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Home Energy Management Systems (HEMSs) help households tailor their electricity usage based on

power system signals such as energy prices. This technology helps to reduce energy bills and offers

greater demand-side flexibility that supports the power system stability. However, residents who

lack a technical background may find it difficult to use HEMSs effectively, because HEMSs require

well-formatted parameterization that reflects the characteristics of the energy resources, houses,

and users’ needs. Recently, Large-Language Models (LLMs) have demonstrated an outstanding

ability in language understanding. Motivated by this, we propose an LLM-based interface that

interacts with users to understand and parameterize their “badly-formatted answers”, and then

outputs well-formatted parameters to implement an HEMS. We further use Reason and Act method

(ReAct) and few-shot prompting to enhance the LLM performance. Evaluating the interface

performance requires multiple user–LLM interactions. To avoid the efforts in finding volunteer

users and reduce the evaluation time, we additionally propose a method that uses another LLM to

simulate users with varying expertise, ranging from knowledgeable to non-technical. By

comprehensive evaluation, the proposed LLM-based HEMS interface achieves an average parameter

retrieval accuracy of 88%, outperforming benchmark models without ReAct and/or few-shot

prompting.

1. Introduction

In the context of global decarbonization, the proportion of renewable energy sources such as wind and

solar is increasing[1]. However, these renewable sources have intermittent generation, which

challenges power system stability. Demand-side flexibility is acknowledged as an effective solution

and is currently being implemented in practice.
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Home Energy Management Systems (HEMS) represent a promising approach to enable demand-side

flexibility[2], which provides smart energy management for electricity generation, storage, and

consumption in smart houses while respecting users’ preferences[3][4]. There have been extensive

studies on HEMS. In[5] proposed an open-source software platform for integrated modeling, control,

and simulation of smart local energy systems, including HEMS. In[6] proposed a method that includes

users as key members of the HEMS, allowing them to plan the intended power consumption and

manage real-time deviations. In[7]  presented a grid-integrated system for energy management for

smart demand-side energy management. The effectiveness of existing HEMS models was extensively

discussed in[8]. In the literature, there has been extensive study of algorithm design for HEMS.

However, the practical implementation of HEMS requires input parameters that represent the physical

characteristics of home appliances, description of human behavior, and the user’s needs for comfort.

The required number of parameters can be high, and these must be well-formatted to be

understandable to the HEMS algorithms. This process can be time-consuming and demotivates the

use of HEMS[9]. Furthermore, non-expert users, particularly the elderly and those with limited

literacy, may struggle to identify the correct and well-formatted parameters.

A new opportunity is presented by Large Language Models (LLMs), which perform particularly well in

Natural Language Processing (NLP) tasks. This motivates us to use LLMs to retrieve well-formatted

parameters required for HEMS, by interacting with users in an easy-understanding and natural-

language way. Recently, LLMs have found applications for several power system tasks, including

modeling nonlinear power electronic circuits[10], detecting insulator defect[11], scheduling charging of

electric vehicles (EVs)[12], and performing power system simulation based on a user requests[13][14].

Using LLMs to facilitate the practical implementation of HEMS is a daily topic. Ref.[15] presented an

LLM-based system performing a discrete set of actions to manipulate home devices based on user

instructions. Ref.[16]  proposed a smart home assistant that creates and controls home automation

routines based on data sources.[15]  and[16]  implement systems that control home devices based on

user instructions. However, the proposed systems require a lot of user interactions for simple tasks

that will not permit efficient energy management. In this study, we propose an intuitive and flexible

LLM-based interface that helps retrieve the necessary and well-formatted parameters for a HEMS to

minimize household energy bills while fulfilling numerous user requirements. Specifically, we make

the following contributions:
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1. We propose and develop a user-friendly LLM-based HEMS interface designed to fetch

information through user–LLM interaction and convert it into a well-formatted form for

optimization. This interaction, conducted in natural language, minimizes the effort and

complexity of using HEMS.

2. We propose the use of ReAct and few-shot prompting to improve the LLM performance, and this

improvement is verified by case studies.

3. Assessing the interface performance involves conducting multiple user–LLM tests. To minimize

the effort in recruiting volunteers and decrease the evaluation time, we propose a method that

employs an additional LLM to emulate users with diverse levels of expertise, from highly

knowledgeable to non-technical.

The manuscript is organized as follows. Section 2 describes HEMS and lists the main necessary inputs

required for HEMS. Section 3 introduces the proposed LLM-based interface and depicts its key

features such as ReAct and few-shot prompting. Section 4 describes LLM users by defining the cosine

similarity metrics and the three user difficulty levels that will test the interface. Section 5 presents the

case study of the interface and the obtained results, showing that HEMS can be widespread when

coupled with an intuitive and flexible interface. Section 6 concludes and discusses directions for future

research.

2. Home Energy Management System

We consider a HEMS that minimizes the energy bill, by controlling devices such as electric heating,

electric vehicle charging, user schedule, energy provider, solar panels, and simulation period and

place (from which we obtain weather forecast and electricity price time series). This simple modelling

can be extended to consider more detailed aspects like a more complex user schedule in future work.

2.1. Model definition

The HEMS problem we consider optimizes the energy usage of flexible appliances over a time horizon

to minimize the user’s cost of energy, given constraints on how the appliances can be used. In our

HEMS model, the user can possess several electric vehicles (EVs), the user has a daily schedule that

defines when the user is home or not (   when the user comes back to his accommodation and 

 when the user leaves). We assume that while parked at home the EV can be charged. When the

user comes back from work, his EV has a low battery, and when the user leaves in the morning it is

tarrival

tdeparture
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assumed his EV must be fully charged. In addition, the user also wants the house temperature to be

between a minimum and maximum value. The model is more precisely described in the section 7.1 of

the appendix.

3. Methodology

In most systems, users need to parameterize the HEMS by themselves (Fig. 1 step A1), which takes lots

of time and can lead to input errors and control errors (Fig. 1 step A2). On the one hand, asking the user

to provide too many precise parameters like EV capacity and usage schedule, will diminish the HEMS

democratization as the learning curve will be too steep. On the other hand, asking for too little

information will result in a non-tailored consumption energy schedule.

LLMs have exhibited versatile language understanding and prominent information retrieval ability in

various contexts[12][14]. Therefore, we propose to include LLM as an extra interface between users and

HEMS. This paper considers a system with three main entities: the Home Energy Management System

(HEMS), the LLM agent, and the user. We aim to design an LLM-based interface that retrieves all

necessary user information, stores it in a correct format, and then sends the formatted inputs to the

HEMS, to obtain the optimal electricity energy schedule. Fig. 1 shows the high-level flowchart of our

interface from user–LLM interaction where the user can provide badly-formatted parameters to the

LLM like a textual description of its schedule instead of a formatted date (step B1) to the

parametrization of the HEMS with the translated user preferences into HEMS formatted inputs (step

B2) and the control of user appliances (step B3).
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Figure 1. High-level interface LLM-HEMS flowchart Sub-flowchartA, current Home Energy

Management System (HEMS) requires well-formatted parameters from the User. After that, the HEMS

controls the different appliances of the user’s house to optimize the energy schedule while respecting

users’ preferences. Sub-flowchart B illustrates the proposed LLM-integrated system. The LLM agent

first interacts with the user by asking well-oriented questions. The LLM agent extracts the badly

formatted preferences from the user’s answers and converts them to fit the HEMS requirements.

Finally, the HEMS can control the user’s appliances as the user wants.

3.1. Integration of LLM

To use the HEMS problem defined in section 2, one needs to know the user’s schedule (arrival and

leaving time), its preferences (minimum and maximum temperatures, start and end date of

simulation), and characteristics like the number of electric vehicles he owns (see Table 4 in the

appendix). This is the job of an LLM-based agent that we will define in this section.

The interface needs to understand user stylometry, user dwellings specificities, user energy

management preferences, user energy Home Energy Management System (HEMS) understanding.

The user answers can contain vague information. Classical NLP models are not capable of performing
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on these wide ranges of complicated tasks or require huge efforts in fine-tuning, that is why using an

LLM is required.

In sub flowchart B of Fig. 1, the LLM-agent interacts with the user (step B1) and the HEMS (step B2).

The LLM agent must be able to communicate with both entities. To do so, we provide communication

functions or tools that are all stored in a toolkit object. Each tool is described in the LLM agent

instantiation prompt with the function of the tool, its inputs, and outputs. We want our LLM agent to

be able to ask questions to a user based on a task, retrieve the wanted information from the user’s

answer, and store the retrieved parameters. To do so, we allow our LLM agent to use several tools such

as   and   which will enable better communication between the user and the LLM agent

and between the HEMS and the LLM agent. To properly use those tools, the LLM agent will have to

generate function calls by providing the name of a tool and its input. The LLM agent will have to

choose in the tool list to which it has access, by understanding the most appropriate tool to solve the

problem it is currently working on. This method is known as function calling[17].

We need our LLM agent to generate very precise texts for function calling, to do so we will provide

examples which is a common practice. The few-shot prompting technique[18] consists in adding one

or several task-solving examples, giving more information to the LLM agent after the agent prompt

template (see left of Fig. 2 in the appendix). This will give more context to the LLM agent and diminish

hallucination.

3.2. ReAct

Many methods of prompt engineering have been developed to get the most out of LLMs in NLP tasks.

In this study we have chosen to focus on ReAct[19]. This method gives a ReAct prompt to the LLM to

generate both reasoning traces and task-specific actions in an interleaved manner. This allows the

system to perform dynamic reasoning to create, maintain, and adjust plans for acting while enabling

interaction with external environments to incorporate additional information into the reasoning. The

LLM agent will break down its tasks into smaller goals to increase its success rate (see right of Fig. 2).

In the agent prompt template (see Fig. 10 in section B.1 of the appendix) given to the LLM agent type 

, we first describe the main goal of the LLM agent (line 1), the tools and their

description (lines 1 and 5), and then the format rules it must follow for function calling (lines 3 to 13)

and for ReAct (lines 15 to 27). After receiving a task, the LLM agent will have to rephrase it, then think

about the first objective it must fulfill, and act to complete it by generating a correct JSON object that

ask_user store

React + example
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will be parsed to call a function. If the JSON blob is correct, the output of the function will be given to

the LLM agent as an observation. The process continues until the LLM agent thinks that the task is

completed.

4. LLM user

For testing purposes, we have designed an LLM to operate in the place of a real user to gain testing

time and model various behaviors. In the following paragraphs, we will refer to this LLM as the user.

To simulate the diversity of LLM agent–user interaction, we set a high LLM temperature (0.8 in our

tests) that allows for more diversity by increasing the weights of less likely LLM-generated words. The

LLM user is given personal information that an LLM agent will try to retrieve by asking questions. The

user prompt template is fairly simple and follows the same rules as the agent prompt template, such

as goal description, context, and rules.

As in a real-life scenario, user behavior can be very different from person to person. We tried to model

different users by giving them different prompts that will imply different answers to the LLM agent’s

questions. To design the user prompts, we used synonyms and changed the formats while also adding

noisy information. We have defined three levels of difficulty for the LLM agent. In the easy mode, the

user’s answers are considered simple and to be exactly what the agent asked for (ex: date format). We

define user precision as the quality of the user’s answers. It measures how badly formatted the

answers of the user are (see Fig. 1). The user precision diminishes with the user difficulty mode. The

user precision evaluation methodology is described in section A.3 of the appendix.

Difficulty Easy (E) Medium (M) Hard (H)

Score 0.98 0.94 0.84

Table 1. Average cosine similarity score per difficulty level

5. Results

In this section, we present results demonstrating the performance of the proposed LLM-based HEMS

interface. First, we explain and justify the settings used for the HEMS, the LLM user, and the LLM
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agent in our case studies. The experimental setup of the study is detailed in section A.4 of the

appendix.

We have chosen to make the LLM agent retrieve parameters of different types to check its

generalization capability (see Tab. 4). To test the added value of ReAct and the few-shot prompting,

we developed three agent types:  ,  , and  . All three use function

calling to interact with the user and the HEMS, so they can all "Act" by deciding to use a

communication tool. To evaluate the importance of function calling, we developed agent type   that

does not receive any example of how it should solve tasks. To evaluate the importance of ReAct, we

implemented   agent type. It receives an example in its prompt of how it should solve

tasks but does not follow the ReAct methodology which forces the agent to think and adapt to the

results of its last action. An HEMS parametrization systems result is presented in Fig. 5 in the

appendix. It refers to a user-optimal energy management scenario. Based on our price data the user

paid around 16£. If he had consumed the same amount of energy without taking into account energy

price fluctuation, he would have paid around 31£ which is a 48% energy cost reduction.

We have tested our interface with three different LLM versions of MistralAI’s LLMs on 20 tests for

each difficulty level[20]. For notation simplicity, we respectively denote models OpenHermes-2.5-

Mistral-7B, Mistral-7B-Instruct-v0.2, and Mistral-7B-Instruct-v0.3 as V1, V2, V3. Each LLM agent

type was tested for all user difficulty modes Easy, Medium, and Hard (denoted as E, M, H). We want

our LLM agent to store a value for all eight parameters at each test. To monitor the test’s success, we

will compute the accuracy of our interface. For each test, we will check if the parameters stored by the

LLM agent are exactly the expected ones as these parameters are going to be used by the home energy

management system that is inflexible: for example "Oxford" is different from "OXFORD" if you want

to then use this city name to look up weather forecast data. As described in section 4, we instantiate

the LLM user with a prompt template of a given difficulty and personal information. For each test, we

will store the user’s personal information and the parameter the LLM agent stored by himself and we

will count this test as a success if the parameters are exactly the ones retrieved by the agent.

We have defined a home energy management system that simulates the electric house consumption of

a person (section 2). We can model different user behaviors with an LLM (section 4) and we can

extract parameters with an LLM agent (section 3). For more detail on the parameter retrieval

procedure, see section A.4 of the appendix.

Act Act + example ReAct + example

Act

Act + example
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5.1. Parameter retrieval effectiveness

To better test the reliability of the interface, we need to run more tests to fully evaluate the strengths

and limits of our work. Tab. 2 shows each agent type’s average accuracy per difficulty level. Overall,

the V2-powered LLM agent achieved the best results (except in Easy mode). The accuracy of all LLMs

is decreasing with rising difficulty, demonstrating the importance of user precision in extracting

parameters. We observe that agent type   is performing worse than   which performs

slightly worse than   (except for Model V3 in Hard and Medium). Thus, it highlights

the significance of examples in prompts and the added value of ReAct compared to Act-only.

With Fig. 6 in section A.4 of the appendix, we see the significance of ReAct and few-shot prompting

methods in our context which defines a faster and more accurate agent. V2 with    and V2 with 

  are slow, and the proposed V2 with    is faster and requires fewer

questions. Even though agent type    has similar accuracy (see Tab. 2), this method

requires more user questions than the    method in every difficulty level. As a

reminder, an iteration is the process of asking the LLM agent to solve a task, i.e. to retrieve a

parameter. Sometimes, the LLM agent fails to store a value, so it needs more than eight iterations to

find all eight parameters.   method is by far the longest method in terms of iteration and, therefore

also in duration. We observe that   performs better than    in all three

difficulty levels. Fig. 6 also shows that model V1 is far slower than models V3 and V2 and requires more

iterations and questions.

Act Act + example

ReAct + example

Act

Act + examples React + example

Act + example

ReAct + example

Act

ReAct + example Act + example
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LLM Agent Type Easy (E) Medium (M) Hard (H)

V1

Act 70.6 63.1 53.1

Act+example 85.6 74.4 65.6

ReAct+example 97.5 84.4 73.1

V2

Act 89.4 82.5 70.6

Act+example 95 83.75 77.5

ReAct+example 96.9 87.5 78.8

V3

Act 88.1 83.1 74.4

Act+example 89.4 78.8 68.1

ReAct+example 91.9 86.3 69.4

Table 2. Accuracy (%) for different agent types and difficulty levels.

6. Conclusion

With this study, we have moved toward the democratization of home energy management systems.

We have developed a representative use case of a single home-owner interaction with an LLM agent

that enables a person without technical knowledge to specify key parameters for home energy

optimisation. The    LLM agent has shown remarkable adaptability by being able to

retrieve parameters with different levels of user precision with higher retrieval accuracy and a smaller

number of questions than with other methods.

Several leads can be exploited to correct the current limitations of our interface. Inferring more

technical parameters for a more accurate HEMS like window-to-wall ratio or house orientation from a

user non-technical description, user photos and house plan would make our approach more relevant

as they can be easily obtained from a user and can provide much information the user may not be able

to render to the LLM agent directly. Such tasks may require a multi-modal LLM. LLMs can provide

extended user interactions. LLM-based user interactive systems can benefit from API integration like

web searches or classical NLP approaches. We think that NLP algorithms and LLMs are

ReAct + example
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complementary and could be combined in future work in a faster and more efficient HEMS

parameterization approach. User testing is essential to validate the usability and effectiveness of the

LLM-based HEMS. The LLM-user introduced in this study models a wide variety of user behavior,

pushing the LLM-agent to its limits and thus providing a solid testing approach. However, while our

proposed LLM-based approach enables efficient testing, future efforts should incorporate pilot

studies in diverse real households to gather feedback, evaluate performance, and refine the system for

broader and more practical adoption. In future works, a more reliable LLM-based system should be

tested with a large corpora of real independent users to fully evaluate the capabilities of the system.

The test results will provide new objectives and highlight key points that will need to be addressed.

We might also want our LLM agent to take action based on its understanding of the user behavior, to

be able to propose more adapted consumption strategies and explain them to the user. Being able to

answer user questions, like "What should I do to diminish my electric bills ?" or basic ones on the

algorithm documentation, would be a plus. One can imagine a multi-modal interface that could be

combined with Retrieval-Augmented Generation to retrieve information from a range of data sources.

In the case where a parameter has not been retrieved like house thermal characteristics, we can

imagine an interface where the LLM agent could cross reference incomplete textual information from

the user with other sources, such as online information about similar buildings or sensor readings.

Appendix A. Additional resources

A.1. HEMS

Here we present in detail the model behind the HEMS of the study with Eq. 1. The solar-generated

electricity is directly consumed by user appliances, and if solar panels produce more energy than

needed, the surplus is sold as highlighted in (Eq. 1d). Prices depend on the user’s energy provider. The

function the HEMS minimizes is defined in (Eq. 1a) and its variables are described in Tab. 3. We define 

 the total power the user is consuming at time t in (Eq. 1c). We did not consider V2G (the process

of feeding the energy stored in an electric vehicle’s battery back into the National Grid), which is why

in (Eq. 1e)    is always positive. (Eq. 1f) is the EV charging formula. (Eq. 1g) and (Eq. 1h) are

respectively the start and end condition constraints. The temperature evolution formulas and

parameters in (Eq. 1i) and (Eq. 1j) are taken from[21].

(t)pt

PEV
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Variable Description Unit

total power consumption kW

heating power kW

EV(s) charging power kW

power consumed by other appliances kW

solar-generated power kW

consumption electricity price £/kWh

feed-in price of solar energy £/kWh

EV energy kWh

house temperature °C

outdoor temperature °C

thermal capacitance kWh/°C

thermal resistance °C/kW

coefficient of performance 1

Table 3. Variable description

Based on our HEMS in (Eq. 1), Tab. 4 describes all the parameters that are required to define the

( (t) − (t))π(t)min
,pheat pEV

∑
t=1

T

pt Ps

s.t. ∀t = 1, . . . ,T

(t) = (t) + (t) + (t)pt pheat pEV Pother

π(t) = (t) (t) + (t) (t)πe 1 (t)≥ (t)pt Ps πs 1 (t)< (t)pt Ps

(t) ≥ (t) ≥ (t)PEV_max pEV PEV_min

(t + dt) = (t) + (t)dtEEV EEV pEV
( ) =EEV tarrival Einit

( ) =EEV tdeparture Efully_charged

(t + dt) =Thouse dt(β (t) + α( (t) − (t)))pheat Text Thouse

+ (t)Thouse
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Cth

Tmax Thouse Tmin

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)
(1g)

(1h)

(1i)

(1j)

pt

pheat

pEV

Pother

Ps

πe

πs

EEV

Thouse

Text

Cth

Rth

η

qeios.com doi.org/10.32388/EVPWM7 12

https://www.qeios.com/
https://doi.org/10.32388/EVPWM7


HEMS’s optimization problem and obtain the optimal consumption energy schedule. For example,

with the user’s location and the simulation period we can extract the outside temperature data and

solar power generation[22][23]. There are many parameters of different types (dates, integers, floats,

and strings). Each input needs to be perfectly formatted to be then used by the nonflexible HEMS in its

optimization process. For a user without experience in HEMS or for the elderly, it is important to

provide an easy-to-use interface while interacting with HEMS. An autofill interface could easily

gather simple information but it can lack clarity for someone without experience. For example, a user

may want to express his preferences in a detailed sentence that a single input cannot fully represent.

Some parameters’ names can also be confusing and too long parameter documentation can make the

user puzzled. Ideally, a user should be able to precisely parametrize an HEMS with ease without being

overwhelmed by the complexity of the required information. Parameters of Tab. 4 symbolize the

information that can be expected from the user for the HEMS. Being able to easily retrieve them is key

to addressing the complexity of HEMS parametrization.

A.2. ReAct

In this section, we detail the different components behind the ReAct agent of our HEMS

parametrization system. The interface flowchart diagram shown in Fig. 2 describes with more detail a

parameter retrieval of agent type   which is symbolized by steps B1 and B2 in Fig. 1.

The LLM agent has to find each one of the user parameters thanks to the user’s answers to the LLM

agent’s questions.

As shown in Algorithm 1, the React algorithm of our interface starts by initiating the LLM agent with a

prompt template and a task (line  ). The algorithm stops when the maximum number of iterations is

reached or when the LLM agent has found and stored the desired parameter that can be checked with

the    function (line  ). The LLM agent will generate texts containing the

Thought/Action/Observation format (line  ). The generated response is parsed. If the format is

respected, the parser will output the result of the function called in the LLM-generated JSON (line  );

otherwise, the parser will output an error message. In each case, we concatenate the newly generated

text and the parser’s output into the agent prompt (line  ). Upon completion, the algorithm returns

the stored value of the LLM in case of success.

React + example

2

is_done 3

5

6

7
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Algorithm 2 describes the interface in detail. A toolkit object containing the communication tools with

the user and the HEMS is instantiated (line  ). It creates its tools’ description that we will give to the

LLM agent. The algorithm stops when the LLM agent has found and stored every desired parameter

which can be checked with the    function (line  ). At each step, the LLM agent is

instantiated with a prompt template and a toolkit (line  ). Then, we ask the LLM to solve a task (line 

). After, the algorithm updates the task list (line  ). Finally, the HEMS function is called with the

retrieved parameters. The HEMS function solves (Eq. 1) to obtain the user’s optimal energy

consumption schedule and setpoints for the controllable devices.

2

is_complete 3

5

6 8
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Figure 2. Interface flow diagram of React retrieval. The LLM agent first receives a prompt that is divided

into four parts: Rules specifying the format it must follow, a Toolkit containing the communication tools

the LLM agent can use when acting, an Example providing a hint about the expected work, and the actual

Task it must solve. Step B1 is performed by calling the function "ask_user" with the user question as

input, which outputs the user’s answer. In Step B2, the LLM agent sends a formatted parameter to the

HEMS by calling the function "store". This function returns a validation message when the parameter has

the correct format.When all parameters are found, the HEMS can control the user’s appliances in Step B3.

A.3. User

We used the embedding model all-MiniLM-L6-v2, a powerful derivative of the MiniLM developed by

Microsoft Research[24]  to compute embedded the different textual data (user’s answers and the

perfect answers). We used Mistral AI instruct model V2 to generate the answers of the LLM user[20].

All LLM starts by embedding a sentence into a vector before generating the following words of the

prompt. In this vector space, two sentences with similar meaning will have a similar vector. To

quantify user precision, we want to compute a vector similarity metric between a perfect answer that

is concise and respects the wanted format and our user answer. We computed the cosine similarity

metric to quantify user answer precision in different difficulty modes[25]. For example, to the question

"How many electric vehicles do you own ?", we define the perfect answer as "I own 2.". For some

parameters such as the number of electric vehicles or EVs (see Tab. 4), a very concise answer might

not fully represent the context of the sentence (electric vehicles in the example and not solar panels).

Thus, we need to add the context of the answer -which is the question here- to obtain the full

meaning of the user’s answer. Therefore, to compute user precision, we compute the cosine similarity
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between the embedding of both the question and the user’s answer in all three difficulty modes

compared to the embedding of the same question and the perfect answer.

The similarity equation between LLM-user and defined perfect answers is presented in Eq. 2.   is

the answer of the user to question  ,   is the best answer to question   and   is the embedding

function.

We ask the LLM 20 times eight simple questions -that refer to each one of the eight parameters

described in table 4- in each difficulty level, to get a sample of answers from which we will evaluate

the average user precision. For example, to evaluate user precision for parameter    in difficulty

mode "easy E", we give the LLM Fig. 12 (see section B.2 of the appendix) and we ask the LLM this

question "How many electric vehicles do you own ?" several times. Then we compute the cosine

similarity between the embedding of the question and the generated answers and the embedding of

the question and the perfect answer ("I own 2 electric vehicles." in the example). Tab. 1 shows that the

hierarchy between the three difficulty modes is respected. Indeed the answers generated by the LLM

user in easy mode are more similar to the optimal answer than those in medium mode.

Fig. 3 highlights that for all parameters the cosine similarity score of the LLM user difficulty mode

Easy (E) is greater than the score in mode Medium (M) except for date parameters. Overall, there is a

greater similarity between the user’s answers in easy mode and the defined best answers rather than

with mode medium and hard. The hierarchy is respected. In the user prompts for easy mode, we ask

the LLM user to use the YYYY/MM/DD date format, and in medium mode, we ask the LLM user to use

the DD-MM-YYYY format. The date tasks tell the LLM agent to store the date in YYYY/MM/DD format.

So the answers in easy mode will not require conversion. Thus, the medium mode requires more work

from the LLM agent. However, the embedding model does not take into account those different date

formats in its final answer embedding. That is why for date parameters, mode easy and medium

scores are close.

A(Q)

Q (Q)A∗ Q f

cosine(Q) =
f(Q + A(Q)) ⋅ f(Q + (Q))A∗

∥f(Q + A(Q))∥∥f(Q + (Q)∥A∗
(2)

EV
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Figure 3. Average cosine similarity score of user precision. This figure shows the cosine

similarity score between a typical user answer and a perfect precise answer for each

difficulty mode.

A.4. Results

To model the electricity consumption of several appliances of the HEMS, we used the dataset provided

in[26]. We use the parameter settings in Tab. 5[21] for the temperature evolution formula (Eq. 1i) with 

 as we use electric heating and not a heat pump and we increased the thermal resistance to model

a well-insulated house.

Parameter Description Value Unit

thermal capacitance 2 kWh/°C

thermal resistance 10 °C/kW

coefficient of performance 1 1

Table 5. Typical parameter values for residential heating

As described in section 3 with Fig. 1, the interface starts with step B1: the user–LLM agent interaction.

η = 1

Cth

Rth

η
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To perform this stage, we need to instantiate the LLM agent with its prompt (see appendix Fig. 10 in

section B.1 and section 3) and a task. The LLM agent receives the task "Find the user’s city in the

United Kingdom and store it (city must be a string)." associated parameter   (see Tab. 4). The LLM

agent will generate Fig. 4. In line 1, the agent rephrases the main task. In line 2, the agent first decides

to fulfill its first goal, i.e. to ask a question to the user in lines 3 to 9. The user answers with line 10.

Here the first step B1 of Fig. 1 is completed, the agent has received badly formatted information from

the user (instead of just answering "Oxford", the user decided to give extra noisy information). Then,

the LLM agent decides to store this information in line 12 and use the tool "store" to do so (lines 13 to

19). It receives a validation message in line 20, completing step B2 of Fig. 1. Finally, the LLM agent

understands that its main task is fulfilled and ends its text generation.

Figure 4. LLM agent retrieval example

After having successfully retrieved all user information and formatted it in a HEMS-compatible

format (see right part of Fig. 2), the HEMS will compute the optimal consumption energy schedule.

Fig. 5 shows the whole user-LLM interaction process from the user’s perspective and the HEMS

output: the most cost-efficient control of electric appliances while fulfilling the user’s constraints.

Fig. 5c shows that when the user leaves his house the car(s) battery is full. The car is charged when the

city
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user is back home. The HEMS charges the car only when the electricity price is low allowing the user to

use his car as he wants while diminishing his bills. With Fig. 5d, we can check that the temperature

constraints are also validated as   is between   and   values. Also, in the low price period,

the HEMS heats the house to the   limit, to heat less when electricity is more expensive.

Figure 5. The interaction process of the LLM-integrated HEMS from a user’s perspective. The Agent-

User interaction text box describes a typical usage of the interface. From the user’s answers, the LLM

agent stores the formatted parameters in text box Formatted HEMS inputs. The HEMS computes the

optimal energy consumption schedule in Fig. 5. Fig. 5a depicts the electric price evolution over time which

is an Economy 7 setup. Fig. 5b describes the consumed power evolution over time for heating (square

marker orange), EV charging (x marker blue), other appliances (o marker red), and solar-generated power

(dashed green). The yellow shaded areas represent when the user is home or not. Fig. 5c represents electric

vehicle(s) batteries over time. Fig. 5d describes the outside temperature (x marker purple) and house

temperature (dashed green) evolution over time.

Thouse Tmin Tmax

Tmax
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Fig. 7 show the average accuracy of the   agent for each parameter. It can be seen that

the LLM agent struggled the most with    and    parameters. The models had trouble

handling Celsius degrees and hallucinated by doing conversions even though it was not required in the

given tasks. Temperature parameters are described to the LLM user in this way:

easy: minimum house comfort temperature: $TMIN °C maximum house comfort temperature:

$TMAX °C

medium: Your house comfort temperature is between $TMIN °C and $TMAX °C.

hard: You like to set your house thermostat to be between $TMIN and $TMAX degrees Celsius.

By mixing the temperature information in one sentence for difficulty mode medium and hard, the

LLM user tends to add those two pieces of information or mix them in its answers to the LLM agent

questions. That is where the LLM agent fails to extract the precise value. For example to the LLM agent

question: "What is your preferred maximum house temperature?", the LLM user in medium or hard

mode can answer "My preferred maximum house temperature is between 18 and 19 degrees Celsius".

In this particular case, the LLM agent may get confused and store 18.5 instead of 19. Here, the user’s

answer is imprecise, so the LLM agent interprets that any values between 18 and 19 are correct.

However, the LLM agent should understand that it needs to ask a second question to clarify the user’s

preference. From the different tests we have run, we observed that the LLM user tends to be more

concise when asked about   which greatly helps the LLM agent. We conjecture that the LLM user

is more precise with  , because the minimum temperature is the main concern when heating your

house, which may be more expressed in the datasets used by LLM developers to train LLMs.

ReAct + example

Tmin Tmax

Tmin

Tmin
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Figure 6. Boxplot distribution of test results for model V2. Subgraphs of column 1 (Fig. 6a, 6d, 6g)

represent the boxplot distribution of the number of questions asked by the model to retrieve a single

parameter for each difficulty level with three different agent types. Subgraphs of column 2 (Fig. 6b, 6e, 6h)

depict the boxplot distribution of a single parameter retrieval duration in seconds per difficulty level.

Subgraphs of column 3 (Fig. 6c, 6f, 6i) represent the boxplot distribution of the number of algorithms

iterations required by the agent to retrieve a single parameter for each difficulty level. Subgraphs of row k

(1,2 or 3) refers to the results obtained with LLM version Vk. Agent types  ,  , and 

 are symbolized by blue diamonds, red stars, and green circles.

ReAct + example Act

Act + example
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Figure 7. Accuracy for each parameter with   This figure represents

the rate of retrieval per parameter per difficulty level for each LLM. E, M, and H

respectively stand for Easy, Medium, and Hard difficulty levels. The models tend to

underperform with temperature parameters ( ,  ) and with dates (

,  ).

Appendix B. Prompts

B.1. LLL-agent prompts

In this section, we describe the agent prompt template of Fig. 10, used for the   agent

type. As mentioned in section 3.2, we first describe the main goal of the LLM agent (line 1). We chose to

keep this first line simple for a shorter prompt. Then, the prompt continues with the tools list and

their description (lines 1 and 5). Here the value $TOOL_DESCRIPTION is replaced by Fig. 8. The format

rules it must follow for function calling are described on lines 3 to 13. We added two redundant

messages on the type correctness of the "action_input" key after having experienced several failures

due to this error. The LLM had trouble handling double quotes when working with strings. Line 5 was

added to make the LLM remember the importance of using correct action names in the JSON blob. The

ReAct rules on lines 15 to 27, follow a classic ReAct implementation. We used the keywords

"Observation:", and "Final Answer:" as generation-stopping criteria, respectively to parse the LLM-

generated text and then call the appropriate function, and to check if the task is successful.

ReAct + example

Tmin Tmax

date_end date_start

ReAct + example
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Figure 8. Tool description

Fig. 10 is then formatted into a chat template segmenting the agent prompt template, the example,

and the current task. Such a format allows the LLM to understand its goals, examples, and current task

fully. Fig. 9 describes the used chat template. Each part starts with the keyword "<|im_start|>" and

ends with the keyword "<|im_end|>" to make the LLM understand the chat template segmentation.

Each part is then composed of a role (system, agent, or assistant) defining the purpose of the part.

"System" refers to LLM agent instructions. "Agent" is the LLM agent, so each text generated by the

LLM agent will have the role "agent". "Assistant" is the role giving tasks. It is not an LLM but a part of

the initialized prompt. For example, for each HEMS parameter retrieval, the "Assistant" could be:

"Now you need to retrieve the minimum temperature". After the role comes the content:

$PROMPT_TEMPLATE, $TASK_EXAMPLE, $EXAMPLE, $TASK, respectively replaced by the actual

initialized agent prompt template of Fig. 10, a task example like "Find the user’s number of solar

panels and store it (number must be an integer).", how should the LLM solve this task, the current

task the LLM should solve. For agent types    and    the agent prompt template is

shorter (no need to describe the thinking process at each step) and the chat template is without

example for agent type  .

Act Act + example

Act
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Figure 9. Agent chat template
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Figure 10. Agent prompt template

In case the JSON blob parsed from the text generated by the LLM agent is not correct, the parser will

return an error message (see Fig. 11). This message sums up the LLM agent’s mistake, replacing

keyword $ERROR with the actual Python error message (line 2). Then two recalls are given on type and

function name correctness.

Figure 11. Error message

B.2. LLL-user prompts

In Fig. 12, 13 and 14, $CITY, $EV, $TMIN, $TMAX, $ARRIVAL_TIME, $LEAVING_TIME, $DATE1 and

$DATE2 are replaced with the random values for each test in a format that depends on difficulty level

(for example, with date values, "2024/10/18" in easy mode and "October, 18th, 2024" in hard mode).

All three prompts start with the main task of the LLM user (line 1). Then, we describe the user personal

information we want our LLM user to answer with (Fig. 12 lines 4 to 11, Fig. 13 lines 4 to 10, and Fig. 12

lines 4 to 9). Along those lines, we give the same information to each LLM user in all three difficulty

modes, but we change the format of this information and we have added noisy information in harder

modes so that the user answers will contain too much information for the agent and its parameter

retrieval will be harder. Finally, we add each prompt with rules to follow when answering (Fig. 12 lines

13 to 14, Fig. 13 lines 12 to 13, and Fig. 12 lines 11 to 12). Notice how the rule precision diminishes with

the rising difficulty. We even force the LLM user to generate a more complex answer in Fig. 13 and 14.
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Figure 12. User prompt template easy mode

Figure 13. User prompt template medium mode
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Figure 14. User prompt template hard mode

Like the LLM agent, we use a chat template for the LLM user (see Fig. 15). Here, such a format allows

the LLM to fully understand its goals, and the question it must answer. We follow the same format:

start keyword, role (system, agent, and user), content, and end keyword. $USER_PROMPT, and

$QUERY are respectively changed by one of the user prompts (Fig. 12, 13, and 14).

Figure 15. User chat template
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Appendix C. Online Resources

The study’s codes are available on a GitHub repository[27]. The README.md file of this repository

describes the project’s architecture, installation, and usage.
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