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In quantum physics, the choice of basis is crucial for formulation. The generalization of the Pauli
matrices via the Kronecker product, known as Pauli strings, is typically restricted to 2" dimensional
systems. This paper explores extending this generalization to N-dimensional systems, where NV is a
prime integer, to construct N x N-Kronecker-Pauli matrices. We begin by examining the specific
cases of 3 x 3and 5 x 5 Kronecker-Pauli matrices, with the goal of the purpose constructing a set of
N x N-Kronecker-Pauli matrices for any prime integer N. Another possible method for constructing

a set of Kronecker-Pauli matrices is discussed.
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1. Introduction

In quantum physics the choice of basis for formulation is important. For higher level system, for having a

basis, it is normal the generalization of the Pauli matrices by tensor or Kronecker product
(0, ®0,®...05)

J1,J25- - Jn=0,1,2,3

where o is the 2 x 2-unit matrix and
o — 01 o — 0 —i o — 1 0
e o)\ 0 )7 o 1

However the generalization in this sense applies only to 2" level systems. These matrices, known as Pauli

are the Pauli matrices.

strings, are referred in this paper to as 2" x 2"-KPMs (Kronecker-Pauli matrices). The work

in 1) extended some of these matrices’ properties 2! to three-dimensional systems, leading to the 3 x 3-
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KPMs and offering a path to generalizing this for any dimension. In this road to generalization it has
been demonstrated that for any integers p and g, p, ¢ > 1, the tensor product of set of p x p-KPMs with
set of ¢ x ¢-KPMs is a set of pg x pg-KPMs 1 That reduces the problem to the construction of N x N-

KPMs with NV a prime integer, N > 2.

The set IC3 of 3 x 3-KPMs which are not traceless, does not form a group which excludes it from being
considlered as a Pauli group. Neverthless, the set of traceless matrices
K3 x K3 ® {1,w,w?} = K3 ® {1,w,w?}, for 7 € K3 with w = e% andw? = T formsa group. This
group corresponds to the Weyl-Heisenberg group for the three-dimensional case, according to its
definition in L

The objective of this paper is to demonstrate that the method for constructing a set of 5 x 5-KPMs

described in Il can be extended to produce a set of N x N-KPMs for any prime integer N. In other words,

we aim to define a set (2y) (- y2_, of N? matrices that satisfy the following properties:

i Syen = %Zfﬁfl 3¥; ® X;isthe N ® N-swap operator;
i 2! =%, foranyi € {0, 1,...,N? — 1} (hermiticity);
iii. ¥} = Iy, foranyi € {0, 1,..., N? — 1} (square root of the unit);

iv. Tr(E}Ek) = Néj. forany j,k € {0, 1,..., N* — 1} (orthogonality).

We would like to point out that an analogous of the relationship i) of the swap operator or tensor

commutation matrix with the KPMs is satisfied by the generalized Gell-Mann matrices and the unit

matrix 21,

-KPMs are elements of the unitary group U(NN) and generators of the Lie algebra u(NV) of the Lie group
U(N) of N-dimensional unitary matrices (See for example By,

For ¥ € ICy/,

i. the basis 3Ky = (¥£3;);.;<y2_; Is an unitary basis, containing the identity matrix I, and all
elements, except the identity, are traceless;

ii. the elements of 3/C,, are mutually orthogonals.

Thus, the elements of X/, satisfy the general properties required to be a matrix basis which is used for

the Bloch vector decomposition of qudits fol,

As unitary matrices, the KPMs could serve as quantum gates in 1-qudit quantum circuit. For instance,
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three gates are defined as elementary gates [7I8] for 1-qutrit quantum circuit:

100 00 1 010
X =foo 1|,x®=1010,X"=]100
010 100 00 1

These are among the 3 x 3-KPMs.

Given these considerations, it is clear that N x N-KPMs merit further study.
The paper is organized as the following. In the second section a study of the 3 x 3-KPMs is given in
comparing them with the matrices of the Weyl operator basis. In the third section we will expose the

methods for constructing a set of KPMs. The fourth section is for the discussion.

2. 3 x 3-Kronecker-Pauli matrices

2.1. Weyl Operator Basis
In this subsection, we present what is Weyl operator basis (See for example, 2/} 1) in order to show its
relationship with the 3 x 3-KPMs in the case of 3-dimension, the qutrit case.

Definition 1. The following d? operators

U
=

2im
Upm = Y €@ ™ |k) ((k+m)modd|,n,m = 0,1,2,...,d— 1 (2.1)
0

=~
Il

are called Weyl operators.

100
For the case of 3-dimension the matrices of the Weyl operators are the following Upy= [ 0 1 0],
0 01
0 1 0 0 1
Up=(0 0 1],Up=|1 0 0],
1 00 0 10
1 0 0 0 10 0 0 1
UlO* 0 w 0 ,Ullf 0 0 w ,U12— w 0 0 y
0 0 w? w2 0 0 0 w? 0
1 0 0 0 1 0 0 0 1
Up=(0 w? 0|,Uyu=|0 0 w?|,Up=|w? 0 0
0 0 w w 0 0 0 w 0

2.2.3 x 3-KPMs and the Weyl Operator Basis

In this subsection we compare the 3 x 3-Kronecker-Pauli matrices, formed by the cubic roots of unit that

are inverse-symmetric matrices
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1 00 1 0 0 1 0 0
=00 1|,m=[0 0 w|],m=|0 0 ?|,
010 0 w? 0 0 w O
0 01 0 0 w 0 0 w?
=01 0],m=|0 1 0},={0 1 0 |,
1 00 w? 0 0 w 0 0
010 0 w O 0 w2 O
7=110 0|,m=]w? 0 0],m=|w 0 O
0 01 0 0 1 0 0 1
with the matrices of the Weyl operator basis.
For m;, k = 1,2,...,9, we can check that the set 7,/C3 contains the unit matrix and is equal to the set of

the matrices in the Weyl operator basis up to the phases w = e% andw? = e 5 . For example (k = 1),
7171 = Ugo, 172 = Usg, 113 = Uy, i7a = U, 175 = wUi2, 1765 = wUa

717 = Up, i1 = w? U, 1y = w? Uy

Therefore, in multiplying the Weyl operators by an element of the set K3 of the 3 x 3-KPMs, for example

T4, which is inverse of itself, we have the elements of /C3 up to phase factor. It follows that

_ 3 /3 J3
K3 = — T4 Ugo; —T4Uo1, — T4 Up,

(o)) 2 [((rvw)] 2 (v 2

V3
[TY((‘MUH)Z)]

V3
[Tf((ﬂ;Uw)zﬂ

V3
[Tf((T4U12)2)]

V3
[Tr<("'4U20)2>}

74Uy, 74U, 74Uz, 74 U2,

o=
o=
o=
N =

v3 71Uz, V3 11 U2
[Tr((T4U21)2)} 2 [TT((T4U22)2)] 2

with L [Tr ((7—4U00)2)] :

Thus, we can reconstruct the set of the 3 x 3-KPMs from the 3-dimensional Weyl operators.

, % [Tr ((7-4U01 )2)} %, ... are the phase factors.

3. Constructing a set of KPMs
Definition 2. Aset ; = (= k)o<k<a®-1 °f d? matrices that satisfy the following properties:

i Sypq = %Z;ﬁgl 3; ® X, isthe d ® d-swap operator;
i. 23 =% foranyi € {0, 1,...,d* — 1} (hermiticity);
iii. ©7 = I, foranyi € {0, 1,...,d? — 1} (square root of the unit);
iv. Tr(2;2k> = ddj, forany j, k € {0, 1,...,d%>— 1} (orthogonality).

is called a set of d x d-KPMs.

Proposition 1. If K, and IC, are sets of KPMs, then K, ® K, is also a set of KPMs.
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Proof. Suppose that I, = (A;) and Ky = (B)g<p<,2; are sets of KPMs. Let A; and Xy be

0<j<p?~1
respectively elements of /K, and K, then (A;® =)’ = AeXl =101 =1I,,
(A0 =Alenl =A;03,.

Let A and X be respectively elements of K, and /C,.

Tr((Aj o)A 2)) “Tr(A;A ® 3,5 :Tr(A}A)Tr(z:Lz). If A;©@%,=A®Y, then Tr
((Aj®2k)T(A®2)) —pg f A;j®%,#A®, then Aj#A or X, #% and Tr
((Aj o) (A® 2)) = 0. That proves iv).

2 2
To finish, as S,g, = % 5161 A;®@ Ajand Sye, = % 78 ® By, then [

. _
Spezpa = EZ > (A @%) @ (A ® )

That proves i). []

According to this Proposition 1, it remains for us to construct the N x N-KPMs, for N prime integer.

After that, we will, by Kronecker product, have set of n x n-KPMs for any integer n, n > 1.

Example 1. Ko = {00,01,02,03} set of 2 x 2-KPMs,

Ks = {m,72, 73,74, 75,76, 77, T8, Ty} set of 3 x 3-KPMs. Then, K3 @ K3 = (6 ® T%) is set of

0<j<3,1<k<9

6 x 6-KPMs.

3.1. Inverse-symmetric Matrices
To construct a set of N x N-KPMs, with NV prime integer, we first introduce the concept of inverse-
symmetric matrices and some of their properties (21,

Definition 3. Let us call inverse-symmetric an invertible complex matrix A = (A;) such that

. 1 .

J _ _— s 7

A = e ifA; #0
J

If a permutation matrix is symmetric, then it is inverse-symmetric.

Proposition 2. The Kronecker product of two inverse-symmetric matrices is itself inverse-symmetric.

Proposition 3. For any n. x n inverse-symmetric matrix A, with only n non zero elements, A% = 1I,,.

Following this Proposition, taking inverse-symmetric matrices built with the N-th roots of the unit is an

appropriate choice to satisfy the properties ii) and iii) of the N x N-KPMs.
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3.2. Constructing a set of N x N-KPMs for N prime integer

Example 2. To construct a set of 5 x 5-KPMs, we begin by decomposing 5 x 5-ones matrix into the sum of five

symmetric permutation matrices, each having only one entry of unit (”1”) in the diagonal, as the follows:

11111 10 0 0O 0 01 00 0 0 0 01
11111 0 0 0 01 01 0 00 0 0010
11111f=]0001CO0|+f1 0O0O0O0O)+]0 01 O0O0]|+
11111 0 01 0O 00 0 01 0 1.0 0O
11111 01 0 00O 0 0 0 10 10 0 00

0 1.0 0O 0 0 0 10

1.0 0 00 0 01 00

0 000 1J+]J0 1 0 0 O

0 00 10 1.0 0 00

0 01 0O 00 0 01

pis
Then, for each term of this sum, by replacing the ”ones” by the quintic roots of the unit: 1, n =¢€75 ,
dim 6im 8im
n? =€ ,n% =€ ,n* = e ,inkeeping the only unit in the diagonal and in keeping that the matrices
are inverse-symmetrics, we have additional four matrices i.e five matrices with the matrix taken from

the sum above. Thus, we have twenty five inverse-symmmetric matrices.

1 0000 10 0 0 1 00 0 O
00001 00 0 0 n* 0 0 0 0 n?
X1 = 0 0 01 0)],x2= 0 o0 0’1]3 0 y X3 = 0 00174 01,

0 01 0O 00n2 0 O 0 0n 0 O
01000 0n 0 0 O 0n 0 0 O

10 0 0 0 1 0 0 0 O

00 0 0 7 00 0 0 7

xs=]0 0 0 n O0f|,xs=]0 0 0 n* 0f,

0 0 n* 0 0 0 0 7% 0 0

0n2 0 0 0 0nt 0 0 0
00100 0 0n 0 O 0 0 0 0
01 000 0 1.0 0 0 01 0 0 0

xs=|1000 0|l:xy=|n* 00 0 0],xs=|n> 0 0 0 0],

00001 0 00 0 n? 0 0 0 0 7
00010 0 00 7 0 0 0 0 ¢ 0

0 072 0 0 009t 0 O

010 0 0 01 0 0 O

Xo=|7m 0 0 0 0 |,xo=|mn 0 0 0 0],
000 0 nt 00 0 0 7
0 0 0 O 00 0 72 O
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constitutes a set of 5 x 5-KPMs. But we can have another decomposition of the 5 x 5-ones matrix as the

sum of five symmetric permutation matrices with only one unit in the diagonal, namely

+
—
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- o O O O
o O -H O O
o O O o -
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If we replace the “ones” in these symmetric permutations matrices with the five quintic roots of the unit,
but in keeping that they are inverse symmetric, it is obvious that the properties ii) and iii) of hermiticity
and the square root of the unit are satisfied by the twenty-five obtained matrices. It remains for us to
study the properties i) and iv) of the relationship with the swap operator and the orthogonality. But to
study it, let us consider the general case for any NV dimension, with IV a prime integer. Instead of studying
the relationship between matrices let us study the relationship between operators whose matrices with

respect to the standard basis (|0, [1),...,|N? — 1)) are the matrices in question.

The following lemma (See, for example, [12]) for the swap operator Sy should be helpful for this study.

Lemma 1.
Snen = Y [i) (4l ® [3) (i
(4,9)

In order to make the presentation of the following theorem more shorter we take that the matrices of the

operators are their matrices with respect to the standard basis (|0}, |1),...,|N? — 1)).

Proposition 4. Let Py, Py, .., Py be N x N operators whose matrices are symmetric permutation matrices
with only one unit in the diagonal.

30 =P; and X,, Xy, .., X y_1 are operators whose matrices are obtained in replacing the “ones” in
3y = P by the N-th roots of unit in keeping that they are inverse-symmetric. We do the same to the operators
P, .., Py in order to have the operators

Sy=Prand X pni1,E N2, .. DoN-1

Yy2_y=Pnynand 2N27N+11 2N27N+2J oy 22

whose matrices are inverse-symmetrics.

If

1.thesum Py + Py + ..., +Py is equal to the operator whose matrices is the N x N ones matrix;

2.foranyl € {0, 1,...,N —1},forany k,j € {IN +1,...,IN + N — 1}, forany two placesina N x N
2impy, 2imry,
-matrix, non symmetrics with respect to the diagonal where the elements of X, aree ~ ande ~ and
imp P
the elements of X ; are e  ande™¥ suchthat

2im(rp+py,) 2in(rj+p;)
e~ N #e T N

then
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N2-1
Syen = % Z Y¥; ® Xjis the~-N ® N-swap operators andTr (Z;Ek> = Néj,
3=0

Proof. Let us take the operator X ;, with j € {0,1,2,..., N — 1}. X, can be decomposed as sum of N non-
zero elementary operators of the form

2i7rp].

e v [k) (Il

with p; € {0,1,2,...,N — 1}. Thus ¥, ® ¥; is the sum of N? non-zero elementary operators of the

form

2im(pj+r;)

e~ |k){l®m)(n

withr; € {0,1,2,...,N —1}.If k = nand ! = m, then

2i7r(pj+7‘j)

e v k) {I[®|m)(n| = [k) (] ® [) (K|

due to the inverse-symmetry. A non-zero term of the sum Z;Y: 51 3;®%;is

N-1 2i7r(p]-+r]-)

YT v | U®m)(nl =Nk el K

=0

If k # n or | # m, for the case where k = [, then p; = 0, because on the diagonal, only one entry is unit

and the others are zeros. It follows that

2i7r(pj+7']v) 2inr ;

em v [k {[®|m)(n| =¥ [k){l|®[m)(n]

and in the sum Y ;V: Bl 3, ® 3, there is the following sum

N—-1 2inr j

Y e |k (Il ®|m)(n| =0

=0
according to the hypothesis (2) and as the sum of the five quintic roots of unit is equal to zero.
For the case where m = n, thenr; =0

2i1r(pj+rj) 2imp.;

em v [k {[®|m)(n|=en [k) (] ®|m)(n|

and in the sum Z;V;Ol ¥ ; ® X, there is the following sum

N-1 2i7rp]-

Ze v k) (| ® |m)(n| =0.

—

<

For the case where k # [and m # n, a term of the sum giving 3; ® X is of the form
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2im(p+r )

e v k) {l®m)(n

then in the sum Z;Y:BI 3; ® X, there is the following sum

N=1 2in(pjir))

doeT v [k {U®m)n|

=0
which equal to the null operator 0, according to the hypothesis (2).
Then, we can conclude that only the elementary operators which are non null operators in the
decomposition of the sum E;.V: 271 ¥, ® X, are the elementary operators of the form N |k) (I| ® |I) (k|.
Hence, According to the lemma the first part of the conclusion of the proposition is obtained.
Now, let us move on to the second part. For j, k€ {0,1,2,...,N —1} with j#k, for p #r,
p,r € {0,1,2,...,N}, the operator ;3 contains two terms e oitoe) |p) (p| and e (ritme) |r) (r|,

2im 24
with e~ #7 and e~ 7 are elements of the matrix of 3 ;. Suppose

Zm

—en 7‘]‘+Tk)

5
e% (pj+pr)

Then,

5
== (pj—rj)

en (rk—pr)

2in
= €& N

However, the elements e%pf and e% (=73 of the matrix of X ; are respectively in the same places as the
elements e% (=Pk) and e% "* of the matrix of 3. That is in contradiction with the hypothesis (2). Thus,
the diagonal of the matrix of E;Ek is formed by the N-th roots of units. Hence, for j # k, Tr
(zjzk) —0.

For li,lb {0, 1,...,N—1}, with I # 1y, for je{luN+1,....,N+ N -1},
ke {laN+1,...,I3N+ N — 1} it is obvious that all elements in the diagonal of E}Ek are equals to

zero. Thus, Tr (EEEk) =0.0

We can remark that the theorem help us how to build a set of N x N-Kronecker-Pauli matrices, for a

prime integer N. Let us take as an example the continuation of the construction of 5 x 5-KPMs above.

Example 3. Let us take one by one the permutation matrices terms of the decomposition of the 5 x 5-ones
matrix above. For each term, we add four inverse-symmetric matrices obtained in replacing the five units with
the quintic roots of the unit, in keeping that they are inverse-symmetric, but according to the hypothesis (2) of
the Proposition 4 above. Proposition 3 ensures property iii) of a set of KPMs. To satisfy property ii) of hermiticity,
the construction of a family of inverse-symmetric matrices whose elements are N-th roots of the unit is needed.

The hypotheses of the Proposition 4 guarantees properties i) and iv).
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0 01 00 0 0 p* 0 0 0 5 00
0 00 10 00 0 »* O 0 0 0 nn O
Yau=|1 0 0 0 0], ¥p=|n 0 0 0 0], Y3=1|n2 0 0 0 0],
01 0 00 02 0 0 O 0 4 0 00
0 00 01 0 0 0 0 1 0 0 0 01
0 0 2 0 O 0 0 n 0
0 0 0 2+ O 0 0 0 72 O
u=|n* 0 0 0 0,¥5=|9t 0 0 0 0
0 n 0 0 O 0 n» 0 0 O
0 0 0 0 1 0 0 0 0 1
Counter-example 1.
1 0 0 0O 1 0 0 0 O
0 01 00 0 0 n 0 O
i1=]0 100 0,Z2=]0nn*0 0 0|,
0 00 01 0 0 0 0 72
0 00 10 0 0 0% 0
1 0 0 0 O
0 0 2 0 O
35=10 2 0 0 0],
0 0 0 0 7q
0 0 0 n*t 0

are forbidden to be in the same set of 5 x 5-KPMs, because they does not satisfy the hypothesis (2) of the
Proposition 4 above, even though they are inverse-symmetric. Actually, the property iv) of the definition

of a set of KPMs is not satisfied because Tr <E£ P 3) # 0.

4. Discussion

According to the Proposition 1, the expression of the Pauli matrices ¢; and the method developped for
constructing a set of KPMs we can assert that for any integer n, n > 1, there is a set of n x n-KPMs

containing the matrix

01 0 0
10 0 0
whose entries on the second diagonal are units and the other entries are zeros. For N prime integer,
N > 2 the KPMs can be built with the N-th roots of unit. It is not the case for the Pauli matrices, the
2P x 2P-KPMs, with p > 2, obtained by the Kronecker product of the Pauli matrices and those obtained

by Kronecker product of two KPMs, according to the Proposition 1. However, if we can generalise the
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relationship between the 3 x 3-KPMs and the 3-dimensional Weyl operators in the Section 2.2, then we

will get that, for 6-dimensional

1 0 0O 0 0 0
0 0 0 0 Py
i

se [0 0 0 0 e3 0
AUy = , 41
et o 0 0 -1 0 0 4.1)

dim
0 0 e35 0 0 0
5im
0es 0 0 0 0

with Uy; is the 6-dimensional Weyl operator for n = 0 and m = 1, will be an element of a set of 6 x 6-
KPMs, up to phase factor. But we can see that the matrix (4.1) is far from to be a Kronecker product of a
Pauli matrix with an element of the set of 3 x 3-KPMs, even up to phase factor. Thus, we can conclude
that if the generalisation of the relations in the Section 2.2 are valide, then there will be, for a composite
integer n, other set of n x n-KPMs than those obtained by Kronecker product of sets of KPMs.

We can notice that the phase factors will be eliminated in taking into account that the KPMs should be
inverse-symmetric matrices.

To make it clearer, let us take the 2-dimensional case, d = 2 where

1 0 01 1 0 0 1
Uy = Uy = Uy = U = .
00 (0 1)7 01 (1 O); 10 (0 _1>) 11 (_1 0)
0 1 1 0 0 -1 -1 0
o1Uy = ,o1Up = ,o1Uy = ,o1Up1 = .
1Vo0 (1 O) 1Yot (0 1) 1V (1 0 ) 1V ( 0 1)

In order that o1 Uy can become inverse-symmetric matrix, we multiply it by the phase factor i. It

follows that we have the set Ky = {0, 01,02,03} 0f 2 x 2-KPMs.

5. Conclusion

In conclusion, we have shown that for any given element of the 3 x 3-KPMs, its products with other

i

elements generate a basis equivalent to the Weyl operator basis, up to phase factors w = e and
w? = e%. Reciprocally, multiplying the 3-dimensional Weyl operators basis by a 3 x 3-symmetric
permutation matrix, we have the set of 3 x 3-KPMs, in eliminating phase factors. We have noticed that
the generalisation to any dimension will be another method for constructing a set of KPMs. For any
prime integer N, we have demonstrated a method for constructing a set of N x N-KPMs. It starts in

decomposing N x N-ones matrix as sum of symmetric permutation matrices. The fact that such

decomposition of N x N-ones matrix is not unique shows that the set of N x N-KPMs is not unique
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too. Actually, we have two examples of sets of 5 x 5-KPMs.

For a composite integer n, a set of n x n-KPMs can be constructed by Kronecker product.

The author declares that there is no conflict of interest regarding the publication of this article.
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