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This paper studies the constant p = [2;3,5,7,11,13,17,...] whose partial quotients are the prime
numbers. Our analysis emphasizes convergence properties and prime-indexed Engel/Egyptian
expansions, together with conditional estimates that depend on known error bounds for the
Chebyshev function J(z) under the Riemann Hypothesis. The growth of the convergent denominators
is framed by primorial products and by ¥, and the standard inequality for convergents implies an
irrationality exponent of 2. Under the classical conditional error term for ¥(z), the leading asymptotic
for log @, is sharpened at a square-root scale. The role of Engel and Egyptian expansions is twofold:
they provide prime-driven decompositions of the fractional part of p and a baseline for comparing
denominator growth against continued-fraction convergents. We supply computable upper bounds
for |p — P,/Q.], error audits for the first 25 convergents, high-precision digits of p, and comparative
plots linking log Q,, to ¥(p,1). The contribution is conceptual—an elementary framework that
connects prime-indexed partial quotients to +} and to classical Diophantine estimates—and empirical,
via a compact reproducibility bundle. All statements that reference the Riemann Hypothesis are

strictly conditional applications of known estimates for J(z).
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1. Introduction and Motivation

Continued fractions form a central tool in Diophantine approximation and dynamical number theory;
accessible introductions are available in standard references 1I2IBl When one imposes an arithmetic
structure on the sequence of partial quotients, the resulting constant often reflects that structure in the

growth of convergent denominators and in the quality of approximation. We consider the real number
p=1[2;3,5,7,11,13,17,19,.. ], (1)
whose tail runs along the odd primes in increasing order. A primary theme of this paper is the
comparison between log @, and ¥(p,+1), where @,, is the denominator of the nth convergent and
1 denotes the Chebyshev function. The identity log pf = J(p,,) is elementary but powerful; it converts a
product of primes into a sum of logarithms and opens the door to the prime number theorem [45] A
second theme is the behavior of the approximation error |p — P,/Q,| and the implication that the
irrationality exponent equals two, an inference that relies on the classical inequality for convergents Bl a
third theme is the connection to the Riemann Hypothesis through standard error terms for ¥ [oII7(8] A
final theme is the study of Egyptian and Engel expansions motivated by primes 1001 ang by earlier

computational explorations of prime-based continued fractions o

Relation to prior work. The preprint m investigated continued fractions whose partial quotients are
primes and reported computational observations. The present paper differs in two respects. First, it
develops a systematic connection to ¥ via the product bounds in Lemma 1 and derives the asymptotic
log Q. ~ pn+1 with a clearly identified error budget. Second, it isolates the approximation error behavior
and proves p(p) = 2 directly from the convergent inequality, thereby complementing the computational

viewpoint in an

2. Background and Notation

Let = [ag; a1, as, - - -] denote a regular continued fraction with convergents P, /Q,,. The recurrences
Pn = anPnfl + Pn72a Qn = anQn—l + Qn72a (2)

are classical 121, Theorem 1 below summarizes the standard two-sided error bound L. We write p,, for

the nth prime and pff = [Ii<, pr for the primorial; its logarithm equals the Chebyshev function
9(pn) = Y pep, logp L2

Lemma 1. For a regular continued fraction with partial quotients a;, > 1, one has
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e <@n<J](ar+1) forall-n>1. (3)

k<n k<n

Proof. Iterate Equation (2) and use @,_2 > 0 to obtain the lower bound; use @,,—» < @, for the upper

bound & O
Theorem 1 (Bl). Let = [ap;a1,az,...] be a regular continued fraction with convergents P,,/Q,,. Then for
everyn > 0,
1 ‘ e o LI (4)
(an+1 + 2)Q% Q" Ap+1 Q%
3. Denominator Growth and Chebyshev Links
Specializing Lemma 1 to the prime-indexed continued fraction yields
1
I(pn+1) <logQn < I(ppi1) + Z 10g<1 + _) . (5)
k<n Pr+1
Mertens’ estimates imply that the additive sum is O(loglogp,11) 131 Hence,
log Qn = 19(pn+1) +0 (IOg log P11 ) (6)

The prime number theorem gives ¥(z) ~ = Iﬂjﬂ, and therefore log Q,, ~ p,+1. Figures 1 and 2 illustrate

these statements; Figure 5 shows that log @, /pr+1 — 1.

4. Approximation Error and Irrationality Exponent

Applying Theorem 1with a,,,; = p, o vields

P, 1
p——| < . (7)
’ Qn DPn+2 Q%
The irrationality exponent admits the formula
. log an 1
plz) = 24 limsup, o 3B (8)

see [ Ch. 1). For p we have loga,.; = logpnis = O(logn) while log @, ~ p,+1 =< nlogn; hence
u(p) = 2. Figure 3 compares the upper bound with the measured error; Table 3 lists the first twenty-five

cases and reports the number of correct base-ten digits, which is visualized in Figure 10.
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5. Conditional Estimates Involving the Riemann Hypothesis

The role of the Riemann Hypothesis in this paper is limited to conditional estimates. In particular, we rely
on the classical error term for the Chebyshev function ¥(z) that holds under the assumption of the
Riemann Hypothesis. These bounds sharpen the asymptotic relation between log @, and p,, 1 , providing
a square-root scale refinement beyond the unconditional O(loglogp,1) term. It is important to stress
that such results are applications of known equivalences for 9¥(z) and do not constitute new evidence

toward the truth or falsity of the hypothesis.
dHz)=z+0 (\/Elog2 w), (9)
see [l and the explicit bounds in 78], Combining Equation (6) with Equation (9) gives

logQrn = ppi1 + O (\/pn+110g2 pn+1)~ (10)

The statements in this section are applications of known equivalences for ¥ and do not constitute new
evidence for the hypothesis. Figures 6 and 5 provide a numerical narrative consistent with the

conditional refinement.

6. Prime-Driven Egyptian and Engel Expansions

Every z € (0,1) has a unique Engel expansion z = - + 1

: Ly with b, nondecreasing B we apply
1 102

the algorithm to the fractional part of p and record the first dozen terms in Table 2. Figure 9 displays the

1

coefficients. For comparison, we consider the prime Engel series Y, , (p1---pr)  asin [m; partial

sums appear in Figure 4. Related prime-structured continued fractions were explored computationally

in L,

7. Computational Methods, Validation, and Reproducibility

Our computations implement Equation (2) directly and evaluate the infinite continued fraction bottom-
up at high precision. We cross-check the first twenty convergents and verify the recurrences
symbolically . The file rho high precisiontxt lists p to one thousand decimals. An anonymized
reproducibility bundle accompanies this submission in the directory code/, which includes a minimal
script to regenerate the key tables and a subset of the figures. A public archival link will be attached in the

camera-ready version consistent with the journal’s practice.
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8. Results and Discussion

Figures 1-10 summarize the numerical behavior. Figure 1 compares log Q,, with ¥(p,1); Figure 2 shows
their difference; Figure 3 compares actual errors with the classical upper bound from Bl Figure 4 and
Figure 9 contrast two prime-driven denominator growth mechanisms [o1no], Figure 5 and Figure 6 reflect
the proximity between log @,, and ¥(p,+1) suggested by [41[51, Figure 8 illustrates the settling of the
irrationality exponent near two; Figure 10 reports decimal precision. In contrast with ml, which
emphasizes computation for several prime-based patterns, the present work separates elementary
bounds that track +} from error estimates that are intrinsic to the continued fraction, thereby clarifying

which phenomena are robust across models and which are artifacts of a specific construction.

Tables and Figures with Cross-References

Table 1 lists the first twenty convergents; Table 2 lists twelve Engel coefficients; Table 3 audits errors.

Figures are placed at the end for readability.
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n P, Qn a,, (partial)
1 7 3 3
2 37 16 5
3 266 115 7
4 2963 1281 1
5 38785 16768 13
6 662308 286337 17
7 12622637 5457171 19
8 290982959 125801270 23
9 8451128448 3653694001 29
10 262275964847 113390315301 31
1 9712661827787 4199095360138 37
12 398481410904114 172276300080959 41
13 17144413330704689 7412079998841375 43
14 806185907954024497 348540036245625584 47
15 42744997534894003030 18480034001016997327 53
16 2522761040466700203267 1090670546096248467877 59
17 153931168466003606402317 66549383345872173537824 61
18 10315911048262708329158506 4459899354719531875502085 67
19 732583615595118294976656243 316719403568432635334185859 71
20 53488919849491898241625064245 23124976359850301911271069792 73

Table 1. First twenty convergents P,/Q,, and partial quotients a,, for the prime-indexed continued fraction.
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k by B =<1 b

1 4 4

2 4 16

3 117 1872

4 210 393120

5 548 215429760

6 935 201426825600

7 2128 428636284876800

8 3298 1413642467523686400

9 3434 4:854448233476339097600

10 4977 24160588858011739688755200

1 5102 123267324353575895892029030400
12 13894 1712676204568583497523851348377600

Table 2. First twelve Engel terms b, for the fractional part of p and their cumulative products By.

geios.com

doi.org/10.32388/EUWDo02



https://www.qeios.com/
https://doi.org/10.32388/EUWD02

n Qn bound 1/(a,,1Q32) actual [p — P,/Q,| | digits
1 3 2.222222E-2 2.029660E-2 1
2 16 5.580357E-4 5.367364E-4 3
3 115 6.874033E-6 6.741827E-6 5
4 1281 4.687685E-8 4.6347T1E-8 7
5 16768 2.092129E-10 2.076385E-10 9
6 286337 6.419356E-13 6.385087E-13 12
7 5457171 1.459947E-15 1.454451E-15 14
8 125801270 2.178873E-18 2.173207E-18 17
9 3653694001 2.416429E-21 2.411649E-21 20
10 113390315301 2.102066E-24 2.098855E-24 23
1 4199095360138 1.383263E-27 1.381570E-27 26
12 172276300080959 7.835748E-31 7.827440E-31 30
13 7412079998841375 3.872772E-34 3.869306E-34 33
14 348540036245625584 1.553169E-37 1.552050E-37 36
15 18480034001016997327 4.962979E-41 4.960016E-41 40
16 1090670546096248467877 1.378107E-44 1.377388E-44 43
17 66549383345872173537824 3.370056E-48 3.368524E-48 47
18 4459899354719531875502085 7.080950E-52 7.078097E-52 51
19 316719403568432635334185859 1.365613E-55 1.365113E-55 54
20 23124976359850301911271069792 2.367066E-59 2.366295E-59 58
21 1827189851831742283625748699427 3.608731E-63 3.607693E-63 62
22 151679882678394459842848413122233 £4.883757E-67 4.882530E-67 66
23 13501336748228938668297134516578164 5.655548E-71 5.654316E-71 70
24 1309781344460885445284664896521204141 5.771398E-75 5.770254E-75 74
25 132301417127297658912419451683158196405 5.546689E-79 5.545652E-79 78
geios.com doi.org/10.32388/EUWDo02



https://www.qeios.com/
https://doi.org/10.32388/EUWD02

Table 3. Error audit for n < 25: theoretical bound 1/(a,, Q3 ) versus actual |p — P, /Q,|, with correct

decimal digits.

Growth: logqg, vs. 9(pn +1)
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Figure 1. Growth of log g,, versus 9(py,+1)-
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Convergent error vs. bound (log-log)
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Figure 3. Actual convergent errors versus the classical upper bound 1/(a,,11Q32) on a logarithmic scale.
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Prime Engel partial sums
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Figure 4. Partial sums of the prime Engel series ), ., (p1 - - px )’1.
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Ratio logg,/pnr+1 tends to 1
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Figure 5. The ratio log Q,,/p,+1 tends to one.
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Difference to Chebyshev 8
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Figure 6. The difference log Q, — ¥(py+1)-
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g, relative to the primorial lower bound p7, ;
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Figure 7. The ratio Q,,/ pf 1 measures how far Q,, exceeds the product lower bound.
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Estimator for the irrationality exponent
3.6

3.4

3.0

2.8

2.6

—|Og|p - Pn/inllog n

2.4
2.2

20 1 1 I | | | |

0 D 10 15 20 25 30
n (first 30)

Figure 8. The estimator —log |p — P,/Q,|/log @, is consistent with u(p) = 2.
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Engel coefficients by for the fractional part of p
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Figure 9. Engel coefficients by, for the fractional part of p.
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Decimal-digit accuracy vs. convergent index n
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Figure 10. Decimal-digit accuracy of P,,/Q,, versus n.

High-Precision Value of p

rho = 2.

1- 50: 31303673643358290638395160264178247639668977180325
51- 100: 63402101244421445647317762722436953220172383281745
101- 15@: 30158200723602166215392264873100537277015671222068
151- 200: 54946746553641875807695292751508271179331644728572
201- 250: 14429997248718089692883287803610158268658025452518
251- 300: 75959989587338751034270027785201911407970444026598
301- 350: 54968883397536235101296872043310332602431368987056
351- 400: 13712460765398960478704029682329800625385198689759
401- 450: 32966072061038015630107111205800232441470113110012
451- 500: 44249363921959250340123425818345639722631066987774
501- 550: 26003859722732393725224303567167114519346803236594
551- 600: 59599609957495635296346859696527563391292255481382

601- 650: 42452823629299976568199482983987394850487534226537
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651- 700: 34722161752661998377073949321591394060873758968063
701- 750: 50717251666928278867779875481370054294397482926188
751- 800: 16988987127052431869477725146807687459967819147955
801- 850: 30760521001893498316317819593191534212590367436090
851- 900: 63056632261007500643033737914774608051975643359577
901- 950: 51085919271779161718793444828412312892367479007849

951-1000: 41406876995540006973571769556635649100449963499117

Statements and Declarations

Data and Code Availability

An anonymized reproduction bundle is included in code/. A public archival link will be added in the

camera-ready version.
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