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Recent advancements in large language models (LLMs) have extended their capabilities to handle long

contexts. However, increasing the number of model layers and the length of input sequences

signi�cantly escalates the memory required to store key-value (KV) cache, posing challenges for

ef�cient inference. To mitigate this issue, we present SimLayerKV, a simple yet effective method that

reduces inter-layer KV cache redundancies by selectively dropping cache in identi�ed lazy layers. Our

approach is based on the observation that certain layers in long-context LLMs exhibit “lazy” behavior,

contributing less to modeling long-range dependencies compared to non-lazy layers. By analyzing

attention weight patterns, we �nd that the behavior of these lazy layers is consistent across tokens

during generation for a given input. This insight motivates our SimLayerKV, which identi�es lazy

layers and reduces their KV cache accordingly. SimLayerKV is training-free, generalizable, and can be

implemented with only seven lines of code. We conduct extensive experiments on three representative

LLMs, e.g., LLaMA2-7B, LLaMA3-8B, and Mistral-7B across 16 tasks from the LongBench benchmark.

The results demonstrate that SimLayerKV achieves a KV cache compression ratio of 5 with only a

1.2% performance drop when combined with 4-bit quantization. Our code is available at

https://github.com/sail-sg/SimLayerKV.
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1. Introduction

Transformer-based autoregressive large language models (LLMs) have demonstrated exceptional

performance across a wide range of tasks, such as question answering and arithmetic reasoning[1][2][3][4].

Recent advancements have extended their capabilities to handle long contexts, with models like Llama-
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3.1 supporting context lengths up to 128K tokens[5] and Gemini-Pro-1.5 handling up to 1 million tokens[6].

A critical component of these models during inference is the key-value (KV) cache, which stores

precomputed key and value tensors for each token in the language sequence to avoid recomputing them

for each attention layer. However, as the number of model layers and input lengths increases, the

memory required for storing the KV cache grows signi�cantly, posing challenges for inference

ef�ciency[7][8][9]. For example, with an input sequence length of 128K tokens, the memory required for

the KV cache in Llama2-7B amounts to approximately 62.5 GB GPU memory, which is signi�cantly larger

than the 13.2 GB needed for the model parameters.

To address the challenge, various methods have been introduced to reduce the KV cache storage[7][9][10]

[11][12]. One approach is quantization[10][11][12][13][14][15][16], which stores the KV cache in low-bit formats.

Another approach resorts to eviction[7][9][17][18], which only preserves the most important tokens selected

based on carefully crafted metrics. However, these works mainly address intra-layer redundancies,

neglecting the potential savings from inter-layer redundancies[19], as illustrated in Figure 1.

Recent studies[20][21][22][23][22][19]  have begun to explore inter-layer KV cache condense, leveraging

redundancies across layers to reduce KV cache at the layer level. For example, Cross-Layer Attention (CLA)

[21]  reuses the KV cache from the  -th layer for the subsequent  +1-th layer. While these methods are

effective, they require additional training on existing LLMs[20][21][22][23][22], which hinders seamless

plug-and-play integration. Our focus lies in methods that do not require retraining, with

MiniCache[19] serving as a representative approach. By taking advantage of the similarity between the KV

pairs across layers, MiniCache combines the cache of every two layers through spherical interpolation,

effectively compressing KV cache across layers(see Figure 1(b)). However, MiniCache operates under the

implicit assumption that all layers within the merged set contribute equally, which may not always hold

true. In fact, research on layer sparsity[24]  shows that importance levels vary across layers within the

same model, indicating that their contributions may differ.

To investigate this character for the attention layer, we conducte preliminary experiments (Section 4) and

identi�ed three key �ndings: (1) Certain layers in long-context LLMs exhibit “lazy” behavior, primarily

focusing on semantically unimportant tokens (e.g., the initial few tokens) and the most recent ones

during answer generation. (2) Lazy layers are less important than non-lazy layers w.r.t.  long-context

capability: trimming KV cache in non-lazy layers signi�cantly degrades model performance, whereas

trimming KV cache in lazy layers has relatively little impact; and (3) After analyzing attention weight
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patterns, we �nd that layer behavior is consistent across tokens for a given input, and lazy layers can be easily

identi�ed.

Figure 1. Comparison of intra-layer techniques (e.g., pruning and quantization) with two inter-layer methods:

MinCache and our proposed SimLayerKV. (a) Intra-layer methods target KV redundancy within individual

layers, applying compression independently to each layer; (b) MinCache reduces KV cache by merging

adjacent layers through interpolation; (c) Our SimLayerKV selectively trims KV cache by identifying the

functional role of each layer, reducing cache only in lazy layers.

The appearance of lazy layers suggests that we can directly reduce the KV cache for these layers without

altering the cache of non-lazy layers or merging cache across layers. Building on this insight, we propose

SimLayerKV, a simple yet effective method for inter-layer KV cache reduction. This dynamic, selective

reduction in KV cache decreases the number of layers requiring cache retention, thereby enhancing

computational ef�ciency. Speci�cally, we analyze the attention allocation patterns in each layer to

determine whether it quali�es as a lazy layer. We then trim the KV cache in lazy layers while retaining the

full KV cache in non-lazy layers (see Figure  1(c)). We conduct extensive experiments on three

representative LLMs (i.e., LLama2-7B-chat[25], LLama3-8B-Instruct[5], and Mistral-7B-Instruct[26]) across

16 tasks from LongBench[27]. The results demonstrate that SimLayerKV achieves a KV cache compression

ratio of 5   with only a 1.2% drop in performance when combined with a 4-bit quantization[15].

Meanwhile, it integrates seamlessly into popular inference frameworks with just seven lines of code.

Additionally, we evaluate SimLayerKV on the Ruler[28]  datasets using Mistral-7B-Instruct, focusing on

tasks like Needle-in-a-Haystack (NIAH) and scaling the context length from 4K to 32K, where it

performed strongly. Even with input texts at 32K, performance only dropped by 4.4%. The contributions

of this work are summarized as follows:

×
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We observe the phenomenon of lazy layers in long-context LLMs and propose two strategies for

identifying them at either the pre�lling or decoding stage.

We introduce SimLayerKV, a simple yet effective method for reducing inter-layer KV cache

redundancies that can be implemented with only seven lines of code.

Our SimLayerKV achieves a KV cache compression ratio of 5× with only a 1.2% drop in performance on

the LongBench benchmark on three representative LLMs.

2. Related work

Due to the autoregressive architectures of transformer-based LLMs, the key and value states of previously

generated tokens can be stored as the KV cache, which facilitates the generation of subsequent tokens

without redundant computations. However, despite its bene�ts, caching introduces a signi�cant

bottleneck during inference as it must reside in GPU memory. Several works[29][30][31][32] have focused on

optimizing KV cache memory at the system level. Other research has investigated reducing KV cache

memory requirements by modifying model architectures[33][21][34][35][8][36]. For example, grouped-query

attention (GQA)[37] divides the query heads into multiple groups, with each sharing its own set of keys

and values. However, these techniques typically need to be applied during pre-training, which can be

resource-intensive.

A different line of research focuses on reducing the KV cache memory usage post pre-training. Some

techniques[38][9][8][7][39][18][17]  identify redundant tokens within each attention layer and evict their

associated KV cache, thereby effectively lowering memory usage. Other methods[10][11][12][13][14][16] reduce

memory consumption by quantizing KV cache from full precision to lower bit values. However, these

methods primarily exploit intra-layer KV cache redundancies while overlooking those across layers.

These techniques are orthogonal to our approach and can potentially be combined for further

improvements.

A distinct line of research[20][21][22][23][22][19][40], more closely aligned with our focus, explores the inter-

layer KV cache redundancies. For instance, CLA[21]  reduces overall KV cache storage by reusing the KV

cache from the current layer in subsequent layers. Mix Attention[20] integrates cross-layer cache sharing

with sliding window attention, which retains only a small subset of recent tokens in the KV cache,

thereby further reducing memory usage. LongGen[40], Inheritune[41], and Gemma 2[42]  employs a

prede�ned mixture of full attention and sliding window attention across different layers during training.

qeios.com doi.org/10.32388/EPAI4T 4

https://www.qeios.com/
https://doi.org/10.32388/EPAI4T


However, these approaches rely on a �xed, prede�ned structure and lack adaptability to the input data. In

contrast, our method dynamically identi�es lazy layers based on their attention allocation patterns. In

addition, these methods require additional training, which is computationally demanding. In contrast,

MiniCache[19]  offers a tuning-free solution by merging every two adjacent layers through spherical

interpolation, assuming equal contribution from all layers within the merged set. Our SimLayerKV

approach differs by selectively trimming lazy layers, based on the observation that not all layers

contribute equally to the overall generation.

3. Preliminary

Before introducing SimLayerKV, we formalize our notation and provide a brief overview of the generative

inference in autoregressive LLMs, which is the key background knowledge for our method. We denote the

input prompt  , representing a sequence of tokens, where   is the number of tokens

in the input prompt, indicating the sequence length. The total number of tokens, including both the input

prompt and the generated responses, is denoted as  . The key and value cache for token    are

represented by   and  , respectively.

Inference stages. The typical generative LLM inference process involves two stages: (1)  Pre�lling: the

autoregressive LLM processes the input prompt   by parallel computing, and also saves the KV cache of

each token  , where  . The output of the last token in this stage is the �rst token 

 of the response. (2) Decoding: after the pre�lling stage is completed, the LLM generates output tokens 

 one by one, where  , and saves their KV cache. In each decoding step, a new token 

 is generated based on the current token   and the KV Cache stored from earlier steps, continuing

until a stop criterion is met.

X = { , ⋯ , }x0 xm−1 m

n xi

Kxi
Vxi

X

∈ Xxi i = 0, 1, ⋯ , m − 1

xm

xj j = m + 1, m + 2, ⋯

xj xj−1
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Figure 2. Attention patterns during long-context generation in layers 0, 10, 20, and 30 of the LLaMA3-8B-

Instruct model. The green dashed box outlines the decoding stage. Notably, in certain layers (e.g., 20), the

model predominantly focuses its attention on initial tokens and recent tokens during the decoding stage, a

behavior we identify as characteristic of lazy layers.

4. Observations

In this section, we analyze the attention patterns during the pre�lling and decoding phase in long-

context LLMs, providing insights that motivate our approach to reducing KV cache based on the layer-

speci�c roles in attention allocation. The study is conducted on the LLaMA3-8B-Instruct model[5] using

random samples from the LongBench[27] benchmark. Our key �ndings are as follows:

Layer behavior in long context LLMs during decoding. Previous research[38]  has shown that a large

portion of attention in LLMs tends to focus on semantically unimportant tokens (e.g., the �rst few

tokens) and the most recent tokens. We refer to this pattern as lazy behavior, where the model “takes

shortcuts” by primarily attending to the beginning and end of the sequence, similar to someone

skimming a paper by only reading the �rst few words in the abstract and the conclusion. Although this

phenomenon is also known as “attention sink”[38], we choose to call it “lazy behavior” in our context to

better highlight the model’s tendency to overlook the middle portions of the sequence, emphasizing the

shortcut nature. However, in our experiments (See Table 1 and Table 3), we �nd that when KV cache are

retained for only these tokens across all layers, the long-context capabilities of LLMs degrade sharply.

This raises an important question: does this lazy behavior disappear when processing long texts?

Through our analysis, we observe that even when handling long texts, many layers continue to exhibit

this lazy behavior during decoding (e.g., about 55% in LLama3-8B-Instruct in LongBench benchmark).

Figure 2 presents the attention patterns across four different layers (0, 10, 20, and 30). We observe that

some layers (e.g., layer 0) do not follow a clear pattern in attention weight distribution, while others (e.g.,
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20) show a clear lazy behavior pattern. Based on this observation, we de�ne a lazy layer as one that

primarily attends to a limited subset of tokens, including both the initial tokens 

  and recent    tokens  , while allocating minimal attention to the rest of

the tokens in the sequence during decoding stage. Intuitively, this suggests that in these lazy layers, most

of the KV cache can be dropped, retaining only the portions the model relies on during its “shortcut”

behavior, i.e.,   and  .

Figure 3. Comparison of the importance of KV cache in lazy and non-lazy layers using LLama3-8B-Instruct.

Performance is evaluated across three settings: (1) lazy layers only: trimming KV cache in non-lazy layers, (2)

non-lazy layers only: trimming KV cache in lazy layers, and (3) full: using the full KV cache for generation.

Figure 4. Visualization of attention weights for each token (x-axis) with respect to the initial tokens and the

most recent 1024 tokens during the pre�lling and decoding stages on LLama3-8B-Instruct, across all layers

(y-axis), using a randomly selected sample. Layers with predominantly higher attention on the initial and

recent tokens   (indicated by red areas) are referred to as lazy layers. The brown dashed box

outlines one such lazy layer.

= { , , , }Xinitial x0 x1 x2 x3 w Xrecent

Xinitial Xrecent

{ , }Xinitial Xrecent
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Lazy layer is less important than non-lazy layer. Although attention scores in lazy layers are

concentrated on certain tokens, this does not necessarily indicate that these layers are unimportant for

long-context capability. To investigate this further, we conduct experiments on 6 random selected tasks

from the LongBench benchmark[27], including Qasper[43], Dureader[44], Musique[45], GovReport[46],

MultiFieldQA-en[27], and HotpotQA[47]. We test the effect of trimming most of the KV cache, retaining

only the cache for    in two scenarios: (1) lazy layers, and (2) non-lazy layers. For a fair

comparison, the number of trimmed layers is kept similar in both settings. We also evaluate the vanilla

setting, which uses a complete KV cache, for reference.

As shown in Figure 3, trimming the KV cache in non-lazy layers lead to a signi�cant performance drop,

with an average decrease of 7.4%. Interestingly, trimming the KV cache in lazy layers results in only an

average 1.5% decrease. These results suggest that lazy layers contribute less to the model’s overall

performance compared to non-lazy layers.

Layer behavior remains consistent for a given input. To further explore whether a layer consistently

functions as a lazy layer during generation, we visualize the attention weights for 

 across all layers for all generated tokens in Figure 4, using a randomly selected sample

(additional examples are provided in Figure 7). Notably, for a given input prompt, layers that exhibit lazy

behavior maintain this pattern relatively consistently across tokens. This suggests a certain degree of

stability in attention dynamics throughout the generation process.

5. Methodology: SimLayerKV

In this section, we introduce our method SimLayerKV for reducing inter-layer KV cache usage in LLMs by

leveraging the concept of lazy layers to optimize memory ef�ciency across layers. Empirical observations

in Section  4 reveal that in certain layers, LLMs tend to take shortcuts by predominantly allocating

attention weights to the initial and most recent tokens, denoted as   and  , respectively. We

refer to these layers as lazy layers because they contribute less to modeling long-range dependencies

compared to non-lazy layers. Notably, whether a layer functions as lazy remains relatively consistent

given a speci�c input sequence. This consistency suggests that attention patterns can be predicted from

the allocation during the generation of previous tokens, enabling early identi�cation of lazy layers in the

generation process.

{ , }Xinitial Xrecent

{ , }Xinitial Xrecent

Xinitial Xrecent
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Based on our observations of lazy layers, we aim to optimize memory usage by trimming the KV cache in

these layers. Some existing approaches have attempted to optimize attention mechanisms at different

layers. For instance, Gemma 2[42]  employs a prede�ned mixture of full attention and sliding window

attention across different layers during training, treating certain layers as lazy layers. However, this

approach relies on a �xed, prede�ned structure and lacks adaptability to the input data. In contrast, our

method dynamically identi�es lazy layers based on their attention allocation patterns, without the need

for additional tuning or prede�ned settings. This dynamic identi�cation allows our model to more

�exibly optimize KV cache usage, adapting to different input data more ef�ciently. Our approach consists

of two components: identifying the function of each layer (i.e., whether a layer is lazy) and trimming the

KV cache in those identi�ed lazy layers.

5.1. Identifying the layer function

To apply SimLayerKV, the �rst step is to identify which layers function as lazy layers based on their

attention allocation patterns. Once these layers are identi�ed, we can proceed to trim their KV cache to

optimize memory usage. In the following, we detail our strategies for identifying the layer function.

Corresponding to the two stages of the inference process (i.e., pre�lling and decoding), we propose two

different identi�cation strategies.

1) Last tokens in pre�lling: We analyze the attention weight allocation when processing the last 

  processed tokens    to identify lazy layers during pre�lling. For each

layer  , we calculate the average attention weights directed toward the   and   for all tokens in 

. If this average exceeds a prede�ned threshold  , we classify the layer    as lazy; otherwise, it is

considered non-lazy. This can be formalized as:

where   represents the attention weight from token   to token   in layer   and the threshold   is a

prede�ned hyper-parameter.

2) First token in decoding: We assess the attention weight distribution when generating the �rst token 

  during the decoding phase to identify lazy layers. Speci�cally, for each layer  , if the attention

weights directed toward   when generating   exceed  , we classify the layer as lazy;

otherwise, it is not considered lazy. This can be formalized as:

wlast = { , ⋯ , }Xlast xm− +1wlast xm

l Xinitial Xrecent

Xlast δ l

Function[l] = {
lazy layer,

non-lazy layer,

if  ( ( ( , x))) > δ, (1)1
wlast

∑ ∈x̂ Xlast
∑x∈{ , }Xinitial Xrecent

Al x̂

otherwise,

( , x)Al x̂ x̂ x l δ

xm+1 l

{ , }Xinitial Xrecent xm+1 δ
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Remark. During the pre�lling stage, �ash attention[48]  is commonly used to accelerate computations.

However, �ash attention does not return explicit attention weights, making it challenging to apply the

lazy layer identi�cation strategy without recomputing the attention scores, which would introduce extra

computational overhead. In contrast, during the decoding stage, tokens are generated one at a time

without using �ash attention, making the attention weights readily available. This allows us to apply our

identi�cation strategy without extra computation. In our experiment (See Table  6), we �nd that the two

strategies perform comparably, with no signi�cant differences.

5.2. Cache strategy

Once lazy layers have been identi�ed, we proceed to trim the KV cache for these speci�c layers. Lazy

layers are characterized by their signi�cant attention allocation to a limited subset of tokens, namely 

. Thus we retain only the KV cache corresponding to these tokens within lazy layers.

This selective retention strategy is similar to approaches used in methods like Gemma 2[42], which also

retain KV cache for recent tokens in prede�ned layers.

Speci�cally, for any lazy layer  , we trim its KV cache by retaining only those of tokens in 

. Otherwise, we retain the full cache. This process can be expressed as:

where   represents the KV cache for layer  .

6. Experiments

In this section, we empirically validate that SimLayerKV can accelerate decoding while maintaining long-

text capabilities and uncover several insightful �ndings.

Function[l] = {
lazy layer,

non-lazy layer,

if  ( , x) > δ, (2)∑x∈{ , }Xinitial Xrecent
Al xm+1

otherwise.

{ , }Xinitial Xrecent

l

{ , }Xinitial Xrecent

Cache[l] = { (3)
{ , , , },Kinitial Vinitial Krecent Vrecent

full KV,
if~Function[l] = lazy layer,
otherwise,

Cache[l] l
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Table 1. Performance comparison of SimLayerKV and baseline methods on LLaMA-2-7B-chat, LLaMA-3-8B-

Instruct, and Mistral-7B-Intruct using LongBench. Bold denotes the best method, and the second best if the

top method is Full KV.

6.1. Settings

Baselines. To evaluate the effectiveness of our proposed SimLayerKV, we compare it against the following

baselines: 1) Full KV (Full): A method that retains KV cache for all tokens at each layer during generation.

2) Streaming LLM (Str.)[38]: An intra-layer KV cache reduction technique that keeps only the KV cache for

the �rst four tokens and the most recent    tokens at each attention layer during generation. 3)

MiniCache (Mini.)[19]: An inter-layer KV cache reduction method that merges KV cache of every two

adjacent layers after the model’s midpoint using spherical interpolation while retaining important tokens

to reduce cache storage. Additionally, for both MiniCache and our SimLayerKV, we evaluate their

performance when combined with 4-bit quantization[15] to assess their compatibility with quantization

techniques.

w
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Datastes and evaluation metrics. To evaluate SimLayerKV’s performance on tasks with long-context

inputs, we test it on the LongBench benchmark[27]  and compare the results with baseline methods.

LongBench is a multi-task benchmark designed to assess the long-context capabilities of LLMs,

consisting of datasets that span various tasks such as single-document QA[49][43], multi-document QA[47]

[50][45][44], summarization[46][51][52][53], few-shot learning[54][55][54][56], synthetic tasks[57], and code

generation[58][59]. For evaluation, we use the metrics recommended by LongBench. Additionally, we

provide the compression ratios for both the number of layers and memory usage of the KV cache. For

layers, the ratio is calculated as the total number of layers divided by the number of layers with reduced

KV cache. For the KV cache, the ratio is the original memory usage divided by the memory usage after

compression. Due to space constraints, we only include the performance of 16 randomly selected tasks

out of the 21 LongBench tasks in the main text. The performance on the remaining 5 tasks is provided in

Appendix A.3 Table 7.

We also evaluate whether SimLayerKV can preserve in-context retrieval capabilities while trimming KV

cache in lazy layers. The evaluation is conducted on the Needle-In-A-Haystack (NIAH)

benchmark[60]  including various types and quantities of needles, along with tasks such as aggregation

for common/frequent words, question answering (QA), and multi-hop variable tracing (VT), all provided

by the Ruler benchmark[28]. We report the performance of Mistral-7B-Instruct with input context lengths

of 4K, 8K, 16K, and 32K. The evaluation is conducted using the metrics recommended by Ruler.

Implementation details. Our experiments are based on widely used LLMs, speci�cally LLaMa2-7B-

chat[25], LLaMa3-8B-Instruct[5], and Mistral-7B-Instruct[26]. The input context window sizes are 4K, 8K,

and 32K, with average tokenized sequence lengths of approximately 13K, 10K, and 12K in LongBench. It is

worth noting that we do not use different thresholds for each task. Instead, we search for the optimal

threshold based on the synthetic Need-in-a-Haystack task and apply the same threshold across all tasks

in different benchmarks. The thresholds ( ) for the models are 0.65, 0.9, and 0.8 respectively. We adopt a

generative format where answers are produced using greedy decoding for all tasks. We chose the �rst

token identi�cation strategy during the decoding stage in our experiments. For MiniCache, as the code

was not open-sourced before our submission, we reimplemented it based on the original paper and the

SLERP[61] code it references. We followed all the hyper-parameters outlined in the paper, except for the

number of retention tokens. To ensure a fair comparison, we set the number of retention tokens to 1024,

matching the window size   used in our SimLayerKV method. Note that even with the same retention

δ

w
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window size, MiniCache’s compression ratio is still lower than that of our SimLayerKV as shown in

Table 2. All the experiments are conducted using NVIDIA A100.

6.2. Experiments on LongBench

Table 1 summarizes the performance across various tasks in the LongBench[27] benchmark, and Table 2

shows the corresponding compression ratio. We have the following �ndings:

Table 2. Comparison Ratio of layer and KV cache memory on LongBench.

The higher the ratio, the better the performance in terms of compression

ef�ciency. Bold denotes the method with the highest compression ratio.

LLMs exhibit redundancy across layers. Table  2 demonstrates that MiniCache and our SimLayerKV

achieve average layer compression ratios of 1.33  and 1.75 , respectively. Our SimLayerKV demonstrates

notably higher compression ratios in models with strong long-context capabilities (i.e., LLaMA-3-8B-

Instruct and Mistral-7B-Instruct) than in those with weaker ones (i.e., LLaMA-2-7B-chat). Meanwhile, as

indicated in Table  1, while MiniCache shows some limitations, our SimLayerKV allows the model to

continue effectively managing long-text tasks with minimal loss in performance (i.e., an average drop of

0.7%). After integrating 4-bit quantization, our SimLayerKV achieves a remarkable compression rate of

4.98   on average, while still maintaining robust performance. Compared to SimLayerKV without

quantization, the average performance drop is only 0.5%.

SimLayerKV outperforms MiniCache on average. Unlike MiniCache, our approach does not rely on

complex interpolation and retention strategies to merge KV cache from different layers. Instead, we

simply identify lazy layers based on the attention weight patterns and trim the KV cache in those layers.

Additionally, our method seamlessly integrates reduction into the decoding process. More importantly, as

shown in Table  1 and Table  2, our results show a clear advantage over MiniCache, whether or not

× ×

×
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combined with quantization, achieving 4.8% higher performance and a 1.29   greater KV cache

compression ratio, further emphasizing the ef�ciency and effectiveness of our approach.

Table 3. Performance comparison of SimLayerKV and baseline methods on Ruler benchmark using

Mistral-7B-Instruct. NIAH: Needle-In-A-Haystack. S: Single Key, MK: Multi-Keys, MV: Multi-Values, MQ:

Multi-Queries. CWE: Common Words Extraction, FWE: Frequent Words Extraction. QA: Question

Answering, VT: Variable Tracking. Bold denotes the best method, and the second best if the top method is

Full KV.

6.3. Experiments on Ruler

Table 3 summarizes the performance across various tasks in the Ruler[28] benchmark, with the context

length ranging from 4K to 32K. We �nd that SimLayerKV maintains strong performance on the Single

Key, Multiple Keys, and Multiple Values Needle-In-A-Haystack (NIAH) tasks, exhibiting minimal to no

degradation. For example, even with a 32K input context, SimLayerKV results in only a slight

performance drop of 0.47% compared to the full KV cache. Our method also performs well on the

Question Answering and Variable Tracking tasks, which involve long context capabilities similar to NIAH.

However, we observe a performance drop (8.2% on average) on the Mutliple Queries NIAH with

SimLayerKV. This may be due to the data-dependent nature of lazy layer identi�cation in our approach.

Ideally, varying the number of queries should lead to different layers being identi�ed as lazy and reduced

accordingly, but currently, the same layers are reduced regardless of the query count. Additionally, we

observe a similar phenomenon in aggregation tasks. Although the Common Words Extraction (CWE) and

×
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Frequent Words Extraction (FWE) tasks are quite similar, both aiming to return the top-   frequent

words in the context, our method shows a signi�cantly more pronounced decline in performance on

CWE. One possible reason is that, in the FWE task, the value of   is consistently �xed at 3, while in the

CWE task,   increases with the context length, making the task progressively more challenging for our

method.

Figure 5. Effect of threshold   on lazy layer identi�cation using LLama3-8B-Instruct: Increasing the threshold

results in more layers being identi�ed as non-lazy rather than lazy.

K

K

K

δ
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Figure 6. Different strategies for dropping KV cache at the layer level and their performance on LLama3-8B-

Instruct: 1) Full: Use full KV cache for all layers. 2) Pyramid: KV cache are progressively reduced as the layers

increase, forming a pyramid-like structure. 3) Random: Drop the KV cache in randomly selected layers within

the ranges  ,  , and  . 4) Our SimLayerKV (SLKV): Identify lazy layers during either the

pre�lling or decoding stages, and trim the KV cache accordingly. We keep a same number of dropped KV

cache for all strategies, except Full.

6.4. Ablation studies & analysis

Impact of threshold on lazy layer identi�cation. To assess the impact of the threshold   in identifying

lazy layers, we conduct an ablation analysis using the LLama3-8B-Instruct model, varying   from 0, 0.2,

up to 1. As illustrated in Figure  5, we observe that as the threshold increases, the model’s performance

shows little to no change or only slow improvement initially. However, after exceeding 0.6, the

performance improves rapidly, and by 0.9, it approaches the performance seen when the threshold equals

1 in most tasks. This indicates that as the threshold increases, the likelihood of accurately identifying and

trimming truly lazy layers increases, allowing the model to maintain high performance while reducing

unnecessary computations.

Effect of different strategies for dropping KV cache at layer level. As shown in Figure  6 (a-d), we

experiment with four different strategies. We ensured the same number of dropped KV cache for each

strategy, except for Full. The results shown in Figure 6 (e-f) indicate signi�cant reductions for Pyramid

[0, 16) [16, 32) [0, 32)

δ

δ
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and Random strategies, suggesting that the prede�ned expectations about each layer’s function may not

fully align with their actual roles. Moreover, the performance difference between SLKV-pre�ll and SLKV-

decode strategies is minimal, with only slight reductions compared to the full KV cache (0.20% and

0.28% on average, respectively). This indicates that both approaches are effective in reducing cache usage

while maintaining performance, regardless of whether lazy layers are identi�ed during the pre�lling or

decoding stages.

7. Conclusion

In this work, we introduced SimLayerKV, a simple yet effective method for compressing the KV cache in

LLMs. By identifying lazy layers and trimming their KV cache, SimLayerKV effectively reduced inter-

layer KV cache redundancies. Experiments on three different LLMs across 16 datasets from the

LongBench benchmark demonstrated that SimLayerKV, with only seven lines of code, achieves a KV

cache compression ratio of 5   with only a 1.2% drop in performance when combined with 4-bit

quantization. For future work, we aim to combine our inter-layer KV cache compression method,

SimLayerKV, with other powerful intra-layer compression methods like H2O[7]  to further enhance

performance and ef�ciency.

A. Appendix

A.1. Limitation

While our SimLayerKV has demonstrated signi�cant advantages in inter-layer KV cache compression, we

have primarily focused on combining it with quantization, as quantization is one of the most widely used

techniques. However, there are many other KV cache optimization methods, such as intra-layer eviction,

which are orthogonal to our approach. In this study, we have not explored the potential of integrating our

method with these techniques. In the future, we aim to combine our method with other optimization

strategies, to further improve performance and ef�ciency. This will help validate the effectiveness of our

method in a broader framework and potentially lead to even greater performance gains. Meanwhile, for

simplicity, we have only explored KV cache redundancies across layers in this work. In the future, we plan

to extend our approach to consider redundancies across attention heads as well.

×
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A.2. Pseudo code

The pseudo-code for SimLayerKV-pre�ll and SimLayerKV-decoding are in Table  4 and Table  5

respectively.

Table 4. Pseudo code in torch style for our SimLayerKV-pre�lling.

Table 5. Pseudo code in torch style for our SimLayerKV-decoding.
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A.3. Additional Experiments

Comparision with inter-layer KV cache compression methods & Additional LLMs

We also compare SimLayerKV with the inter-layer KV cache compression method SnapKV[9], which

compresses KV cache into a �xed length by selecting clustered important KV positions for each attention

head based on attention scores. We use two additional LLMs, i.e., Qwen2.5-3B-Instruct[62][63] and Yi-1.5-

9B-Chat[64]. Note that our SimLayerKV focuses on intra-layer KV cache redundancies while they study

inter-layer redundancies, and our approach is orthogonal to them. For the SnapKV method, due to its

head-wise KV eviction mechanism, it necessitates storing KV cache for    heads instead of the

conventional  , where   is the number of heads for query and   is the number of heads for key and

value. For models using the GQA technique,    and    is the group number. For examples, in

Qwen2.5-3B-Instruct and Yi-1.5-9B-Chat,   is equal to 8. To ensure a fair comparison and create relatively

similar conditions for each method, we standardize the size of recent windows    for SnapKV and our

SimLayerKv to 768 and 1024 respectively. As shown in Table 6, we can see that our SimLayerKV achieves

comparable performance with snapKV with a slightly higher compression ratio. Additionally, our method

and SnapKV are entirely orthogonal. We can simply apply SnapKV when pruning lazy layers. Exploring

the combination of the two methods in the future could be interesting.

nq

nkv nq nkv

= g ∗nq nkv g

g

w
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Table 6. Performance comparison of SimLayerKV and inter-layer KV cache compression

models on Yi-9B-chat-16K and Qwen2.5-3B-chat-32K using LongBench. SKV: snapKV.

Experiment results on other datasets on LongBench datasets

Due to space constraints, we only included the performance of 16 out of the 21 LongBench tasks in the

main text. Experiments result on additional 5 tasks in LongBench datasets can be found in Table 7.

qeios.com doi.org/10.32388/EPAI4T 20

https://www.qeios.com/
https://doi.org/10.32388/EPAI4T


Table 7. Performance comparison of SimLayerKV and baseline

methods on LLaMA-2-7B-chat, LLaMA-3-8B-Instruct, and Mistral-

7B-Intruct on additional tasks of LongBench.

A.4. Examples about layer behavior across tokens

Additional examples of layer behavior across tokens for a given input can be found in Figure  7. The

examples are randomly chosen from LongBench benchmarks. The analysis is conducted using LLama3-

8B-Instruct.
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Figure 7. Additional examples of layer behavior across tokens.
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