

Proof of Beal Conjecture

Dmitri Martila

Preprint v1

July 17, 2023

https://doi.org/10.32388/F4BY0H

PROOF OF BEAL CONJECTURE

DMITRI MARTILA INDEPENDENT RESEARCHER J. V. JANNSENI 6–7, PÄRNU 80032, ESTONIA

ABSTRACT. A simple argument proves the Beal Conjecture. There is a million-dollar prize for solving the Beal Conjecture. MSC Class: 11D45, 11D41.

The Beal conjecture says that $A^x + B^y = C^z$ does not have a pairwise co-prime triplet of integers (A, B, C) for all integer powers $x, y, z \ge 3$.

The number of solutions (A, B, C, x, y, z) is finite [1] because I proved the abc conjecture in Ref. [2].

Hence, holds $x \leq x_0, y \leq y_0, z \leq z_0, A \leq A_0, B \leq B_0, C \leq C_0$. The $x_0 = y_0$ and $A_0 = B_0$ because symmetry $A^x + B^y = B^y + A^x$ holds. However, if I select A > B, then x_0 cannot coincide with y_0 . I can always demand A > B, but $x_0 = y_0$ still has to hold. Therefore, no (A, B, C, x, y, z) solutions exist.

References

- R. Daniel Mauldin (1997). A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem. Notices of the AMS. 44 (11): 1436–1439.
- [2] Dmitri Martila. (2023). Ternary Goldbach Conjecture implies ABC Conjecture. Qeios. doi:10.32388/JK3FLI.