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In quantum physics, the choice of basis is crucial for formulation. The generalization of the Pauli
matrices via the Kronecker product, known as Pauli strings, is typically restricted to 2" dimensional
systems. This paper explores extending this generalization to N-dimensional systems, where NV is a
prime integer, to construct N x N-Kronecker-Pauli matrices. We begin by examining the specific
cases of 3 x 3and 5 x 5 Kronecker-Pauli matrices, with the goal of the purpose constructing a set of

N x N-Kronecker-Pauli matrices for any prime integer N.
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1. Introduction

In quantum physics the choice of basis for formulation is important. For higher level system, for having a
basis, it is normal the generalization of the Pauli matrices by tensor or Kronecker product
(03 ®05,® - 05) iy o123

where o is the 2 x 2-unit matrix and

(0 1\ (0 =i\ _ (10
Y1 0)2 G 0 ) o -1

are the Pauli matrices.

However the generalization in this sense applies only to 2" level systems. These matrices, known as Pauli
strings, are referred in this paper to as 2" x 2"-KPMs (Kronecker-Pauli matrices). The work

in [ extended some of these matrices’ properties (2! to three-dimensional systems, leading to the 3 x 3-
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KPMs and offering a path to generalizing this for any dimension. In this road to generalization it is

demonstrated that the tensor product of two sets of KPMs is a set of KPMs.

The set I3 of 3 x 3-KPMs which are not traceless, even up to phases factor, does not form a group which
excludes it from being considered as a Pauli group. Neverthless, the set of traceless matrices
Ks x K3 ® {1,w,0?} = 7K3 ® {1,w,w?}, for 7 € K3 with w = e andu? = et formsa group. This
group corresponds to the Weyl-Heisenberg group for the three-dimensional case, according to its
definition in Bl

The objective of this paper is to demonstrate that the method for constructing a set of 5 x 5-KPMs

described in Il can be extended to produce a set of N x N-KPMs for any prime integer N. In other words,

we aim to define a set ()2, Of N 2 matrices that satisfy the following properties:

i Syen = %Zfﬁfl 3, ® 3, isthe N ® N-swap operator;
ii. 2: = 3, foranyi € {0, 1,...,N%2 - 1} (hermiticity);
iii. ©7 = Iy, foranyi € {0, 1,...,N? — 1} (square root of the unit);

iv. Tr<2}2k) = Ngj, forany j,k € {0, 1,...,N? — 1} (orthogonality).

An analogous of the relationship i) of the swap operator or tensor commutation matrix with the KPMs is
satisfied by the generalized Gell-Mann matrices and the unit matrix 4,
The KPMs are hermitians and according to ii) and iii), they are unitaries. Like the set of the generalized

Gell-Mann matrices and the identity, the N x N-KPMs are generators of the unitary group U(N).

It is straightforward to show that for ¥ € ICy/,

i. the basis XKy = (¥3;));< x> ; is an unitary basis, containing the identity matrix I, and all
elements, except the identity, are traceless

ii. the elements of 3/, are mutually orthogonals.

Thus, the elements of X /C, satisfy the general properties required to be a matrix basis which is used for

the Bloch vector decomposition of qudits 2.
As unitary matrices, the KPMs could serve as quantum gates in 1-qudit quantum circuit. For instance,

three gates are defined as elementary gates [6I[7] for 1-qutrit quantum circuit:

100 00 1 01 0
X =19 0 1[,XP=[0 1 0], X2=]10 0
010 100 00 1

These are among the 3 x 3-KPMs.
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Given these considerations, it is clear that N x N-KPMs merit further study:.

The paper is organized as the following. In the second section we will give the definition of what we call
an inverse-symmetric matrices and some of their properties, which we need for constructing a set of
KPMs. In the third section a study of the 3 x 3-KPMs is given in comparing them with the matrices of the
Weyl operator basis. The fourth section is for the way of constructing a set of KPMs, in starting at first

the 5-dimensional case.

2. Inverse-symmetric Matrices

To construct Kronecker-Pauli matrices, we first introduce the concept of inverse-symmetric matrices

and some of their properties Y

Definition 1. Let us call inverse-symmetric an invertible complex matrix A = (A;) such that

. 1. ;
A} = it 0
J

If a permutation matrix is symmetric, then it is inverse-symmetric.
Proposition 1. The Kronecker product of two inverse-symmetric matrices is itself inverse-symmetric.

Proposition 2. For any n x n inverse-symmetric matrix A, with only n non zero elements, A?> = I,,.

3. 3 x 3-Kronecker-Pauli matrices

3.1. Weyl Operator Basis

In this subsection, we present what is Weyl operator basis (See for example, [810910101) i order to show its

relationship with the 3 x 3-KPMs in the case of 3-dimension, the qutrit case.
Definition 2. The following d? operators
d-1 247
Upm = ZeT’m |k) ((k + m)modd|,n,m =0,1,2,...,d -1

k=0

are called Weyl operators.

For the case of 3-dimension the matrices of the Weyl operators are the following Uy, =

o O =
o = O

01 0 0 0 1
Unp={(0 0 1},Up=1]1 0 0]},
1 0 0 0 1 O
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1 0 O 0 1 0 0 0 1
Up=|0 w 0 |, U= 0 0 w|],Ug=|w 0 0],

0 0 w? w2 0 0 0 w2 0

1 0 0 0 1 0 0 0 1
Upy=10 w2 0}|,Uu=1]0 w2 |, Un=|w?2 0 0

0 0 w w 0 0 0 w 0

3.2.3 x 3-KPMs and the Weyl Operator Basis

In this subsection we compare the 3 x 3-Kronecker-Pauli matrices, formed by the cubic roots of unit that

are inverse-symmetric matrices

1 00 1 0 0 1 0 0
=00 1|,m=[0 0 w|],m3=|0 0 ?|,
010 0 w? 0 0 w O
0 01 0 0 w 0 0
Ty = 01 0 , Ty — 0 1 0 yTe — 0 1 0 y
1 00 w2 0 0 w 0 0
010 0 w O 0 w? 0
m=|10 0],m=]w? 0 0),m=|w 0 O
0 01 0 01 0 0 1
with the matrices of the Weyl operator basis.
For 7, k = 1,2,...,9, we can check that the set 7,/C3 contains the unit matrix and is equal to the set of

2im dim
3

the matrices in the Weyl operator basis up to the phasesw = ¢3 andw? = e’ . For example (k = 1),

7171 = Ugy, 12 = Ug, 173 = Uy, i1y = Ugz, 175 = wU1s, 7176 = wUa;

_ _ 2 2
7177 = Ugr, i3 = w' Uy, 7179 = w* Uy

4. Constructing the NV x N-Kronecker Pauli matrices for N prime
integer
Proposition 3. If /C, and IC 4 are sets of KPMs, then K ® K a4 is also a set of KPMs.

According to this proposition [ it remains for us to construct the N x N-KPMs, for N prime integer.

After that, we will, by Kronecker product, have set of n x n-KPMs for any integer n, n > 1.

Example 1. To construct a set of 5 x 5-KPMs, we begin by decomposing 5 x 5-ones matrix into the sum of five

symmetric permutation matrices, each having only one entry of unit ("1”) in the diagonal, as the follows:
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Then, for each term of this sum by replacing the “ones” by the quintic roots of unit 1

, in keeping the only unit in the diagonal and in keeping that the matrices are inverse-

sim
5

symmetrics, we have additional four matrices i.e five matrices with the matrix taken from the sum. Thus, we

have twenty five inverse-symmmetric matrices.
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0 00 0 p2 0000n4
0 00 nt O 0 0 0 0
xl4:00100,xl5—00100,
00n 0 0 0 0n2 0 0 O
n” 00 0 0 n 0 0 0 O
01000 n 0 0 0 0 % 0 0 0
10000 n 00 0 O n”2 0 0 0 0
X16 = 000017X17: 0 0 0 0772 y X18 — 0 0 0 01],
000 10 0 0 01 0 0 0 0 10
00100 0 08 0 O 0 0 »* 00
0 n2 0 0 0 0 nt 0 0
n” 0 0 0 0 n 0 0 0
Xw=|0 0 00 n*|:x0=]0 0 0 0 9|,
0 0 01 0 0 0 0 1 0
0 0 n 0 O 0 0 n2 0 0
00010 0 0 0 5 O 0 0 0 n2 0
00100 0 0 72 0 0 0 07t 0 0
X21=]0 1 0 0 O0|sXx2=]0 n® 0 0 O0|sx3=]0 n 0 0 0]},
10000 nt 0 0 00 n” 0 0 0 0
00001 0 0 0 01 0 0 0 0 1
0 0 0 7% 0 0 0 nt 0
0 0np 0 O 0 0 5 0 0
X2«=]0 n* 0 0 Ofsxs=|0 n2 0 0 0
n”2 0 0 0 0 n 0 0 0 0
0 0 0 0 1 0 0 0 0 1

We have verified, with the help of SCILAB software [ that the set of these twenty- five matrices
constitutes a set of 5 x 5-KPMs. But we can have another decomposition of the 5 x 5-ones matrix as the

sum of five symmetric permutation matrices with only one unit in the diagonal, namely

11111 10 0 00 0 0 0 01 0 0 010
11111 0 01 00 0 1.0 0O 0 0 0 01
11111}=]0100TO0)+J0O0O0OT1TTO0O]+]0OOT1TO0O0O|F
11111 00 0 01 0 01 00 1.0 0 00
11111 00 0 10 10 0 00 010 00

0 1.0 0O 0010

1.0 0 00 00 0 10

0000 1]+]1 0 0O0O0

0 0 010 01 0 00

0 01 0O 00 0 01

If we replace the ”ones” in these symmetric permutations matrices with the five quintic roots of the unit,
but in keeping that they are inverse symmetric, it is obvious that the properties ii) and iii) of hermiticity

and the square root of the unit are satisfied by the twenty-five obtained matrices. It remains for us to
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study the properties i) and iv) of the relationship with the swap operator and the orthogonality. But to
study it, let us consider the general case for any NV dimension, with IV a prime integer. Instead of studying
the relationship between matrices let us study the relationship between operators whose matrices with

respect to the standard basis (|0), [1),...,|N? — 1)) are the matrices in question.
The following lemma for the swap operator Sygx should be helpful for this study.

Lemma 1.
Snen = Y _13) (il ® [) (4]
(i.9)
In order to make the presentation of the following theorem more shorter we take that the matrices of the

operators are their matrices with respect to the standard basis (|0}, [1),...,|N? — 1)).

Proposition 4. Let P, P, .., Py be N x N operators whose matrices are symmetric permutation matrices
with only one unit in the diagonal.

30 =P; and X,, Xy, .., X y_1 are operators whose matrices are obtained in replacing the “ones” in
3y = Py by the N-th roots of unit in keeping that they are inverse-symmetric. We do the same to the operators
P, .., Py inorder to have the operators

Yy=PrandXEni1, By, ., Bon-1

Yy2_y=Pnand 2N27N+1J 2N27N+2J oy 22

whose matrices are inverse-symmetrics.

If

1.thesum Py + Ps + ..., +Py is equal to the operator whose matrices is the N x N ones matrix;

2.foranyl € {0, 1,...,N —1},forany k,j € {IN +1,...,IN + N — 1}, for any two placesina N x N
2impy, 2imry,
-matrix, non symmetrics with respect to the diagonal where the elements of 3, aree ¥ ande v and
imp.; 2imy ;

= il
the elements of 3;aree v ande ~  such that

2im(ry+py) 2in(r j+p;)
e~ N #e~ N

then

N2-1
SneN = % Z 3, ® X;is the-N ® N-swap operators andTr (E;Ek) = Noj,
=0
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Proof. Let us take the operator X;, with j € {0,1,2,...,N —1}. 3; can be decomposed as sum of
elementary operators, a non zero term in this sum is of the form

2imp

e |k){l

withp € {0,1,2,..., N — 1}. Thus a non zero term of the sum giving ¥ ; ® X, is of the form

2im(p+r)

e" v k) {l|®[m) (n]

withr € {0,1,2,...,N — 1}.If k = nand !l = m, then

217rQ)+7'

k) (1] ® |m) (n| = [K) {I| ® |I) (K|

due to the inverse-symmetries. A non zero term of the sum EN ! 3, 9%;is

N-1 217rp+r)
e k) (] @ [m) (n| = N[k) (I @ |I) (K|
j=0

<.

Ifk#norl+#m,
for the case where k = [, then p = 0, because only one unit on the diagonal, and

2z7r(p+7'

e k) (1 @ m) (n] = &% [K) 1] ® |m) (n

and in the sum jV: ’01 3; ® 3, there is the following sum

N-1

2 e

r=

2inr

k) (Il ©[m) (n| =0

according to the hypothesis (2) and as the sum of the five quintic roots of unit is equal to zero.

For the case wherem = n,thenr =0

2im(p+r) 2imp

e v [k)({l|@|m)(n|=en k) (| &|m)(n]

2
and in the sum Z;V: o | 2, ® 2, there is the following sum

=

-1 2imp

ev k)l ®|m)(n =0

(=}

bS]

for the case where k # [ and m # n, a term of the sum giving 3; ® X; is of the form

2i7r(p]-+r]-)

em v k) {[®|m) (n|

then in the sum Z;V:BI X ; ® X, there is the following sum
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N-1 217rp+7‘)

JZe

k) (1] @ [m) (n|

which equal to the null operator 0, according to the hypothesis (2).

Then, we can conclude that only the elementary operator non null operators in the decomposition of the
2
sum E;.V: 071 3; ® X, are the elementary operators of the form N |k) (I| ® |!) (k|. Hence, According to the

lemma the first part of the conclusion is demonstrated.

Now, let us move on to the second part. For j, k€ {0,1,2,...,N—1} with j#k, for p #r,

p,7TE {0,1,2, ., N}, the operator ¥;%; contains two terms e & @rton) Ip) (p| and e Nt |7y (r|,

2im

with e N P ande ™ i are elements of the matrix of 3. Suppose

e N 2T (pjtpr) _ —e N 2T (rjtry)
Then,
2 2i
e ]\;r(p] 7']) — eTw(rkfpk)

2im 2im
However, the elements e ¥ ¥/ and e~ (=7i) of the matrix of 3 ; are respectively in the same places as the

2im 2im
elements e v (P %) and e ™ ™ of the matrix of 3 - That is in contradiction with the hypothesis (2). Thus,

the diagonal of the matrix of E;r.Ek is formed by the N-th roots of units. Hence, for j # k, Tr
(zj.zk) ~0.

For li,lb {0, 1,...,N —1}, with Iy # 1y, for je{uN+1,...,UN+ N -1},
ke {laN+1,...,[aN+ N — 1} it is obvious that all elements in the diagonal of 2;[216 are equals to
zero. Thus, Tr (2}2;6) =0.0

We can remark that the theorem help us how to build a set of N x N-Kronecker-Pauli matrices, for a

prime integer V. Let us take as an example the continuation of the construction of 5 x 5-KPMs above.

Example 2. Let us take one by one the permutation matrices terms of the decomposition of the 5 x 5-ones
matrix above. For each term, we add four inverse-symmetric matrices obtained in replacing the five units with
the quintic roots of the unit, in keeping that they are inverse-symmetric, but according to the hypothesis (2) of

the Proposition 4 above.
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0 01 00 0 0 7t 0 0 0 5 00
0 00 10 00 0 »* O 0 0 0 nn O
Yau=|1 0 0 0 0], Y¥p=|n 0 0 0 0], Y3=1|n2 0 0 0 0],
01 0 00 02 0 0 O 0 4 0 00
0 00 01 0 0 0 0 1 0 0 0 01
0 0 2 0 O 0 0 n 0
0 0 0 2+ O 0 0 0 2 O
u=|n> 0 0 0 0,¥5=|9t 0 0 0 0
0 n 0 0 O 0 n» 0 0 O
0 0 0 0 1 0 0 0 0 1
Counter-example 1.
1 0 0 0O 1 0 0 0 O
0 01 00 0 0 n 0 O
1=]0 100 0,Z=]0n*0 0 0|,
0 00 01 0 0 0 0 72
0 00 10 0 0 0% 0
1 0 0 0 O
0 0 2 0 O
35=10 2 0 0 0]
0 0 0 0 7q
0 0 0 n*t 0

are forbidden to be in the same set of 5 x 5-KPMs, because they does not satisfy the hypothesis (2) of the
Proposition 4 above, even though they are inverse-symmetric. Actually, the property iv) of the definition

of a set of KPMs is not satisfied because Tr <E£ P 3) # 0.

5. Conclusion

In conclusion, we have shown that for any given element of the 3 x 3-Kronecker-Pauli matrices, its

products with other elements generate a basis equivalent to the Weyl operator basis, up to phase factors

2im

dim
w=-¢e3 andw? = e73 .For any prime integer N, we have demonstrated a method for constructing a set
of N x N-Kronecker-Pauli matrices. Our study of the NV = 5 case indicates that the set of N x N-

Kronecker-Pauli matrices is not unique.
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