Review of: "Although the distance is still on the scale of a few micrometers and the time is still measured in nanoseconds,"

Celara Sanchez

1 Alabama State University

Potential competing interests: No potential competing interests to declare.

The high speed of switching (doping) in the nMOS transistor circuit of Graphene transistor is possible only because it can do p- and n (positive and negative) doping, and graphene doping is a main parameter in the development of nMOS transistor Graphene transistor. The bias voltage is applied to the graphene transistors in such a way that it always operates in its "active" region, that is, the curved or active linear part is used for the output characteristics. Graphene, which consists of only one carbon atom, can be used to create multilayer graphene field-effect transistors that consume less energy and take up less space. Graphene is a semi-conducting material with zero gap and not suitable for logic circuits, but using technology, they create different forms of this material that have different gaps. Graphene strips, multilayer graphene and graphene grown on different transistor layers are such forms.

Although the distance is still on the scale of a few micrometers and the time is still measured in nanoseconds, it essentially opens up the possibility of using rotation in microelectronic components.

References

1. "Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.", Qeios. doi:10.32388/23oxov.

8. Chad Allen. (2024). Review of: “FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities”. Qeios. doi:10.32388/h3qk7b.

23. Luola Sendros. (2024). Review of: "nMOS instead of exhibiting thermionic emission modulation, changes through a
quantum tunnel modulation. They change through a dam."

Afshin Rashid. (2024). Review of: "In general, an electrical nano-biosensor consists of an immobilized static biological system (based on their own built-in immobilized static biological system)". Qeios. doi:10.32388/pq6ho0.

Afshin Rashid. (2024). Review of: "A combination of interference nanolithography and nanoelectronics lithography enables the fabrication and reproduction of high-resolution structures in large areas". Qeios. doi:10.32388/qy3s52.

Afshin Rashid. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas". Qeios. doi:10.32388/a0nexa.

Afshin Rashid. (2024). Review of: "Nano supercapacitor called (electrostatic) -- The total thickness of each $a_i=4\text{nm}$: electrostatic nanocapacitors only 25 nm". Qeios. doi:10.32388/247k3y.

Afshin Rashid. (2024). Review of: "bipolar transistors (pMOS) have a state voltage connected (Von) around 1 to 3 volts". Qeios. doi:10.32388/c8zgvw.

Afshin Rashid. (2024). Review of: "Lindemann's change structure section in electrical nanostructures Lindemann change / (change structure) in multilayer nanostructures". Qeios. doi:10.32388/ttqb0i.