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Large language models (LLMs) are increasingly used in applications where LLM inputs may span many different

tasks. Recent work has found that the choice of LLM is consequential, and different LLMs may be good for

different input samples. Prior approaches have thus explored how engineers might select an LLM to use for each

sample (i.e. routing). While existing routing methods mostly require training auxiliary models on human-

annotated data, our work explores whether it is possible to perform unsupervised routing. We propose SMOOTHIE,

a weak supervision-inspired routing approach that requires no labeled data. Given a set of outputs from different

LLMs, SMOOTHIE constructs a latent variable graphical model over embedding representations of observable

LLM outputs and unknown “true” outputs. Using this graphical model, we estimate sample-dependent quality

scores for each LLM, and route each sample to the LLM with the highest corresponding score. We �nd that

SMOOTHIE’s LLM quality-scores correlate with ground-truth model quality (correctly identifying the optimal

model on 9/14 tasks), and that SMOOTHIE outperforms baselines for routing by up to 10 points accuracy.
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1. Introduction

Large language models (LLMs) are increasingly being deployed in multi-capability regimes where data inputs may

span a diverse range of tasks, each of which requires different capabilities[1]. For instance, an LLM-powered chatbot

may be asked to write code, answer questions about different domains, summarize documents, perform extraction,

and more[2][3][4][1]. One challenge is that while engineers often have access to numerous pre-trained LLMs (i.e.,

through Huggingface or various APIs), they do not know which LLM is optimal for each possible user input[5].

Because the quality of generations can vary signi�cantly between LLMs, choosing the right LLM for each input

sample is important to ensure high task performance[6].

Recent work has explored various ways to utilize ensembles of pretrained LLMs in multi-capability settings, by (1)

collecting a diverse pool of LLMs and (2) identifying which LLM to route each sample to[5][7]. However, most existing

approaches require labeled data; Engineers typically either (1) train an auxiliary model using labeled data to rank or
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predict the LLM to which each sample should be routed[6][8], or (2) directly use labeled data to determine which LLM

is the best on average[5]. As a result, engineers designing routing protocols face the practical dif�culty of

constructing labeled datasets.

Given a candidate pool of LLMs and an unlabeled test dataset, this paper explores how to best select LLM outputs for

each sample in an entirely unsupervised manner—without labeled data, or models trained on labeled data. To make

progress in addressing this question, we face two technical challenges:

Unknown LLM quality: The �rst challenge is estimating the quality of each LLM. Access to labeled data allows

engineers to identify higher performing LLMs by measuring the accuracy/quality of LLM outputs. In this paper,

we study the question of how to estimate quality without labeled validation data.

Sample-conditional generator performance: The second challenge is determining how to select the best LLM for

each individual test sample. LLM outputs can vary in quality over different samples, which could render

population-level estimates of LLM quality misleading.

In this work, we propose SMOOTHIE, a method for routing samples to LLMs in a label-free manner (Figure 1). Below,

we describe how SMOOTHIE addresses the two challenges described above.

Quality estimation: Using the LLM outputs for each test sample as “voters,” SMOOTHIE estimates the quality of

each generator using methods from Weak Supervision (WS). Concretely, SMOOTHIE constructs a latent variable

graphical model over observable LLM outputs and an unknown true output. By modeling the embedding vector

difference between each LLM output and the true output as a multivariate Gaussian, we can derive a closed-form

estimator adapted from[9] for learning LLM quality scores ef�ciently.

Conditioning: We condition these quality estimates to be particular to a given test sample by only using the

nearest neighbors of a test sample in the training data as inputs to the estimator (i.e., kernel smoothing). We then

route each test sample to the LLM with the highest quality score estimate on that sample. We call the version of

SMOOTHIE that produces quality estimates using all available test data SMOOTHIE-GLOBAL, and we call the

version that uses a sample’s nearest neighbors SMOOTHIE-LOCAL.
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Figure 1. For a given input  , SMOOTHIE estimates the quality of every LLM ensemble’s generation, and uses this quality

weight to route   to a single LLM.

We empirically evaluate SMOOTHIE in three stages.

LLM selection: First, we assess SMOOTHIE-GLOBAL’s ability to identify—from an ensemble of mixed quality

LLMs—the optimal LLM for a given task overall. On traditional generation tasks such as summarization, reading

comprehension, and data-to-text generation, we �nd that SMOOTHIE-GLOBAL’s learned LLM quality-weights

correlate with actual LLM performance ( ), and on the AlpacaEval benchmark, SMOOTHIE-GLOBAL

identi�es the best-performing instruction model 70% of the time[10]. The highest quality LLM identi�ed by

SMOOTHIE-GLOBAL—all computed without labeled data—can beat random-selection by up to 15 points win-rate

on AlpacaEval, and by up to 8 points on SQuAD.

Routing: Second, we study whether SMOOTHIE-LOCAL’s sample-conditional scoring mechanism allows it to

routesamples in mixed-task datasets to higher-performing LLMs (i.e., the multi-capability regime). We �nd that

SMOOTHIE-LOCAL can improve the quality of produced generations by up to 7 points accuracy over SMOOTHIE-

GLOBAL, and that SMOOTHIE-LOCAL outperforms baseline unsupervised routing methods by up to 10 points

accuracy and supervised routing methods by up to 5.0 points accuracy.

Prompt selection: Finally, we assess whether SMOOTHIE’s quality-estimation mechanism can be applied to select

the optimal prompt template in a candidate pool while using a �xed LLM. We �nd that SMOOTHIE-GLOBAL can

outperform other prompt selection approaches by up to 18 points, allowing a 410M parameter model to match the

performance of 6.9B parameter model.

2. Related Work

We provide an abbreviated related work, with a full treatment in Appendix C.

x

x

ρ = 0.72)
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Routing

Routing has been classically utilized in Mixture-of-Experts models[11][12][13][14], which involve jointly training a set of

models as well as a router. Recently, routing mechanisms have been used at inference time to decide which pre-

trained LLM to use for a given sample[8]. Some approaches involve training an auxiliary model using labeled training

data to either score or rank the performance of each LLM on each test sample[15][16]. Others do not involve training a

model but instead use nearest neighbor methods, selecting the LLM that does the best on a test sample’s labeled

neighbors[17][5]. In contrast, SMOOTHIE does not require any labels.

Ensembling

Ensembling is another way of utilizing a pool of LLMs. Existing work has primarily focused on ensembling outputs

for classi�cation tasks[18][19][20]. Ensembling generative outputs typically requires training an auxiliary model[6],

combining or switching among outputs when decoding[21][22], or averaging in weight space[23].

Prompt selection

In addition to selecting the best LLM for a sample, prior works have studied how to select the best prompt or in-

context examples. While the simplest approach is to use a held-out labeled dataset[24], there are also retrieval-based

approaches to selecting the best in-context examples[25], as well as approaches based on mutual information[26] and

probability-based measures[27], although the latter two are limited to classi�cation.

Weak supervision

SMOOTHIE utilizes statistical techniques inspired by weak supervision, which programmatically generate labels for

an unlabeled dataset by aggregating the predictions of several weak “voters” via a latent variable graphical model[28]

[29]. Weak supervision has mostly been studied in classi�cation settings[30][31] but more recently has been extended

to tasks such as learning rankings and manifolds[9][32]. We derive our estimation procedure from the Gaussian model

in[9], applying it to LLM embeddings and the routing setting.

3. Preliminaries

3.1. Problem setup

Let   be the token vocabulary space, and let   be the space of all vocabulary sequences. We consider a

generative task with input text    and reference output text  . We have a candidate pool of 

  LLMs,  , where each    produces a generative output sequence    for a given

input text sequence  . We are given an unlabeled test dataset  , where the ground-truth reference

outputs are unknown.

V = V × ⋯ × VV
¯¯̄

x ∈ X ⊂ V
¯¯̄

y ∈ Y ⊂ V
¯¯̄

m G = { , … , }g1 gm ∈ G : X → Ygi (x)gi

x = {Dtest xi}ni=1
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Our goal is to route each sample    to one of the LLMs in  . Speci�cally, we wish to construct a router 

  that selects the LLM that yields the highest quality generation on    for each test sample  ,

without any labeled data.

3.2. Graphical model

We present a probabilistic graphical model (see Figure 1 (center)) that describes how the LLM outputs, 

, are related to a true output   in terms of each LLM’s quality on a given input  , which we call  ,

corresponding to each  . Let   map from a sequence of tokens to a  -dimensional embedding using a

common model   such as SentenceBERT[33]. De�ne   to be the observable embedding of   and

the LLM output, and de�ne   to be the latent ground-truth embedding of   and reference output  .

Similar to the approach in[9], we model the distribution over embedding vectors,   as

where    is the log partition function and the  s—the LLM quality scores—are canonical parameters of the

graphical model. Intuitively, our model captures LLM quality by supposing that if    is of high quality and    is

very large, then it should be unlikely for the LLM output to be very different from the true output in terms of

Euclidean distance in embedding space. Conversely, if   is small, we assign larger probability to the setting where 

  and    differ signi�cantly. Finally, note that this graphical model corresponds to a multivariate Gaussian.

That is, the vector    is Gaussian with mean    and a diagonal

covariance matrix    with  . Intuitively, this means that the average difference vector

between each    and    is centered, with its magnitude inversely proportional to the LLM score    and

independent of other LLMs. Given this probabilistic graphical model, our goal is to learn each quality score 

 from the unlabeled test dataset and use these for improved routing.

4. Method

Given an unlabeled test dataset   and a pool of LLMs  , SMOOTHIE consists of two steps:

�. Estimation: The LLM quality scores   are learned for each   (Section 4.1, Algorithm 1).

�. Routing: The LLM with the highest scores is selected, and its output is used as our �nal prediction for   (Section

4.2).

We describe each step in the following sections.

x ∈ Dtest G

route : × X → GG
m x x

(x), … , (x)g1 gm y x (x)θi

(x)gi : →zg0 V
¯¯̄

R
d d

g0 (x) := ([x, (x)])λi zg0 gi x

(x) := ([x,y])z⋆ zg0 x y

Pr( (x), (x), … , (x)|x)z⋆ λ1 λm

Pr( (x), (x), … , (x)|x) = exp( − (x)∥ (x) − (x) )z⋆ λ1 λm
1

Z
∑
i=1

m

θi λi z⋆ ∥2 (1)

Z (x)θi

gi (x)θi

(x)θi

(x)λi (x)z⋆

[ (x) − (x), … , (x) − (x)] ∈λ1 z⋆ λm z⋆
R
dm μ = 0⃗ 

Σ ∈ R
dm×dm =Σjj

1
2 (x)θ⌈j/m⌉

λi (x)z⋆ (x)θi

(x)θi

Dtest G

(x), … , (x)θ1 θm x ∈ Dtest

x
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Algorithm 1. Estimate Scores

4.1. LLM score estimation

We describe how to estimate each  s in the graphical model in (1) using only unlabeled data from  . Then, we

describe how the LLM score estimate can be instantiated to be sample-conditional.

Computing 

Below, we state a simple property arising from the fact that (1) corresponds to a multivariate Gaussian with a diagonal

covariance matrix.

Proposition 1.[9] For any  , it follows from the graphical model in (1) that

The proof is in Appendix D and relies on the fact that off-diagonal entries of   are  . Note that the left hand side of

the equation is observable while the two expectations on the right are unknown. We can apply this equation to pairs

of LLM embeddings over a triplet of   to form a system of three equations with three unknown expectations.

Solving, we have

where  . Since (1) is a multivariate Gaussian with  , we can write   as

the following function of  :

where   and   are the  th indices of the embeddings   and   respectively. Therefore, we can write 

, where each    can be estimated using the LLM outputs on  , and in practice in

Algorithm 4.1 we estimate   by averaging   over all   pairs of  .

(x)θi Dtest

(x)θi

i, j ∈ [m]

E∥ (x) − (x) = E∥ (x) − (x) + E∥ (x) − (x) .λi λj ∥2 λi z⋆ ∥2 λj z⋆ ∥2 (2)

Σ 0

, ,λi λj λk

E [∥ (x) − (x) ] = ( (x) + (x) − (x)) ∀(i, j,k) ∈ [m],λi z⋆ ∥2 1

2
δij δik δjk (3)

(x) = E [∥ (x) − (x) ]δij λi λj ∥2 =Σjj
1

2 (x)θ⌈j/m⌉
(x)θi

E [∥ (x) − (x) ]λi z⋆ ∥2

E [∥ (x) − (x) ] = E [( (x) − (x) ] = Var( (x) − (x)) = ,λi z⋆ ∥2 ∑
j=1

d

λi,j z⋆
j )2 ∑

j=1

d

λi,j z⋆
j

d

2 (x)θi
(4)

(x)λi,j (x)z⋆
j j (x)λi (x)z⋆

(x) =θ
jk
i

d

(x)+ (x)− (x)δij δik δjk
(x)δij Dtest

(x)θi (x)θ
jk
i ( )m−1

2 (j,k) ≠ i
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Sample-conditional estimation of 

Note that the expectation in    is over the randomness in    conditioned on a

�xed point  . However, we only have one sample per  . One simple approach is to use the entire dataset to estimate 

, i.e.,  . We denote this as SMOOTHIE-GLOBAL. However, in SMOOTHIE-

GLOBAL each    for    is a constant over the entire  . Therefore, we use nearest neighbor kernel

smoothing to estimate each    in a sample-dependent manner, an approach we call SMOOTHIE-LOCAL.

Concretely, for  , de�ne    as the    nearest neighbors of  (excluding    itself) in  ’s

embedding space. Then, we construct  , and do the same for 

  to get a sample-conditional estimate of  . The procedure for estimating    in SMOOTHIE-

LOCAL is outlined in Algorithm 4.1.

4.2. Routing

Once we have estimates of    for each of the    generators by using Algorithm 1, we can construct our 

  function. We de�ne    where  , which selects the highest

scoring LLM for input   based on  . We apply this on   to determine the best LLM for each input sample.

5. Results

We empirically analyze SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL, focusing on four questions:

�. How well does SMOOTHIE-GLOBAL recover ground-truth LLM rankings over samples belonging to the same

task (Section 5.1)?

�. In multi-task datasets, how well can SMOOTHIE-LOCAL perform unsupervised-routing, by identifying the best

LLM for each sample (Section 5.2)?

�. Can SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL be applied to select from or route between different prompts

(Section 5.3)?

�. How does SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL’s performance change as a function of different

algorithmic choices (Section 5.4)?

5.1. Single-Task LLM Scoring

Setup

We begin by evaluating whether SMOOTHIE-GLOBAL can accurately learn the relative performance of different LLMs

on a single task-dataset. We study three categories of tasks. First, we consider 7 datasets corresponding to

commonly-studied natural language generation (NLG) tasks[34]: CNN/DailyMail and XSum (summarization), SQuAD

(reading comprehension), TriviaQA (factual recall), E2E and WebNLG (data-to-text generation), and LegalBench’s

(x)θi

(x) = E [∥ (x) − (x)∥]δij λi λj (x), (x)λi λj

x x

(x)θi (x) = ∥ ( ) − ( )δ̂ ij
1
n
∑ ∈x′ Dtest

λi x′ λj x′ ∥2

(x)θi i ∈ [m] Dtest

(x)δij

x ∈ Dtest (x) ⊂NNn0 Dtest < nn0 x x f0

(x) = ∥ ( ) − ( )δ̂ ij
1
n0

∑ ∈ (x)x′ NNn0
λi x′ λj x′ ∥2

(x), (x)δ̂ ik δ̂ jk (x)θi (x)θi

(x)θ̂ i m

route() route(G,x) = gi i = arg max{ (x), … , (x)}θ1 θm

x (x)θ̂ i Dtest
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De�nition Extraction (text extraction)[35][36][37][38][39][40][41][42][43][4]. We report Rouge2 for summarization and data-

to-text generation tasks and accuracy for all others. For all tasks other than De�nition Extraction we evaluate

SMOOTHIE-GLOBAL on a 1000 sample subset.1 For these tasks, we consider two ensembles of LLMs at different size

points. At the 3B size point, our ensemble consists of Pythia-2.8B[44], Gemma-2B[45], Incite-3B[46], and Dolly-3B[47]. At

the 7B size point, our ensemble consists of Llama-2[48], Mistral[49], Vicuna[50], Gemma-7B[45], and Nous Capybara[51].

We manually write a single prompt template for each task, and all model generations rely on this template.

Second, we consider two instruction-following benchmarks: AlpacaEval and MixInstruct[10][52][53][6]. For AlpacaEval,

we rely on responses accessible via the online leaderboard.2 We identify 10 LLMs (each from a different base family),

and download these models’ responses to the AlpacaEval instructions. We conduct 10 different simulations, where in

each simulation we randomly select 5 LLMs from our pool to function as an ensemble. Reported win-rates use the

standard GPT-4 references. For MixInstruct, we use generations from an ensemble of 11 different LLMs originally

studied in[6]. Following[6], we measure generation quality using a ChatGPT-based rank.

Finally, we consider a more “reasoning-intensive” task, GSM8K[54]. We consider an ensemble of three models:

Gemma-7B, Phi-2[55], and Llema-7b[56]. We prompt each model to provide a chain-of-though reasoning[57], and apply

SMOOTHIE to these generations.

For all datasets, we apply SMOOTHIE-GLOBAL using SentenceBERT (all-mpnet-base-v2) embeddings of

generations[33].

Results

We �rst measure how frequently the highest-weighted LLM according to SMOOTHIE-GLOBAL corresponds to the

best-performing LLM in the ensemble. We observe that SMOOTHIE-GLOBAL selects the best-performing LLM for 4/7

tasks on the 3B ensemble, and for 5/7 tasks on the 7B ensemble (Figure 10). On AlpacaEval, SMOOTHIE-GLOBAL

selects the best-performing LLM by win-rate for 8/10 ensembles, and the best performing LLM by length-controlled

win-rate for 7/10 ensembles. On MixInstruct and GSM8K, SMOOTHIE-GLOBAL again identi�es the best-performing

LLM in the ensemble.

Second, we measure how well SMOOTHIE-GLOBAL captures quality differences between LLMs in the ensemble, by

computing the Spearman’s rank correlation coef�cient between   and ground truth quality scores ensemble models.

Overall, we �nd that SMOOTHIE-GLOBAL’s learned weights approximate the relative ordering of model quality well.

On the NLG tasks SMOOTHIE-GLOBAL we measure an average correlation coef�cient (across both ensembles and

seven tasks) of 0.72. Figure 2(a) visually depicts the distribution of task coef�cients—on only one ensemble/dataset

pair is there a correlation coef�cient  . On MixInstruct, we observe a correlation coef�cient of 0.94, and on

AlpacaEval, we observe a correlation coef�cient of 0.46.

θi

≤ 0

qeios.com doi.org/10.32388/F319W4 8

https://www.qeios.com/
https://doi.org/10.32388/F319W4


Figure 2. (a) Spearman’s rank correlation coef�cient between SMOOTHIE-GLOBAL weights and ground-truth LLM

performance for 3B and 7B ensembles across NLG tasks. (b) SMOOTHIE-GLOBAL’s improvement over RANDOM by win-

rate on AlpacaEval. (c) SMOOTHIE-GLOBAL’s improvement over RANDOM by length-controlled win-rate on AlpacaEval.

Finally, we measure how the performance of the LLM selected by SMOOTHIE compares to other selection algorithms.

We �rst compare SMOOTHIE-GLOBAL to an unsupervised random baseline (Random), which would select a random

model from the ensemble. We reported the expected performance of this method, which is equivalent to taking the

average performance of the ensemble. We also compare SMOOTHIE-GLOBAL to a labeled baseline which simulates

selecting an LLM on the basis of a small amount of validation data[24]  (BEST-ON-VAL). We sample a small labeled

validation set (50 samples) and select the LLM that performs the best on this set. To account for sampling variation,

we repeat this with 10 random draws and report the average performance. Because AlpacaEval has no training split

and MixInstruct has no labeled data, we only compare SMOOTHIE-GLOBAL to Random on those datasets.

Table 1 provides results for the seven NLG tasks. We �nd that SMOOTHIE-GLOBAL outperforms the unsupervised

Randombaseline on 6/7 tasks for the 3B ensemble and on 7/7 tasks for the 7B ensemble. SMOOTHIE-GLOBAL

outperforms Randomby up to 7pts (on tasks measured by rouge2), and by up to 12pts (on tasks measured by

accuracy). We also observe that SMOOTHIE-GLOBAL is frequently competitive with and even outperforms the BEST-

ON-VAL baseline, which uses labeled data. SMOOTHIE-GLOBAL outperforms BEST-ON-VAL on 4/7 tasks for the 3B

ensemble, and 5/7 tasks for the 7B ensemble. On GSM8K, SMOOTHIE-GLOBAL achieves a solve-rate of 37.5%

(matching BEST-ON-VAL, while Random achieves a solve-rate of 28.3% (Table 11).
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CNN Def. Ext. E2E SQuAD TriviaQA WebNLG XSum

3B

RANDOM 12.9 52.4 27.3 59.6 32.7 23.4 4.5

SMOOTHIE-GLOBAL 14.3 61.5 31.8 60.7 32.1 30.7 4.5

BEST-ON-VAL 13.0 60.5 31.1 66.4 38.7 30.3 5.3

7B

RANDOM 13.7 58.5 35.3 67.9 59.3 44.1 6.9

SMOOTHIE-GLOBAL 14.5 70.9 36.9 76.2 68.3 45.9 8.4

BEST-ON-VAL 14.5 69.4 36.7 74.0 65.8 48.3 8.3

Table 1. Comparing SMOOTHIE-GLOBAL to baseline methods on different ensembles across NLG datasets. Underlined

values are the best performing unsupervised methods. Bold values are the best performing overall methods. We report

rouge2 scores for CNN, XSum, WebNLG, and E2E, and accuracy for the rest. All metrics are scaled to 0-100.

SMOOTHIE-GLOBAL also outperforms the Random baseline on the instruction-following datasets. On MixInstruct,

SMOOTHIE-GLOBAL achieves a ChatGPT-rank ( ) of  , while Random achieves a ChatGPT-rank of   (Table 10).

On AlpacaEval, SMOOTHIE-GLOBAL outperforms Random on all but one trial (across both win-rate and length-

controlled win-rate). SMOOTHIE-GLOBAL outperforms Random by an average of 15pt win-rate, and up to 27pts.

Figure 2(b) and Figure 2(c)e this distribution.

5.2. Multi-task Routing

Setup

We next assess whether SMOOTHIE-LOCAL’s sample-conditional scoring mechanism allows it to route samples to

LLMs in the multi-capability regime. We construct two mixed-task distributions by combining existing datasets. The

�rst distribution corresponds to tasks measured by accuracy, and contains SQuAD, TriviaQA, and De�nition

Extraction. We refer to this as DISTR-ACC. The second distribution corresponds to tasks measured by Rouge2, and

contains CNN/DailyMail, XSum, Web NLG, and E2E. We refer to this as DISTR-ROUGE2. For each mixed-task dataset,

we report the metric averaged across all tasks. We compare to three baselines.

RANDOM: A random-selection baseline which returns a generation from a random LLM in the ensemble. Though

naive, prior work has found this to be a strong method in practice[58]. We run 10 trials and report the mean of this

approach to account for variance.

↓ 3.91 5.95
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LABELED-KNN: A labeled data-based KNN baseline. For this, we sample   labeled samples from a separate hold-

out set ( ), and measure the performance of each candidate LLM on this set. For a given test sample  , we

identify the   most semantically similar instances in  (using SentenceBERT embeddings[33]), and route   to

the highest performing LLM over this subset. We note that the LABELED-KNN baseline is derived from routing

methods in[5][17].

PAIRRM: A reward model from[6]  which accepts an instruction and multiple generations as input, scores each

generations suitability for the instruction, and returns the predicted best generation. PAIRRM is a labeled-data

method which[6] trained on collected preference data.

In addition, we also compare the best individual model in the ensemble (BEST-MODEL), and SMOOTHIE-GLOBAL. For

both mixed-task datasets, we run SMOOTHIE-LOCAL with SentenceBERT embeddings, and the sample-conditional

version of SMOOTHIE-LOCAL estimates   using a neighborhood size  .

Results for the 3B and 7B ensembles over DISTR-ACC and DISTR-ROUGE2 are provided in Table 2. We �nd that

SMOOTHIE-LOCAL outperforms all baselines across both data distributions, for both ensembles. Though

SMOOTHIE-LOCAL requires no labels, it still outperforms labeled data baselines like LABELED-KNN and PAIRRM. We

observe a substantial gap between SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL, which indicates that SMOOTHIE-

LOCAL’s sample-speci�c scoring mechanism provides performance improvements.

Method

3B 7B

DISTR-ACC DISTR-ROUGE2 DISTR-ACC DISTR-ROUGE2

RANDOM 48.7 17.0 65.4 25.0

PAIRRM 53.9 19.0 71.8 25.5

LABELED-KNN 51.0 16.8 71.7 26.2

BEST-MODEL 52.3 18.1 73.2 26.4

SMOOTHIE-GLOBAL 51.3 18.1 66.5 26.1

SMOOTHIE-LOCAL 58.7 20.2 75.0 26.9

Table 2. Comparing SMOOTHIE-LOCAL to baseline methods on the 3B and 7B ensembles for multi-task distributions.

DISTR-ACC and DISTR-ROUGE2 are measured with accuracy and rouge2 respectively. Bold values indicate the best

performing method for each dataset and model size. Metrics are scaled to 0-100.

Notably, we see that SMOOTHIE-LOCAL substantially betters BEST-MODEL, indicating that SMOOTHIE-LOCAL’s

50

Dval x

20 Dval x

(x)θi = 1n0
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routing mechanism is offering a performance improvement over a strategy which merely selects the best LLM on

average. We study this in greater detail by examining the relative rank of the LLM selected by SMOOTHIE-LOCAL for

each sample. For each sample in DISTR-ACC and DISTR-ROUGE2, we rank the quality of each LLM’s generation

according to standard-competition ranking (i.e., “1-2-2-4” ranking). We then count how frequently SMOOTHIE-

LOCAL selects the rank-  generation across each distribution for each ensemble. We visualize results in Figure 3. As

the visualizations demonstrate, SMOOTHIE-LOCAL consistently selects the best or second-best generation from

within the ensemble.

Figure 3. On DISTR-ACC and DISTR-ROUGE2, we measure how frequently SMOOTHIE-LOCAL selects the  -th best

generation across the ensemble, for both the 3B and 7B ensembles.

5.3. Prompt Selection

Third, we study whether SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL can be generalized to other settings where

engineers have a candidate pool of text generators of unknown quality, and must select one of them to use for some

application. In particular, we focus on the setting where an engineer has access to multiple prompt templates for a

given generation task, and must select which prompt-templates’ generation to use as the �nal output[59]. Unlike

above, we assume the engineer only has access to one LLM. We study SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL in

this regime using the NLG tasks from Section 5.1. For each task, we manually write between 3 and 5 prompt

i

i
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templates, varying the wording of instructions and the choice of in-context samples. We analyze SMOOTHIE applied

to two models at different size points: Falcon (1B)[60] and Llama-2 (7B)[48].

Table 3 provides the results. Overall, we �nd that SMOOTHIE-GLOBAL selects the optimal prompt 2/7 times for

Falcon-1B, and 3/7 times for Llama-2. SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL consistently outperform

Random–on 6/7 tasks for Falcon-1b and 6/7 tasks for Llama-2. On 7 task/model combinations, one of either

SMOOTHIE-GLOBAL or SMOOTHIE-LOCAL matches or outperforms a labeled baseline. To better contextualize

performance improvements from SMOOTHIE-GLOBAL, we also compare to the improvement that accompanies

increasing model size. Following a common practice in recent work, we can quantify the extent to which SMOOTHIE-

GLOBAL allows smaller models to match or exceed the performance of larger models[59][19]. In Figure 4 (Appendix E),

we compare Random and SMOOTHIE-GLOBAL on models from the Pythia suite at four sizes: 410M, 1B, 2.8B, and 6.9B

parameters[44]. We observe that SMOOTHIE-GLOBAL substantially improves performance—on E2E, SMOOTHIE-

GLOBAL enables a 410M parameter model to outperform a 6.9B parameter model.

CNN Def. Ext. E2E SQuAD TriviaQA WebNLG XSum

Falcon

RANDOM 7.1 60.3 27.8 47.3 22.0 29.2 4.7

SMOOTHIE-GLOBAL 7.9 62.2 31.6 53.3 31.4 28.3 6.4

SMOOTHIE-LOCAL 8.0 69.2 31.5 53.3 27.4 30.8 6.0

BEST-ON-VAL 8.4 64.2 31.0 52.7 31.4 32.5 6.7

Llama-2

RANDOM 7.3 47.8 31.6 54.0 45.9 45.5 11.2

SMOOTHIE-GLOBAL 6.9 64.6 37.6 61.4 68.7 48.5 12.8

SMOOTHIE-LOCAL 9.5 59.3 33.6 63.1 61.3 48.0 12.7

BEST-ON-VAL 11.8 64.6 35.0 66.1 68.7 48.7 13.0

Table 3. Comparing SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL to baseline methods in the prompt-selection setting.

Underlined values are the best performing unsupervised methods. Bold values are the best performing overall methods. We

report rouge2 scores for CNN, XSum, WebNLG, and E2E, and accuracy for the rest. All metrics are scaled to 0-100.

5.4. Ablations

Finally, we conduct ablations to examine different aspects of SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL:

improving its ef�ciency, adjusting the neighborhood size, varying the choice of embedding model, and using

different LLM ensembles.
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Improving ef�ciency

First, we explain SMOOTHIE’s current ef�ciency properties. To estimate the SMOOTHIE weights for routing, we use a

simple closed-form procedure that does not require any SGD or training, as described in Algorithm 1. As a result,

SMOOTHIE weights on the entire dataset can be computed in seconds—for the 7B ensemble, SMOOTHIE-LOCAL on

the multi-task datasets takes 2.14 seconds per 1000 samples, and SMOOTHIE-GLOBAL on the single-task datasets

takes under 0.03 seconds per 1000 samples. Moreover, SMOOTHIE does not require any ground-truth annotations;

however, all    model generations per test sample are needed as input to the algorithm. That is, we need 

 generations for a   of size   samples.

Fortunately, the need for computing all model generations per test sample can be removed with a small algorithm

tweak, making SMOOTHIE even more ef�cient and its runtime independent of  . Suppose we have a held-out set of 

  train samples with precomputed generations from the models in the ensemble. For each test sample, we

retrieve the most similar train samples, learn the SMOOTHIE weights for the sample using the corresponding train

sample generations, and return the model with the highest SMOOTHIE weight (i.e., in line 5 in Algorithm 1, KNN is

now over a held-out training dataset). This approach, which we call SMOOTHIE-Train, selects the model for a test

sample without needing model generations for that sample. Only    generations are needed, regardless of

how large the test dataset   is.

We study the NLG tasks, using   samples. In Table 7 (Appendix E), we evaluate a version of SMOOTHIE-

GLOBAL-Train) and observe that it matches SMOOTHIE-GLOBAL on 12/14 model-dataset pairs, and performs worse

on the remaining 2/14 pairs. We also evaluate SMOOTHIE-LOCAL-Train, on DISTR-ACC and DISTR-ROUGE2 (Table 8)

using a neighborhood of size  . We �nd here that while SMOOTHIE-LOCAL-Train underperforms SMOOTHIE-

LOCAL on both the 3B and 7B ensemble for both DISTR-ACC and DISTR-ROUGE2, it still outperforms Random and

remains competitive with supervised baselines.

Neighborhood size

We study the impact of  , and consider SMOOTHIE-LOCAL’s performance for  . Figure 5

provides performance over DISTR-ACC and Figure 6 provides performance over DISTR-ROUGE2. Overall, we �nd that

SMOOTHIE-LOCAL’s performance steadily degrades as   increases, and is highest when  .

Choice of embeddings

We study how the choice of embeddings affects SMOOTHIE-GLOBAL performance (Table 9). Speci�cally, we compare

the performance of SMOOTHIE-LOCAL using Sentence-Bert embeddings (all-mpnet-base-v2)  [33]  to BGE

embeddings (bge-small-en-v1.5) [61]. We observe that SMOOTHIE-LOCAL appears robust to different embeddings

—SMOOTHIE-LOCAL with BGE embeddings still outperforms other labeled and unlabeled baselines. Interestingly,

we observe that certain embedding models appear to yield better performance over certain distribution/ensemble

m

n × m Dtrain n

n

ntrain

× mntrain

n

= 250ntrain

= 20n0

n0 ∈ [1, 5, 10, 20, 50, 100]n0

n0 = 1n0
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combinations. For instance, SMOOTHIE-LOCAL with SentenceBERT embeddings outperforms SMOOTHIE-LOCAL

with BGE embeddings on DISTR-ACC for the 3B ensemble and DISTR-ROUGE2 for the 7B ensemble, while performing

worse on DISTR-ROUGE2 for the 3B ensemble and DISTR-ACC for the 7B ensemble.

Different ensembles

Finally, we consider whether SMOOTHIE-GLOBAL can generalize to a wider array of ensembles (Figure 7). We

combine the LLMs contained in the 3B and 7B ensembles into a single pool, and sample    distinct ensembles

ranging in size from 4-7 LLMs. For each of the   NLG tasks, we evaluate SMOOTHIE-GLOBAL’s ability to identify the

best model from within each ensemble. Across these    settings, we �nd that SMOOTHIE-GLOBAL identi�es the

best model in   of them (  of the time), and one of the two best models in 292 of them (  of the time).

6. Conclusion

In this paper we study and propose an algorithm for learning label-free routers for generative tasks. We validate our

approach across a variety of evaluation regimes, �nding it consistently beats other unsupervised approaches and

often matches/exceeds supervised approaches.

Limitations

We discuss several of SMOOTHIE’s limitations. First, its multivariate Gaussian graphical model currently uses a

diagonal covariance matrix. This assumes independent error vectors for each generation, though SMOOTHIE could

be extended to account for dependencies[31][62]. Additionally, SMOOTHIE optimizes only for performance without

considering cost tradeoffs between large and small models. Finally, its reliance on embeddings may capture only

certain aspects of semantic similarity. Other embedding models and additional heuristics could be used to create

richer input features for SMOOTHIE.

Appendix A.

In Appendix B, we provide a glossary of notation used in the paper. In Appendix C, we provide an extended related

work, and in Appendix D we provide a proof of Proposition 1, which is used in deriving the SMOOTHIE algorithm.

Finally, in Appendix E we provide additional experimental results and details.

Code for reproducing our results and using SMOOTHIE is available at https://github.com/HazyResearch/SMOOTHIE.

Appendix B. Notation

The glossary is given in Table 4 below.

50

7
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Symbol Used for

The space of all vocabulary sequences.

Input text  .

Reference output text  .

Candidate pool of   LLMs,  , where each 

produces a generation   on input  .

Unlabeled test dataset  .

Routing function   that selects the best LLM from   for each sample.

Quality score of the  th LLM on test sample  , also used in the graphical model in (1).

Embedding mapping   for any text sequence, where   is an embedding model

such as SentenceBERT [33].

The observable embedding of   concatenated with the  th LLM’s generated output,

.

The latent embedding of   concatenated with unknown reference output,  .

Partition function for normalization of (1).

Number of nearest neighbors used to learn   for  .   (i.e., the entire test dataset)

corresponds to SMOOTHIE-GLOBAL and   corresponds to SMOOTHIE-LOCAL.

The average squared Euclidean distance between the  th and  th LLM embeddings over

a neighborhood around  ,  .

This is the primary expression used in computing  .

Table 4. Glossary of variables and symbols used in this paper.

Appendix C. Extended Related Work

LLM Routing

The problem of determining how to route samples to various models has been long studied in statistics[11][12] as well

as Mixture of Experts deep neural networks[14][13]. These works focus on how to jointly train the models and router in

a stable and ef�cient manner.
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Since many LLMs are now available off-the-shelf, recent works study how routing mechanisms can be applied at

inference time to trained models. Some works involve training task or domain-speci�c expert models and then

learning a router. The router can be a nearest neighbors algorithm[15], a neural network[63] that classi�es among the

different domains corresponding to the experts, or an extra gate learned when training the expert models[64]. These

approaches do not explicitly require labels, but they require knowledge of what domain is used to train each expert

and assume that each expert is the best model for its corresponding domain, therefore effectively using this mapping

as a form of labels. In contrast, our setting focuses on routing among pre-trained LLMs where we do not know what

models are optimal on what tasks and their samples.

A second category of inference-time routing works studies how to choose among a collection of pre-trained LLMs,

which is the setting that SMOOTHIE focuses on. Several approaches involve training a meta-model that either scores

or ranks how a LLM will perform on a sample[8][6][16], all of which required labeled data to train. MoRE[65]  involves

training a simpler random forest classi�er, using the rate of agreement among LLMs as one of the features, which is

similar to how SMOOTHIE estimates scores; however, it also requires labeled data to train the classi�er. Some

approaches[17][5] do not require training routers and simply use nearest neighbor methods. However, these nearest

neighbor methods still use labeled data to determine what training samples each LLM performs the best on.

[7]  invokes a trained reward model for the routing mechanism.[66]  trains a classi�cation-based router using the

BARTScore metric on LLM generations as pseudolabels; this avoids using manually labeled data, demonstrating that

while a majority of routing methods require labeled data, there exist some alternatives that do not. We leave it to

future work to compare and integrate SMOOTHIE with other unsupervised approaches.

Finally, complementary to our setting are works that jointly focus on cost minimization as well as quality of

generations. RouterBench[67]  creates a benchmark for studying the cost-quality tradeoffs in routing systems.

Optimizing for cost can be done algorithmically, such as in FrugalGPT[68], AutoMix[69], RouteLLM[70], and[71], as well

as via hardware enhancements such as SambaNova Systems’ Composition of Experts[72].

LLM Ensembling

A rich literature has observed that ensembling LLM outputs—across different prompts or base models—can improve

the accuracy of generated predictions. Prior work has proposed and studied a number of different ensembling

algorithms for classi�cation tasks, including majority-voting[73][18], weak-supervision[59][19], boosting[20][74][75], and

others[76][77][78].

More relevant to our work here is a literature on ensembling for generative tasks. One category of methods rely on an

auxilliary sequence-to-sequence models to “fuse” generations from different prompts or base LLMs[6]. Though

recently applied in the context of modern LLMs, the concept of fusion traces back to older work on

summarization[79][80][81][82]. Some techniques combine or switch among multiple outputs at inference time[21][83][22]
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[84][85], while others involve averaging in weight space[15][86][23]. Lastly, ensembling can also be approximated by

randomly selecting a model to be used in multi-turn settings[58].

Other LLM Selection Algorithms

Beyond the setting of selecting among multiple LLMs, other works have explored how to select the optimal prompt

template from a collection of candidate prompts. These works can be grouped into two categories. The �rst category

assumes that engineers have access to labeled data. In the naive case, this labeled data can simply be used to select

the best performing prompt[24][87][88]. Another subset of this category focuses on the setting where new prompts can

be generated by selecting in-context demonstrations from a set of labeled samples (typically a small training set)[89]

[90]. Prior work has proposed different methods for identifying the optimal in-context demonstrations to use,

depending on the sample for which the LLM is being used to produce a prediction for[91][88][25][92][93][94]. The second

category focuses on zero-label prompt selection methods, but solely for classi�cation tasks[95][26][27]. Prior work here

selects prompts on the basis of mutual information[26], agreement rates between predictions produced by different

prompts[95], and various probability based measures[27][96][97].

Weak supervision

SMOOTHIE utilizes techniques inspired by weak supervision literature. Weak supervision aims to programmatically

generate labels on an unlabeled dataset by aggregating the predictions of several weak “voters”, such as heuristics,

pre-trained models, and knowledge graphs[28][29]. It assumes a particular latent variable graphical model and uses its

structure to estimate latent quantities, such as the accuracy of each voter (in our setting, the quality score of each

LLM). Typically, this graphical model is a binary Ising model, as weak supervision has generally been studied in

classi�cation settings[31][30], where embeddings have been utilized as auxiliary signal but not modeled explicitly[59]

[98]. Weak supervision has been applied to broader settings, such as for learning rankings, graphs, and manifolds[9]

[32]. We derive our estimation procedure from the Gaussian model in[9], applying it to LLM embeddings. While both

SMOOTHIE and[9]  use a multivariate Gaussian model, in SMOOTHIE we apply it to model routing with SBERT

embeddings on natural language datasets, whereas[9]  conducts synthetic experiments in hyperbolic spaces and

metric spaces induced by synthetic graphs. Moreover, SMOOTHIE uses nearest neighbor kernel smoothing to allow

for sample-dependent weights—critical for routing—while[9] calculates one global set of weights over the dataset.

Consistency-based selection

Consistency is central to unsupervised selection and aggregation methods, the simplest being majority vote. While

weak supervision methods[30] and SMOOTHIE heavily rely on notions of voter agreement as depicted in a graphical

model, there are several other consistency-based methods. Minimum Bayes Risk methods[99][100]  selects the

generation that has the highest average similarity (i.e., cosine) with other generations. This is similar to SMOOTHIE,
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which routes to the lowest value of (3). If we ignore the subtraction of   in (3) and average over more than just 

  and  , then SMOOTHIE with    is equivalent to[99]  Therefore, SMOOTHIE can be considered as a

slightly modi�ed and more general version of this approach. Another approach[101] relies on consistency between a

“global” and “local” embedding for each generation. They solve an optimization problem that estimates each

generation’s quality score by constructing a loss that enforces that the similarity between the estimated true

generation (produced by a weighted average of candidates) and the candidate generation should be the same

according to both global and local embeddings. In contrast, SMOOTHIE uses one embedding space, relies on a

multivariate Gaussian structure among embeddings, and does not require gradient descent to learn the quality of

each generation.

Test-Time Compute

Approaches like model routing, ensembling, and selection can all be seen as ways of utilizing test-time compute to

produce higher-quality generations from a system of LLMs. Test-time compute can also be utilized over a single LLM

via techniques such as those used in OpenAI’s o1, Chain of Thought, and Rephrase and Respond[102][103][104]. Other

works have recently studied how test-time compute scales[105][106]—�nding that producing more generations can

often yield the correct response—and how to combine multiple test-time methods, such as Archon[107]. It is

interesting future work to consider how SMOOTHIE can be integrated with other test-time compute techniques.

Appendix D. Proof of Proposition 1

We provide a proof of proposition 1, which is a direct property of multivariate Gaussians that is also presented in[9].

We �rst expand  :

Let   be the  th element of the   embedding, and similarly de�ne  . Note that since   is diagonal, we

can write

for all  . Since  , we thus have that    for all  , which

implies that  . Plugging this into (5), we have

Appendix E. Additional Experiments and Details

This section contains additional details on experiments discussed in Section 5.
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E.1. Datasets and Models

Table 5 provides links to the Huggingface datasets used for each task. For E2E, CNN/DailyMail, XSum, and Web NLG

we measure performance using rouge2. For SQuAD, TriviaQA, and De�nition Extraction we measure using

“accuracy.” A model generation is treated as “correct” if if contains the answer, and incorrect otherwise[39].

Dataset name Huggingface URL

E2E https://huggingface.co/datasets/e2e_nlg

CNN/DailyMail https://huggingface.co/datasets/cnn_dailymail

SQuAD https://huggingface.co/datasets/hazyresearch/based-squad

XSum https://huggingface.co/datasets/EdinburghNLP/xsum

TriviaQA https://huggingface.co/datasets/mandarjoshi/trivia_qa

Web NLG https://huggingface.co/datasets/web_nlg

De�nition Extraction https://huggingface.co/datasets/nguha/legalbench

Table 5. Datasets used.

Table 6 contains links for all models used.
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Model name Huggingface URL

Pythia-410M https://huggingface.co/EleutherAI/pythia-410m

Pythia-1B https://huggingface.co/EleutherAI/pythia-1b

Pythia-2.8B https://huggingface.co/EleutherAI/pythia-2.8b

Pythia-6.9B https://huggingface.co/EleutherAI/pythia-6.9b

Gemma-2B https://huggingface.co/google/gemma-2b-it

Incite-3B https://huggingface.co/togethercomputer/RedPajama-INCITE-Instruct-3B-v1

Dolly-3B https://huggingface.co/databricks/dolly-v2-3b

Llama-2-7B https://huggingface.co/meta-llama/Llama-2-7b-hf

Mistral-7B https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

Vicuna-7B https://huggingface.co/lmsys/vicuna-7b-v1.5

Gemma-7B https://huggingface.co/google/gemma-7b

Nous Capybara https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9

Phi-2 https://huggingface.co/microsoft/phi-2

Llema-7B https://huggingface.co/EleutherAI/llemma_7b

Table 6. Huggingface model URLs.

For the Alpaca leaderboard experiments, we run each trial by sampling 5 models from the following set of 10:

Nanbeige-Plus-Chat-v0.1, claude-2, Qwen1.5-110B-Chat, yi-large-preview, gemini-pro, Meta-Llama-3-

70B-Instruct, Ein-70B-v0.1, mistral-large-2402, Storm-7B, FsfairX-Zephyr-Chat-v0.1.
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E.2. Additional Results

Figure 4. We compare RANDOM (blue) and SMOOTHIE-GLOBAL (orange) for prompt-selection on different sized models in

the Pythia suite. The x-axis denotes model size, and the y-axis denotes performance (either rouge2 or accuracy).
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CNN Def. Ext. E2E SQuAD TriviaQA WebNLG XSum

3B

RANDOM 12.9 52.4 27.3 59.6 32.7 23.4 4.5

SMOOTHIE-GLOBAL 14.3 61.5 31.8 60.7 32.1 30.7 4.5

SMOOTHIE-GLOBAL-Train 14.3 61.5 24.7 60.7 32.1 30.7 4.5

BEST-ON-VAL 13.0 60.5 31.1 66.4 38.7 30.3 5.3

7B

RANDOM 13.7 58.5 35.3 67.9 59.3 44.1 6.9

SMOOTHIE-GLOBAL 14.5 70.9 36.9 76.2 68.3 45.9 8.4

SMOOTHIE-GLOBAL-Train 14.5 70.9 36.5 76.2 68.3 45.9 8.4

BEST-ON-VAL 14.5 69.4 36.7 74.0 65.8 48.3 8.3

Table 7. We compare SMOOTHIE-GLOBAL to SMOOTHIE-GLOBAL-Train, for which weights are learned on a hold-out set.

We provide results from baseline methods for reference. Underlined values are the best performing unsupervised methods.

Bold values are the best performing overall methods. We report rouge2 scores for CNN, XSum, WebNLG, and E2E, and

accuracy for the rest. All metrics are scaled to 0-100.
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Method

3B 7B

DISTR-ACC DISTR-ROUGE2 DISTR-ACC DISTR-ROUGE2

RANDOM 48.7 17.0 65.4 25.0

PAIRRM 53.9 19.0 71.8 25.5

LABELED-KNN 51.0 16.8 71.7 26.2

BEST-MODEL 52.3 18.1 73.2 26.4

SMOOTHIE-GLOBAL 51.3 18.1 66.5 26.1

SMOOTHIE-LOCAL 58.7 20.2 75.0 26.9

SMOOTHIE-GLOBAL-train 51.3 18.1 66.5 26.1

SMOOTHIE-LOCAL-train 50.7 18.8 70.9 26.0

Table 8. We compare SMOOTHIE-LOCAL to SMOOTHIE-LOCAL-train, for which weights are learned on a hold-out set, on

the 3B and 7B ensembles for multi-task distributions. DISTR-ACC and DISTR-ROUGE2 are measured with accuracy and

rouge2 respectively. Bold values indicate the best performing method for each dataset and model size. Metrics are scaled to

0-100. Other baseline methods are provided for comparison.

Method

3B 7B

DISTR-ACC DISTR-ROUGE2 DISTR-ACC DISTR-ROUGE2

RANDOM 48.7 17.0 65.4 25.0

PAIRRM 53.9 19.0 71.8 25.5

LABELED-KNN 51.0 16.8 71.7 26.2

BEST-MODEL 52.3 18.1 73.2 26.4

SMOOTHIE-LOCAL (BGE-small[61]) 59.3 19.7 74.6 27.1

SMOOTHIE-LOCAL (SBERT[33]) 58.7 20.2 75.0 26.9

Table 9. Comparing SMOOTHIE-LOCAL with different embeddings on the 3B and 7B ensembles for multi-task

distributions. DISTR-ACC and DISTR-ROUGE2 are measured with accuracy and rouge2 respectively. Bold values indicate the

best performing method for each dataset and model size. Metrics are scaled to 0-100.
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Figure 5. We measure how SMOOTHIE-LOCAL’s performance on DISTR-ACC changes as 

 changes.

Figure 6. We measure how SMOOTHIE-LOCAL’s performance on DISTR-ROUGE2 changes as 

 changes.

n0

n0
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Figure 7. We evaluate SMOOTHIE-GLOBAL’s ability to identify the best model by randomly

sampling 50 ensembles of size 4-7 LLMs from a pool of the LLMs contained in the 3B and 7B

ensembles. We apply SMOOTHIE-GLOBAL to select the best LLM from within each of these

ensembles across the 7 NLG tasks, and measure the rank (relative to the ensemble) of the LLM

selected by SMOOTHIE-GLOBAL.

Method ChatGPT-Rank ( )

RANDOM 5.96

SMOOTHIE-GLOBAL 3.91

Table 10. Results for SMOOTHIE-GLOBAL and baselines on MixInstruct.

Method Accuracy

RANDOM 28.4

BEST-ON-VAL 37.5

SMOOTHIE-GLOBAL 37.5

Table 11. Results for SMOOTHIE-GLOBAL and baselines on GSM8K. We report accuracy, with scores scaled to 0-100.

↓
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Figure 8. We construct a histogram over the rank of the LLM selected by SMOOTHIE-GLOBAL across both the 3B and 7B

ensembles, for 7 NLG tasks.
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Footnotes

1 De�nition Extraction has fewer than 1000 samples.

2 Responses are available on the AlpacaEval website: https://tatsu-lab.github.io/alpaca_eval/.
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