation instructions is user con�gurable. We chose these instructions to represent a

diverse set of program transformations, but they are not comprehensive, and further could be adapted

for domain speci�c uses if needed.

→
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Control �ow

“add a conditional statement with a statement inside”

“add a nested conditional statement with a non trivial condition and a statement inside”

“add a dead conditional statement with a statement inside”

“add a dead nested conditional statement with a non trivial condition and a statement inside”

“add a loop with a complex condition and statement inside”

“add a dead loop with a complex condition and statement inside”

“add a nested loop with a complex condition and a statement inside”

“add a dead nested loop with a complex condition and a statement inside”

Conditionals

“make a condition more complicated”

“make a dead condition more complicated”

Aggregates/pointers

“add array code”

“add pointers code”

“add struct code usage”

“add union code usage”

Function arguments

“add function arguments to a function that already

       exists, no default arguments”

Table 1. Instructions used to mutate code. At each step we sample uniformly from this list and generate a

prompt which we feed to an LLM.
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2.2. Di�erential testing strategies for discovering missed optimizations

In this section we describe four strategies for di�erential testing that we employ to identify potential

missed optimization opportunities. Once a strategy is selected it is kept constant for the duration of an

iterative mutation testing session.

2.2.1. Dead code di�erential testing

The idea with dead code di�erential testing is that since our initial seed code evaluates to a constant,

the addition of dead code should not change the semantics of the program, so the code generated

should be the same. To perform this type of di�erential test, we disable all mutation instructions

except for those which instruct the LLM to insert or modify dead code. The idea is that of telling the

LLM to keep adding code and then recompile and compare the code that gets generated. If the code

generated changes, it means the compiler failed to prove that the code was dead, pessimizing. This

di�erential testing strategy is particularly interesting because it doesn’t need another compiler to be

tested against. One can just build the same program twice with the same compiler and compare the

code that gets generated.

2.2.2. Optimization pipeline di�erential testing

The second di�erential testing strategy is based on the intuition that certain optimization pipelines

try to minimize a metric at the expense of everything else. For example, there is an optimization

pipeline that tries to minimize code size at every cost, even at the expense of performance. For LLVM

and GCC this is enabled using -Oz, and for Rust using opt-level=z. We exploit this for di�erential

testing by comparing the code generated by the same compiler using di�erent optimization pipelines

(e.g. -O3), and triggers a violation if the size of the code at an optimization level di�erent from -Ozis

smaller from the one at -Oz, multiplied by some con�gurable sensitivity threshold. We found a

sensitivity threshold of 5% to be e�ective.

2.2.3. Single-compiler di�erential testing

The third di�erential testing strategy relies on comparing the code generated between di�erent

versions of the same compiler. This is useful to �nd size optimization progressions and regressions.

We compare already-released versions of a compiler against the bleeding edge version (trunk/nightly,

qeios.com doi.org/10.32388/EFW1XZ 9

https://www.qeios.com/
https://doi.org/10.32388/EFW1XZ


depending on the language). If the code size regresses, a violation is triggered - a potential candidate

for reporting a problem.

2.2.4. Multi-compiler di�erential testing

The forth strategy is a “basic” di�erential testing methodology. We compare, when available, multiple

di�erent compilers to compare the code that gets generated and if the sizes are su�ciently di�erent,

we can �ag the one that has larger size as a violation and potential indicator that this compiler misses

and optimization found by the other compiler. We use a threshold of 10% to establish “su�ciently

di�erent”.

2.3. Detecting false positives

The limitation of using an LLM to write code instead of a grammar-based generator that has full

control is that there’s the risk of introducing bad examples. While we are unable to fully eliminate the

possibility of incorrect code generated by an LLM, we found that we can su�ciently negate the risk

using heuristics and validation tools such that we have yet to encounter a false positive that has not

been detected by the three techniques described here:

Dead code detection. Of course, when we instruct the LLM to insert dead code, we can’t guarantee that

the LLM will obey the instruction, and we need a way to verify that the mutated code truly contains

only dead code. The problem in general is undecidable, but we can use a proxy metric. Since we control

the function signature of the mutated code (e.g. f()for C/C++), we can compile an executable program

from the test code by inserting a main method that calls it. We run the generated program with

counter instrumentation (for coverage) and we wait until the program terminates (if it does), then

compare the inserted code and make sure the counter values are identical. If the LLM corrupts the

function signature, compilation will fail and the process will restart. There are some limitations to this

approach – debug info mapping isn’t always reliable, so we might end up mapping from an

instruction in assembly to the wrong line, causing false positives and negatives, or the program might

never terminate. Nevertheless, we did �nd these to be e�ective for our use case, and have yet to

encounter a real false positive using this strategy.

Sanitization: Every test case generated is compiled with sanitizers to rule out some classes of potential

memory violation problems and unde�ned behavior. For C/C++, we use UBSan and ASan from

LLVM[19]. To reduce the set of false positives further, when available, we run the examples through
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Compcert[20]  that in its "interpreter" mode �nds unde�ned behavior. In our experiments we found

that these sanitization steps rejected less than 10% of candidates.

Monotonically increasing size: This is a static heuristic, and it’s the easiest one to verify of the all three,

so it’s the �rst one we end up employing. It has a higher rate of false negatives. The idea behind it is

that in some cases of unde�ned behavior, the compiler is free to label code as unreachable, and

remove. Since our iterative mutation testing incrementally adds complexity for programs with

unde�ned behavior, the optimizer tends to “remove code”, rather than adding new code. Therefore,

code size can be used as a proxy metric for complexity.

2.4. Detecting duplicates

As in all undirected test case generators for compilers, our approach may yield numerous unique test

cases that trigger violations, but that are duplicates of the same underlying bug. We employ two

techniques to help mitigate this.

Release screening: First, we look at the code and we compile with publicly available releases of

compilers (for GCC, e.g. 12, 13, 14; for LLVM, e.g. 15.0, 16.0. 17.0). That gives us a �rst degree of

con�dence that if the set of versions where the bugs appear overlaps but is not exactly the same, that

this suggests two di�erent bugs.

Commit screening/bisection: For regressions, we know that there’s a “known working version of the

compiler” that doesn’t exhibit the behavior. We exploit this to bisect and point to the �rst commit that

introduced the violation. If the commit that introduces the new behavior is di�erent for two di�erent

programs, then that very likely points to two di�erent bugs.

3. Finding bugs in C / C++ compilers

In this section we evaluate the e�ectiveness of our iterative mutation testing approach at �nding

missed optimization opportunities in C / C++ compilers.

3.1. Experimental Setup

To produce the experimental results in this section we ran each of the four di�erential testing

strategies described previously for 8 hours. We use Llama 3.1[18] as the backing LLM, served on server-

grade GPUs. We used two con�gurations of Llama 3.1: 70B parameters and 405B parameters.
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In total we evaluate eight unique con�gurations of di�erential testing strategy and model for a total of

64 compute hours of testing. For each con�guration we run a single threaded test loop, working

through the iterative mutation testing process shown in Figure 2. Code mutation episodes stop after 10

mutations if no violation has been found. The process then repeates until the time is used up.

3.2. Results

Table 2 shows the results of the experiment. We evaluate each con�guration using four metrics. The

�rst, Total programs, records the number of completed iterative tests. As can be seen, the 70B model

produced signi�cantly more programs than the 405B. Compilable is the subset of Total programs

which did not abort due to a compiler error. We see that the 405B model on average produces fewer

compilation errors, but the di�erence is slight. The average over both models is 96.45% successfully

compilable code. Violations is the number of times a program triggered the di�erential testing

indicator of a suspicious compile, excluding those �ltered out through the false positives detectors. In

our experiments we found that the larger 405B parameter LLM is the most e�ective model to �nd

bugs, demonstrated here by a higher Violations rate. The tradeo� is that inference with the 405B

model is more expensive than the smaller 70B model. That means that, for a �xed time period, the 70B

model actually produced a higher total number of Violations, simply because the reduced e�ciency

was o�set against far quicker inference, along many more programs to be generated in the same

amount of time. Table 3 compares the inference times of the two models. It takes on average 2.92

 longer to generate a code mutation using the 405B model than the 70B. During initial development

we also experimented with the much smaller 8B parameter Llama model which o�ers yet faster

inference, however, we found that this model so frequently corrupted the code with syntactic or

semantic errors that it was impractical, and we abandoned this model con�guration.

×
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  Model
Total

programs
Compilable Violations

Avg. steps (min /

max)

Dead code di�erential testing

70B 5,598
5,309

(94.84%)
131 (2.34%) 5.03 (2 / 10)

405B 1,683
1,598

(94.95%)
40 (2.38%) 4.17 (2 / 7)

Optimization pipeline di�erential

testing

70B 6,346
5,905

(93.05%)
145 (2.28%) 4.89 (1 / 10)

405B 1,933
1,769

(91.52%)
59 (3.05%) 3.44 (2 / 7)

Single-compiler di�erential

testing

70B 6,305
5,966

(94.62%)
295 (4.68%) 3.57 (1 / 10)

405B 1,874
1,760

(93.92%)
124 (6.62%) 2.67 (1 / 10)

Multi-compiler di�erential

testing

70B 10,008
9,816

(98.08%)

3,080

(30.78%)
2.48 (1 / 10)

405B 2,889
2,786

(96.43%)

1,035

(35.83%)
2.30 (1 / 10)

Table 2. Results from 8 hours of automatic testing on each of the four modes of detecting suspicious

compilations. The experiment is repeated using two con�gurations of the Llama 3.1 model: 70B

parameters and 405B parameters. Results show that the larger 405B model has a higher rate of generating

violations, but in absolute terms the slower inference means that for a given time budget, the smaller 70B

model will discover a greater number of violations.
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Model Min Mean Max

70B 0.37s 4.18s 44.6s

405B 2.34s 12.23s 54.8s

Table 3. The minimum, mean, and max inference times of the two Llama 3.1 model con�gurations.

Measurements aggregated from 32 hours of testing for both models.

3.3. Discovered bugs

During development of our approach we discovered and reported 24 bugs in production compiles. The

total compute time for our testing was about one week. In this section we present a representative

sample of bugs found.

3.3.1. Bugs found by dead code di�erential testing

We discovered and reported 5 bugs where compilers failed to identify and remove dead code

(Section 2.2.1).

GCC bug 116753

When the code in Listing  3(a) is compiled using the optimization pipeline -Os using GCC trunk, the

compiler is able to prove that the loop evaluates to a constant and simpli�es the whole computation.

But, if two dead conditions are added, as in Listing 3(b), the optimizer is not able to optimize this code

anymore. This is a regression in value range analysis, as this code used to work with an older version

of GCC (12.4.0). The range analysis infrastructure has been reworked in GCC and the new pass can’t

eliminate the constraints anymore.
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Listing 3. The addition of the two dead conditionals in (b) exposed a regression in GCC where Value Range

Analysis fails to prove that the code is dead.

LLVM bug 112080

In Listing 4, the ConstraintElimination pass in LLVM is not able to �nd that the inner loop is dead

and remove it. After we reported the LLVM developer provided a patch that �xed the problem, and run

this on the testsuite, showing positive results on real-world benchmarks.

Listing 4. The ConstraintElimination pass in LLVM is not able to �nd that the inner loop is dead and

remove it. After reporting, this has been �xed upstream.
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3.3.2. Bugs found by optimization pipeline di�erential testing

We reported 4 bugs where optimization pipelines that are intended to reduce code size produce larger

binaries than pipelines targeting runtime performance (Section 2.2.2.).

LLVM bug 111571

The code in Listing 5 is fully optimized by LLVM trunk to a constant when the program is compiled

with -O3, but -Oz fails to optimize it. This is because -O3 runs a loop pass that fully unrolls the loop,

and later on, the dead store elimination pass �nds out that all the assignments to the array are dead,

removing this code. -Oz doesn’t run the unrolling pass and it’s not able to prove this fact, leaving the

code not optimized and blowing up the size.

Listing 5. This code is optimized to a constant by LLVM when compiled using pipeline -O3, but -Oz fails to

optimize it and generates a loop.

GCC bug 117033

The code in Listing 6 shows that GCC trunk generates larger code at -Oz than it generates at -Os. In

particular, GCC at -O3can fold this code to a constant, while -Os generates a loop. The -Os pipeline is

inconsistent about copying the loop header of the inner loop. That copy is critical to remove the outer

loop, and subsequently, the Sparse Conditional Constant Propagation pass can’t �gure out the value

using the dominator tree for the function.

qeios.com doi.org/10.32388/EFW1XZ 16

https://www.qeios.com/
https://doi.org/10.32388/EFW1XZ


Listing 6. This code is optimized to a constant by GCC’s -O3 pipeline but not by the -Os pipeline.

3.3.3. Bugs found by single-compiler di�erential testing

We reported 12 code size regression bugs found by di�erential testing a compiler against older

revisions of itself (Section 2.2.3).

GCC bug 117123

The code in Listing 7 shows that GCC trunk generates larger code at -Os than it does on GCC 13.3. The

bisection points to scccopy, a new optimization pass for copy propagation and PHI nodes elimination,

developed in GCC 14. Disabling this pass generates the same code on both versions of the compiler. The

GCC developers investigated this bug �nding out that scccopy just exposes a de�ciency in the later

partial redundancy elimination (PRE) pass, that misses an equivalence between PHI notes while doing

value numbering. The developers �xed this bug on trunk.

Listing 7. This code exposed a bug in the partial redundancy elimination pass of GCC, causing a code size

regression between versions 13 and 14.

GCC bug 117128
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The code in Listing 8 discovered a bug where GCC generates larger code at -Os on trunk than GCC 14.

The change that exposes this fact is a modi�cation in the loop invariant code motion pass, but it’s not

the real culprit for the regression. In fact, trunk does some register allocation shrink-wrapping that

doesn’t happen on GCC 14. The GCC developers do concur that if shrink-wrapping in this case

regresses size, it shouldn’t be done at -Os.

Listing 8. This code uncovered a regression in GCC 14 caused by the interaction of loop invariant code

motion and shrink-wrapping passes.

3.3.4. Bugs found by multi-compiler di�erential testing

We reported 3 missed optimization bugs found by comparing the binary sizes of code compiled using

di�erent compilers (Section 2.2.4).

GCC bug 116868

The code in Listing 9 bug shows that GCC can’t prove that this function returns a vector with a single

element, that’s constant. This is because GCC can’t safely prove that the allocation (via new) is “sane”

(as de�ned by the C++ standard). Clang performs the expected optimization because it defaults to -

fassume-sane-operator-new as frontend �ag, which asserts that a call to the operator new has no

side-e�ects beside the allocation, in particular that doesn’t inspect or modify global memory. GCC

just �xed this bug implementing the support. CSmith wouldn’t be able to �nd this bug as it doesn’t

generate C++ code which contains calls to the standard library.
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Listing 9. Clang will optimize this code to a constant. GCC lacks the required analysis to perform this

optimization. The GCC developers are adding this feature to reach parity.

3.4. LLM code mutation failure cases

On average 3.55% of iterative test mutation sessions end because the LLM generated code that does

not compile. In these cases we simply revert to the original seed code and restart mutation testing.

Sometimes, the LLM will omit correctly compilable code but with unwanted or invalid semantics. The

most common of these errors we observed is failure of the model to interpret the meaning of “dead

code”. We notice that sometimes the model interprets dead code as “code that does nothing”. An

example of this failure is shown in Listing 10. In these cases, we use the dynamic instruction counts to

�lter out these invalid test cases, as described in Section 2.3.

Listing 10. Incorrect LLM-mutated code in respond to a prompt instructing it to produce a dead loop. Here

the loop has no side e�ects, but is not dead code since it would be reached during the normal �ow of

execution.

4. Extending to other languages

Because our technique uses an o�-the-shelf LLM and automatic validation tools, it can easily be

adapted to other languages by simply changing the prompt and the target compiler. To provide a

preliminary evaluation of the extensibility of this approach we ported our 150 line Python script for

testing C / C++ compilers to Rust and Swift. Adapting to each language is a trivial code change. We
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need only change the compiler invocation, and change the initial seed program as described in

Section  2.1. We chose to target Rust and Swift languages as they are relatively young and so do not

have the same infrastructure for random test case generation.

4.1. Experimental Setup

We modi�ed the system to support Rust and Swift in turn by changing the language in the LLM

prompt, and the compiler invocation commands. We then ran a single threaded instance of the testing

loop for one hour each.

4.2. Results

Within a single hour of automated testing we discovered one bug in Swift and four bugs in Rust.

Rust bug 130421

The code in Listing  11 produces a fully vectorized loop for something that can be simpli�ed. This

happens because the compiler relies on the loop to be fully unrolled to �nd out that the sum of the

values is constant. Instead, the loop is just partially unrolled and vectorized, leading to larger code,

and also slower computation of the result.

Listing 11. The Rust compiler fails to fully simplify these nested loops because it relies on the loop to be

fully unrolled to �nd out that the sum of the values is a constant.

Swift bug 76535

The code in Listing  12 uncovers a bug shows in Swift’s compiler using -Osize and -O optimization

pipelines. The compiler fails to establish that the nested while loop is dead and will never be reached.

Removing the nested while loop does result in the loop being simpli�ed. This could be caught in Swift
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if one of the SIL passes (the Swift intermediate language) would implement a range analysis

mechanism to remove the dead computations.

Listing 12. The Swift compiler fails to establish that the nested while loop is dead and will never be

reached.

Rust bug 132888

The code in Listing 13 when compiled with the Rust nightly compiler is larger than when it is compiled

with Rust 1.81.0. The backend of the compiler decides to emit a di�erent sequence of instructions that

increase codesize overall for both x86-64 and aarch64.

Listing 13. The size of this Rust code regressed by 50% between 1.81.0 and trunk.
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Rust bug 132890

The code in Listing  14 shows a simple array iteration, and results in a larger binary when compiled

with Rust nightly than when compiled with Rust 1.73.0. This is another example of the compiler

backend lowering a suboptimal sequence of instructions. The model in this example the LLM

generates code with non trivial API usage (e.g. chain(), iter()).

Listing 14. The Rust compiler emits a suboptimal sequence of instructions in the backend for this example.

5. Related Work

Automatic test case generation for compilers is a well established technique for compiler validation

and has been surveyed in[1][2]. Typically random program generators are in themselves complex

pieces of code. For example, CSmith[4]  is over 40,000 lines of handwritten C++. We take a di�erent

approach. Inspired by mutation-based approaches such as equivalence modulo inputs testing[6], we

adopt a process of mutation testing, but starting from a trivial seed program, and using an LLM as the

engine for rewriting code. Our work di�ers from previous mutation-based approaches in that it does

not require existing libraries to begin mutation, such as the libc functions from FreeBSD used in[21].

Prior works using machine learning to synthesize compiler test cases include[13][7][8][9]. Of those, the

closest to our work is Fuzz4all[13], a recent publication that employs Large Language Models to

generate novel compiler tests. Their approach �rst ingests documentation and example code and uses

it to synthesize new test cases to validate functional correctness of the compiler. Our work di�ers in

that it targets missed optimization opportunities rather than functional correctness, requires no

documentation as input, and incrementally builds complexity by mutating a trivial starting seed,

rather than synthesizing novel test cases from scratch.
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While much attention has been placed on validating the functional correctness of compilers, relatively

little attention has been targeted on identifying missed optimizations. Two recent works that attempt

to identify missed optimizations are[22]  and[23]. In[22], missed optimizations are identi�ed by

instrumenting the basic blocks of CSmith-generated code using “dead code markers”. In[23], a C

program is compiled using both x86 and WebAssembly compilers to identify missed optimizations in

WebAssembly. Compared to both these works, our approach is not language speci�c, requires no

instrumentation of programs, and is the �rst work to use machine learning to generate code rather

than handcrafted rules.

6. Conclusions

We describe our experience using Large Language Models to identify missed code size optimization

opportunities in compilers. We start with C / C++ and found that by orchestrating an o�-the-shelf

LLM and existing software validation tools, an e�ective yet remarkably simple approach could be

taken, yielding 24 bugs in production compilers. While our initial results are promising, we are just

scratching the surface. In future work we will extend the di�erential testing methodologies to detect

missing runtime performance optimizations, explore prompt engineering approaches to improve the

e�ectiveness of the approach further, and mutate larger seed codes. We hope our initial results to

inspire interest in this exciting research direction.
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