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Abstract

Generative Pre-Trained Transformers (GPTs) are hyped to revolutionize robotics. Here we question their utility. GPTs

for autonomous robotics demand enormous and costly compute, excessive training times and (often) offboard wireless

control. We contrast GPT state of the art with how tiny insect brains have achieved robust autonomy with none of these

constraints. We highlight lessons that can be learned from biology to enhance the utility of GPTs in robotics.
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Introduction

Recent years have seen major advances in generative Artificial Intelligence due to the development and deployment of a

new architecture; the Generative Pre-Trained Transformer (GPT), or transformer for short[1]. Through adding an

attentional mechanism to deep neural networks and deploying on internet-scale training sets, transformers have led to

rapid advancements in Large Language Models (LLMs) for natural language processing and generation. Following these

early applications, transformers have, alongside other architectures such as diffusion models[2] been applied to the

development of Visual Language Models for text to image and video (e.g.[3]) as well as other multimodal applications

(e.g.[4]). These successes have inspired the investigation of transformer architectures for the robotics domain. The

challenges of unstructured multimodal inputs sensed in complicated environments, coupled with high degrees of freedom

in robot control, have constrained the development of robots that are simultaneously generally capable, and robust, in

their behaviour. The promise of transformers for robotics appears to be that large-scale training can, through specialisation

on further smaller-scale training sets, provide general and adaptable solutions to a wide variety of robotics tasks[5].

Because they can be applied across so many application domains transformer-based approaches have been labelled

Foundation Models[5] indicating their supposed fundamental status but also their incomplete nature. Applications of

foundation models to robotics have recently taken off in the minds of developers and researchers.

Transformers have their genesis in large language modelling (LLM). LLMs have also proved to be generalizable and

transformative to many applications, but they are not without limitations. As we review below, there are increasingly
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recognised issues with LLMs in the areas of training dataset size, compute resources for training, the financial and

ecological costs of both, as well as robustness of behavioural output. In this article we question whether transformer

architectures are likely to be truly foundational for robotics. We ask whether transformers provide the only or best route

towards Artificial General Autonomy, proposing that, unlike ‘intelligence’,[6] the level of autonomy of a robotics system is

well-defined, measurable, and economically meaningful.

Drawing on earlier critiques of GPTs and related approaches, we argue that transformers provide a facsimile of autonomy

rather than true autonomy. We then review alternative approaches that have been proposed. The contrast between GPT

solutions to autonomous robotics and biological solutions to autonomous behavioural control achieved by animal brains is

stark. We explore this contrast to propose what is missing from current GPT approaches, and what could be added in to

enhance robust and scalable robot autonomy.

Progress in Applying Transformer Architectures to Autonomy

Transformers have seen rapid application to robot autonomy. As well as high profile commercial announcements and

demonstrations, end-to-end solutions to robot autonomy have been developed in the peer-reviewed literature by both

academic and industrial groups, to tasks particularly focussing on robot navigation and dexterity (for a review, see[7]).

While the early promise of transformers for robot autonomy seems to be being realised, for a general and scalable

solution it is essential to recognise that this technology still comes with significant limitations that will constrain future

performance and adoption. While some of these may become less acute as the traditional efficiencies associated with the

development and deployment of a novel technology are realised, we argue that there are fundamental structural issues

with current transformer architectures, and that these should motivate a longer term search for alternative and

complementary approaches, which we review later in this article.

Training Data Size and Cost Requirements are Likely to Grow

At the heart of the transformer approach to any problem is a scaling requirement. Given the lack of inductive biases these

learning systems are highly flexible, however the corollary of this is that their training data requirements are vast. The

usual model for deployment of a transformer-based foundation model is to train on an internet-scale corpus so that the

model acquires multi-modal correspondences and domain knowledge, then further specialise on a smaller training data

set for a specific set of tasks. The costs of this are very substantial. Even excluding environmental impacts, state-of-the-

art LLMs cost on the order of $10s to $100s of millions per training episode[8]. For robotics applications, further training for

particular tasks such as navigation and manipulation is usually required. The availability and cost of acquiring good

training datasets is recognised as a major problem. Proposed solutions include the curation of open datasets covering

multiple tasks and robot types[9], although currently these can be biased to a relatively small number of tasks.

There is also the extensive use of physics-based simulators to generate training data (e.g.[10]). We argue that, similarly to

LLMs, exponentially increasing quantities of data are likely to be required to sustain advances in performance[11]. Even for
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text and multimodal datasets where the internet provides a very large corpus of training data‘ for free’, the availability of

training data risks becoming a limiting factor[12]. For robotics datasets the costs of collecting useful training data, either

physically or through simulation, will be much more acute. Furthermore, since improvement in transformers’ performance

is predicated on increases in scale of training data and weights this problem will only get worse.

Compute and Infrastructure Costs and Requirements will Persist

Once the costs of training a transformer-based architecture are paid, the inference costs at deployment can still be

substantial. For example, Meta’s Llama 3.1 has cloud-scale deployments[13] (405bn double-precision parameters). There

are also reduced size and precision versions suitable for deployment on local GPUs (e.g. 8bn half-precision integer

parameters), which can take ~20- 100GB of memory for inference. This demands a substantial GPU for even the simplest

models being run on a robot[13]. While binarisation, quantisation, and other approaches have been used to help design

edge AI accelerators for deep and convolutional neural networks[14], the scale of the problem for transformers is many

orders of magnitude larger. For example, for one of the longest researched applications of deep nets, object detection,

one state of the art algorithm has on the order of 10m-80m network weights[13], compared to the 8bn-405bn weights

mentioned above for a state-of-the-art LLM. This represents a four orders of magnitude difference in scale, even before

the additional requirements of training a transformer for robotics tasks are taken into account. Hence there is very active

research into methods to avoid the cloud compute bottleneck, including utilisation of novel technologies such as 6G[15].

Moore’s law and the advent of novel parallel compute architectures has traditionally saved AI, and computer software

more generally. For foundation models, however, we argue that although available compute can be scaled exponentially,

the exponential requirements for model size and throughput will be in opposition. A real-terms reduction in requirements

for compute as performance improvements are sought will only occur when the exponent for the former is greater than

the exponent for the latter. However increasingly we are considered to be in a post-Moore’s Law world where further

innovation in materials is required to make progress [e.g.[16]].

Hallucinations for Transformers in Robotics May Become Acute

As a consequence of their statistical training and inference, LLMs are prone to confabulation and hallucination[17][18].

While such outputs can still be damaging even for a disembodied AI, when a transformer architecture is embodied the

risks are magnified. As with humans, hallucinations may manifest in ways likely to cause harm to the robot or to others,

and adversarial attacks on guardrails for transformers in robotics have already been demonstrated[19]. This is likely to

require that humans remain in the control loop as teleoperators to ensure robots are remotely supervised, or that robots

are isolated from humans, or both. Any of these outcomes will of course limit the promised benefits of robotics. As other

researchers have argued, these structural issues with statistical approaches to AI are unlikely to find remedy without

significant architectural change[20].

Transformers Give a Facsimile of Intelligent Autonomy
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Given the above concerns, why are transformers seeing increasing adoption for robotics? We attribute this to two factors:

first, as with LLMs and VLMs, striking early advances have been made in traditionally very difficult areas, such as

humanoid control, manipulation, and, of course, natural language interfaces. Second, however, we believe a tendency of

human observers to anthropomorphise often leads some of them to ascribe abilities, and the potential for understanding,

that the architecture does not, and cannot, technically support.

While there are many types of transformer the central motif is a repeating unit composed of a self- attention block followed

by a multilayer perceptron block[21] (Figure 1, right). The control flow is feedforward, while the attention mechanism learns

which earlier elements of the input to attend to in predicting the next appropriate action. As with LLMs, both the power and

generalizability of transformers for robotics comes from their extensive training so that, once trained, they can perform the

operation of matching an input to a predicted output. In robotics transformers succeed in resolving and executing an action

from an input, but this is achieved by interpolation and extrapolation of the training set, with unreliable off-training-set

performance[22]. There is no reasoning and no reason why a transformer selects one response over another, other than

the selected option carrying the highest predictive weight following training[23]. The same can be said of the language

abilities of LLMs, which have been described as stochastic parrots[24].

Training and reference to learned experience is an important part of biological autonomous decision making too, but for

humans and other animals decision making is also supported by reasoning from models of how the world works, how

other involved agents should operate, and why the selected action is situation appropriate[25]. Transformers lack these

models[26][27]. An autonomous robot’s capacity will be limited by the scope of the training dataset. Since transformers

responses are unreasoned products of the training data, any transformer-based application cannot justify a decision other

than by statistical association. This poses serious challenges for any form of human / robot interaction. If we were to ask a

well-intentioned human coworker why they made an error they would do their best to explain the reasoning behind their

actions. If we ask a transformer based robot why it made an error there would be no reasoned answer per se; the answer

to the query will have at best a correlation but no causal relationship to the error made.

Alternatives and Complements to Transformers for Autonomy

If transformers are not the full answer, what is? Here we review the main alternative proposals, with an emphasis on our

preferred approach, drawing deep inspiration from how the biological brain solves the autonomy problem.

Natural Intelligence

The gulf between transformer approaches to robotics and how biological brains produce autonomous behaviour is stark

(Figure 1). Most often comparisons are drawn between LLMs, GPTs and human reasoning[23][25][28], but the comparison

with animal brains and animal reasoning is even more pronounced. For example, the honey bee brain is tiny (just over

one cubic millimeter) and contains fewer than one million neurons[29]. The number of synapses in the bee brain is not

known, but if we can infer from the Drosophila connectome[30] there will be fewer than half a billion synapses in the bee
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brain. (Figure 1, left). Demonstrably, this is all a bee needs to reliably navigate over long (several kilometre) distances,

autonomously harvest pollen and nectar from the environment, communicate and coordinate their efforts with their hive

mates, and perform all the many jobs needed to build and maintain their colony, including raising the next generation.

They can solve complex foraging economics problems, majoring on the resources their colony needs and harvesting them

from cryptic and ephemeral flowers patchily distributed in the environment[31]. Bees are able to fly with no practice, and

just twenty minutes of structured flight time around the hive is enough for them to be able to navigate proficiently in their

environment[32]. The contrast with the prolonged training needed by transformers could not be greater. The power

consumption of a bee brain as it performs entirely on-board autonomous decision making is infinitesimal compared to any

GPT. In contrast to transformers, animal brains have been massively ‘pre- trained’ on a planetary scale, to use minimal

information and generate a very wide variety of behaviours (Figure 2).

Figure 1. Left: The brain of a honey bee forager Apis mellifera provides high levels of autonomy integrating multi-modal sensory data to navigate,

communicate locations in space, learn associations between stimuli and rewards, using fewer than 960,000 neurons. Distinct brain regions

specialise in perception including vision (optic lopes, yellow and orange), olfaction (antennal lobes, blue), and feed into memory centres (mushroom

bodies, red). Sensory and memory pathways converge in the central complex which integrates sensing and learned associations in a single

representation of the bee situated relative to percepts weighted by the bees internal state. This is sufficient to resolve competing goals, which drives

behaviour directly by interfacing with premotor neurons (not shown). Brain regions are highly differentiated in structure and function according to

task demands, and come together in a modular architecture with high degrees of intra-module connectivity but limited and well defined inter-module

connections. Image source: insectbraindb.org Right: the generative pre-trained transformer (GPT) architecture.

Multimodal sensory inputs are embedded in high dimensional space (not shown) then feed into repeated blocks of attentional mechanisms (yellow)

followed by feed forward deep networks (blue), with intermediate normalisation and selection layers (not shown). Each block is hence a very large

and non-sparse matrix, with matrix multiplications propagating through the GPT to produce the next output in sequence. Knowledge of the task is

encoded in the learned values within the matrices, whose total entry counts typically range in the billions to trillions. Thus although total GPT

parameters vastly exceed the number of synaptic connections in a simple brain, they are far less robust in behavioural output. Figure adapted

from[1].
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How does the humble bee outperform transformers in compute, energetic cost, and training time? In a word – structure.

The generalisability of transformers, and arguably their elegance, is because before pre-training they are not structurally

differentiated according to function. The insect brain, by contrast is a case study in structure-function specialization. The

insect brain is subdivided into modules (Figure 1, left). Each module is specialised for processing different domains of the

autonomous decision-making challenge. Each specialization in each module exploits the regularities and properties of the

information it is processing to reduce compute and increase overall system efficiency. For example, specialized modules

in the bee, ant and fly brain process the pattern of polarized light in the sky generated around the sun[33][34]. This is a

valuable and robust navigational cue. Its structure is preserved by a topographic processor – the protocerebral bridge in

the central complex – which outputs to a region that operates as a ring attractor to establish orientation of the animal

relative to external cues[33][35][36]. This connects to yet another module which is topographically structured as the azimuth,

and can support the relative localization of the insect to external objects[33][34]. The regularities of the external world are

reflected in how they are represented in the insect brain, which conveys a form of intuitive physics (albeit very different

from the type of physics engines used in AI). Olfactory and visual sensory lobes are each specialised to the input

properties of their sensory domain. The sensory lobes sharpen, enhance and ultimately compress sensory signals for

projection to multimodal sensory integration regions[37]. The largest of these, the mushroom body, has a structure similar

to a three-layer neural network with an expanded middle layer[38][39][40]. This seems especially adept at multimodal

classification.

Figure 2. Transformer-based approaches to autonomy rely on internet-scale datasets as input, which trains to process input from a suite of high

resolution sensors, such as 4k cameras and LiDar, in order to provide a limited behavioural repertoire, in comparison to biological autonomous

agents. In contrast, 600m years of evolution on a planetary scale, with complex physics, has encoded blueprints to build autonomous brains into the

genome of a massive variety of animal species. These brains process much sparser input from specialized sensor suites, to generate a hugely rich

variety of adaptive behaviours. Image sources: NASA (Earth), insectbraindb.org (honeybee brain).

Insects lack the declarative reasoning of humans, but their reasoning is built around a form of elementary world model.

Insects possess a unitary and coherent representation of external space within which they have a first-person perspective
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on objects around them[41]. The valence of objects is influenced by the insect’s learned experience with them, as well as

innate valence and subjective physiological state[37]. Differences in valence and location of objects arbitrate the insect’s

selection[42][43][44]. This form of reasoning might be elementary, but it is still more comprehensible and explicit than the

reasonless transformers. It is increasingly recognized that AI stands to benefit tremendously from importing concepts and

algorithms from insect neuroscience[45][46].

Objective AI and World Models

Other researchers have proposed that indeed the autonomy abilities of animals (including those ‘simpler than humans)

should provide inspiration for AI researchers[47]. However, this inspiration is much looser than the Natural Intelligence

approach above. While the ‘objective AI approach does indeed propose modular AI architectures that correspond with an

understanding of the human brain developed in neuroscience, cognitive science, and psychology, the proposal is actually

quite different; rather than directly seek to reverse-engineer neural circuits in specialist brain modules, instead the idea is

to design trainable modules that interface with each other in order to generate more adaptive behaviour than a largely

undifferentiated large neural net could be expected to.

Thus, for example, rather than directly seek to understand how feature detectors in the early primate visual system

function, a feature detector module would be trained. A key part of the proposal is the reintroduction of explicit and

configurable worlds models, drawing inspiration from cognitive science; however these also remain trained from data[48].

Hybrid Approaches

Still other researchers, drawing on a long running proposal but also gaining renewed motivation from contemporary

developments in AI, have proposed the ‘neurosymbolic approach’[20]. This approach argues that, while deep nets are very

suitable for perceptual tasks such as object detection, they are fundamentally unsuited to the symbolic manipulation that

is part of reasoning, planning, and decision making. In the context of transformers, this has recently been vindicated by

observations that LLMs fail to robustly deal with and manipulate symbolic knowledge[26][27]. Thus the proposal is to

combine the perceptual strengths of statistical AI with the causal strengths of the older, symbolic, approach to AI. Given

the neural bases of symbolic reasoning in the brain are poorly understood, this is a particularly pragmatic approach. In

doing so it is hoped that the limitations of the first, symbolic, wave of AI, will be ameliorated by working around the

problems they suffered in having sole responsibility for dealing with the perceptual complexity of the real world[49]. We

suggest that an even more powerful combination could include the use of Natural Intelligence approaches to perception

and modelling of space and decision option sets within it.

Conclusion

Transformer architectures have brought to robotics the rapid progress that they had already brought to natural language

and muli-modal AI. However, there are reasons to continue the search for solutions to the robotics autonomy problem.
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Transformer architectures treat the world in purely statistical terms, albeit grounded in perceptual inputs. This was

arguably a deliberate choice in response to the‘ bitter lesson’[50], that inductive biases in AI have historically failed[49].

However, this results in an autonomy solution very different to the way the only truly autonomous artefact known to

humanity, the biological brain, functions. Here we have highlighted this, and conclude by arguing that the tremendous

recent advances in data on, and understanding of, a variety of brains, means the time is ripe to revisit the ‘bitter lesson’,

and see what new lessons for AI can be learned from their study.
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