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Abstract

Directed acyclic graphs are graphs that contain one directional arrows which connect 

the nodes within the graph structure, and where flow of information can be shown to 

flow from "past" to "future" along the direction of the arrows. T hese graphs are 

acyclic in the sense that no paths turn back on to the parent node as they are directed 

from a causal variable to an effect variable. In this paper, we discuss these graphs with 

respect to causal inference in Epidemiology and discuss ways of drawing our 

assumptions prior to our conclusions. Specifically, graphs will help us to identify biases 

and also help us to characterise counterfactual theories of causation

Introduction
Epidemiology is defined as the study of distribution and determinants of diseases in

populations and use of this information to improve population health [1]. While the
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concept of distribution of disease is intuitive, identification of causal determinants of

diseases is complex. A conceptual limitation is to differentiate the between correlation

and causation. Here we will use graph theory to explore cause and effect assessment in

epidemiological studies.  

We can examine causal association between an exposure A and an outcome Y with a two

step procedure: we first establish that any observed association between A and Y

is internally valid and then based on internal validity, we test the nature of such

association is one of cause and effect [2] . A study on the association between A and Y is

internally valid is established when it satisfies three conditions: (1) that the

association would not occur by chance alone; (2) that the observed association is free

from bias, and (3) that the association cannot be accounted for by a third variable

referred to as a confounding variable L associated both the exposure and the

outcome [3].

If the association between an exposure A and an outcome Y is internally valid, is this

associaiton is one of cause and effect? T his can be answered using two approaches: one,

using a framework or considerations proposed by Sir Austin Bradford Hill in 1965 ("Hill's

Criteria") and the other is the counterfactual theory of causation [4] . Accoding to Hill's

criteria, we can examine nine considerations to asess the association between an

exposure and an outcome (T able 1).
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Figure 1. Hill's criteria (image

source: https://www.researchgate.net/profile/Caroline_Watson4/publication/5516686/figure/tbl1/AS:6

69341636911123@1536594890255/Summary-of-Hills-criteria-1965.png)

 

Of these criteria , the strength of association, the temporality, and the biological

gradients are useful to think about cause and effect as nature of their association. 

Counterfactual theory of causation relates to alternative views of causation. T his

theor, argues for example, that if an exposure A is deemed to cause an outcome Y, then,

in the counterfactual of A (what other value would A assume?), Y ould not occur or not

assume the same value as it would with the given value of A. If that would not be the

case, or if the value of Y were to remain unchanged, then the association between A and

Y would not have causal implications [5]. For example, consider a study where the

researchers study cigarette smoking (ever smoker / never smoker) as a causal risk

factor for lung cancer, the hypothesis being that those who smoke are more likely than

non-smokers to develop lung cancer. T he status of "non-smoker" is  counterfactual to

"smoking" status. T he uniqueness of this approach is that, we are comparing the "what

if" scenario of the same individual as a smoker as opposed to being a "non-smoker" for

the risk of lung cancer [6]. 

In this paper, we will examine the role of directed acyclic graphs to map out graphs for

studying the association between exposure and outcomes inthe context of

epidemiological studies. In this paper, we will examine directed acyclic graphs. and in the

subsequent parts of the series wie will explore counterfactual theories of causation and

how they can be pre represented in graph structures such as SWIGs (single world

intervention graphs) proposed by Richardson and Robins (see PDF in the linked slide

deck)  In the following sections, we e begini with an exploration of causal graphs and

continue to through the series. 

What are causal graphs?
Causal graphs are a subset of graphs were cause and effects can be represented using

directed acyclic graphs. In 1923, Sewall Wright (read the full text pdf) three rules of path

tracing to indicate valid paths as follows:

1. In a graph that contains a directed path or a set of paths between two  nodes A and Y,

such that a path leaves A and reaches to another node, Y, paths can travel in any

direction from A but must continue in the same direction before it reaches Y. It cannot

begin in one direction and then reverse its direction. 

2. T he path can only contain one correlation or covariance term ("curved arrow"), and

3. Covariance between A and Y (expressed as cov(A, Y)) is the sum of the product terms
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of all valid path based path coefficients. 

In 1986, Judea Pearl expanded these concepts to causal graphs and added the concepts

of d-separation, backdoor, and frontdoor criterion (read the full text here). According to

Pearl, a path going forward from A to Y would consist a front-door path and can contain

mediator variables (Figure 1)

Figure 1. DAG model that shows the front-door criterion (A is the cause, M = mediator, and Y = outcome)

 Hernan and Robins (read the full text in pdf format) extended these concepts in

Epidemiology. In Epidemiology, front-door paths are rarely found by themselves with no

relevant backdoor paths. In a backdoor path, an arrow from A would start backwards and

the path would then point back to A traversing through other nodes (Figure 2)

Figure 2. The backdoor paths that connect A and Y: A-L-Y is a backdoor path that connects A and Y,

similarly A-L-U-Y is another backdoor path that connects A and Y
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In Figure 2, A, and Y are connected to each other by two backdoor paths: (1) A-L-Y is one

backdoor path that connects A and Y; and (2) A-L-U-Y is another backdoor path connects

A and Y. Pearl proposed that two nodes, A and Y are deemed to be d-separated if there

exist no open backdoor path between them. Further a path can be blocked or open

depending on the nodes in the path and the direction of the arrows that connect them. In

the following diagrams we provide examples of open and closed paths with annotations

(Figure 3)

Figure 3. Four path models Model 1: AMY, an open path; Model 2: A2M2Y2, a closed path and M2 is a

collider in the path; Model 3: A3M3Y3, a closed path as M3 is conditioned on; Model 4: A4M4Y4, an open

path as M4, the collider is conditioned on

 In Figure 3, four paths are shown as follows:

In Model 1, the path A-M-Y shows a path where paths connect cause node A through

mediator M,  to node Y (the effect). T his path is open and A and Y are said to be d-

connected. In Model 2, two opposite headed arrows connect  A2 to M2, and Y2 to M2.

T hese two paths, one from A2 to M2 and the other from Y2 to M2 collide at M2. M2 is

therefore termed as collider. A path connecting A2 to Y2 in this case containing a collider

is said to be "closed". T he presence of a collider that is not conditioned on (in terms of

epidemiology and biostatistics, conditioned on is same as "adjusted for" or "controlled

for") closes a path connecting two nodes. In Model 3, the path A3 - > [M3] -> Y3 is closed

because here M3 (note the square bracket around M3 or the white coloured circle

representing M3) is controlled for or conditioned on. In an open path between two nodes

A and Y that traverses through an intermediate node N, if the intermediate node is

conditioned on, then the path closes. In this case, the path A3M3Y3 is a closed path that

connects A3 with Y3. Finally, in Model 4, A4M4Y4 is an open path as in this path, M3,
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which is a collider is controlled for. A path between two nodes A and Y that otherwise

remains closed with a collider in it, opens when the collider is controlled for. Accordingly, in

the four path models illustrated above, we state that:

1. In Model 1, A and Y are d-connected as the path is open and passes through M

2. In Model 2, A and Y are d-separated as there are no backdoor paths between them

and the only front-door path that exists between them is closed as it contains a

collider in the path that blocks the path

3. In Model 3, A and Y are d-separated as no backdoor path exists between them and the

only path that traverses from A to Y through M is closed because M is now controlled

for or conditioned on.

4. In Model 4, A and Y are d-connected as the collider that would otherwise block the

path and close it is now controlled for or conditioned on. 

In Epidemiology, we draw all possible and relevant paths that connect two nodes A and Y

and designate nodes in those paths. If A and Y are not causally connected, we do not

connect A and Y with arrows. With DAGs, we graph possible sources of bias in the

relationship between a cause and effect in epidemiology. It is possible to extend the

scope of DAGs and unite with counterfactual theories of causation using Single World

Intervention Graphs (SWIG) and Single World Intervention T emplates. In the next section,

we use the properties of graphs, the causal structure, and the backdoor criterion, and the

role of colliders to illustrate the process of drawing our assumptions about different

types of epidemiological study designs and identification of different types of biases.

Causal graphs for epidemiology
Causal graphs in Epidemiology are drawn with the following rules:

T he exposure or the intervention variable is referred to as "A"

T he outcome variable is referred to as Y

Measured confounding is given the label L

Unmeasured confounding is labelled as U

T he mediators are indicated but not explicitly drawn in the graph connecting A and Y.

T he mediators may be important but the idea here is not to represent the world in this

graph

Similarly the antecedents of the several potential confounding variables are not

explicitly represented in the graph

If a node is included in the graph, all nodes that are associated with this node and any

other node already present in the graph and the paths must be specified and indicated

in the graph

We represent a several simple epidemiological models in causal DAGs (Figure 4)
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Figure 4. Three representative models of epidemiological studies. The top model, Graph 1 in the figure

represents a Randomised controlled trial; Graph 2 (the middle of the figure), represents an

observational study with an exposure variable, an outcome variable, and a measured

confounding variable. Graph 3 (the bottom model) represents an epidemiological study with a collider in

it (the letter C), that is also a source of selection bias if controlled for.

As can be seen in Figure 4, the topmost graph in the model is a representation of a

randomised controlled trial. Here, A is an intervention and Y is the outcome as a result of

the intervention. As this is a randomised controlled trial, by design all measured and

unmeasured confounding are controlled for, hence a measured confounding is not

necessary in this graph and an arrow connects the intervention (A) to the outcome (Y). In

the middle graph (Graph 2), an observational study with an exposure (A) and an outcome

(Y) is shown. T his observational study includes a measured confounding (L) that is

associated with both A and Y. T his notion of the confounding variable is compatible with

the conventional description of a confounding variable as a variable with the following

characteristic (cite an epidemiological study design article):

A confounding variable is associated with the exposure 

A confounding variable is associated with the outcome

A confounding variable does not come in a putative causal pathway connecting the

exposure and the outcome variable

However, note that in this representative graph, a backdoor path exists between A and Y

and connects A with Y, even though there is no direct path that connects A and Y. T his

backdoor path is represented by A-L-Y. If L is not controlled for or if L is not conditioned

on, this backdoor path with lead to an observed association with A and Y although one

that does not exist. T herefore, to ensure that A and Y are d-separated, this backdoor

Qeios, CC-BY 4.0   ·   Article, May 13, 2020

Qeios ID: FFH3GU   ·   https://doi.org/10.32388/FFH3GU 7/12



path should be closed by conditioning on L. L in this case is a confounding variable in the

association between A and Y. According to the principles of causal graphs, any

association that persists between two nodes after they are d-separated represents the

true causal connection between them (cite Judea Pearl causal inference in statistics).

Hence this backdoor path must be closed for assessing the true association between A

and Y. 

I llustration of  confounding  variableI llustration of  confounding  variable

Consider a case-control study on the risk of coffee consumption on pancreatic cancer

and found that coffee consumption increased the risk of pancreatic cancer; however, this

effect is absent when the study effect is adjusted for alcohol intake, as alcohol intake is

known to be associated with both excessive coffee consumption and is also an

independent risk factor for pancreatic cancer.  In such a situation, A = coffee

consumption, Y = pancreatic cancer, and L = alcohol intake. Even though there was no

real association between coffee consumption and pancreatic cancer, the unadjusted

odds ratio suggested that coffee consumption was a risk factor for pancreatic cancer

because of the backdoor path through alcohol intake. Once the alcohol intake was

adjusted for and the backdoor path was closed, the association disappeared. 

T he third graph in this series shows collider bias. Here, the backdoor path A3-L3-Y3 is

open but the backdoor path A3-C-Y3 is closed as C is a collider. However, conditioning

only on L3 will close this backdoor path, resulting A3 and Y3 to be d-separated. However,

if there is also conditioning on C, then this additional backdoor path A3-C-Y3 becomes

open and results in spurious association between A3 and Y3. T his is referred to as collider

bias and in the context of epidemiological studies, this results in selection bias.

I llustration of  collider bias as selection biasI llustration of  collider bias as selection bias

Consider the following: a case-control study on the association between cigarette

smoking and lung cancer; T he investigators recruited cases from oncology

inpatients who were admitted with confirmed cases of lung cancer; they recruited

controls from the same hospital and from in-patients who were admitted with heart

failure and were treated indoors. T hey controlled for age, gender, socioeconomic status,

and occupation. Such a study would still be open to selection bias as this would leave

open the path that contains a collider. T o see why, consider the following graph (Figure

5):
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Figure 5. Hospitalisation (from heart disease and lung cancer) is a collider of two paths converging from

Lung Cancer and Cigarette Smoking and represents selection bias; L is the complement of all

confounding variables. When we condition on or adjust for L, we close the backdoor path between

cigarette smoking and lung cancer; when we adjust for hospitalisation or condition on hospitalisation,

we open the backdoor path and lead to selection bias

 

As can be seen in Figure 5, the participants for this study were obtained from those who

were hospitalised either with lung cancer or with heart disease. Cigarette smoking is a

known risk factor for hospitalisation due to heart disease as cigarette smoking is a

known risk factor for heart disease. Equally, those who were suffering from lung cancer

in this study were also hospitalised and because they were hospitalised they were likely to

be included in this study. T herefore, by study design, the researchers decided to condition

on hospitalisation (as they included all patients who were hospitalised due to a cause

attributed to cigarette smoking) and in this way, open up an otherwise closed path

between smoking and lung cancer. On the other hand, by conditioning on L, the common

confounding variable, the researchers closed another backdoor path connecting smoking

with lung cancer. T his is also illustrated in the third graph in Figure 4. In epidemiological
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studies, collider biases lead to different forms of selection biases. T his form of selection

bias where selection bias occurs due to a common cause of the exposure and the

outcome is also referred to as Berkson's bias [7] . 

I llustration of  Measurement biasI llustration of  Measurement bias

Not all epidemiological studies are possible using unbiased or objective measurements.

Consider the following study. An investigator studied the association between smoking

and lung cancer in a case control study design. Cases were clinically confirmed cases of

lung cancer and confirmed were drawn from community members, who were otherwise

healthy volunteers; the information on smoking was obtained using a self-reported

smoking habits on the number of packs of cigarettes smoked. Known confounding was

controlled for; we can examine a possible source of bias in the following figure

Figure 6. Independent differential measurement bias in a study between cigarette smoking and lung

cancer where cigarette smoking is measured with self-reported smoking, and Lung Cancer is measured

with recorded and confirmed cancer from hospital data. U1 and U2 are unmeasured error terms for the

measurement of self reported smoking and cancer diagnoses; L refers to measured confounding

variables. 

As can be seen in Figure 6, such a study represents a misclassification bias. Here,

cigarette smoking was measured using a self-reported levels of smoking (ever

smoker/never smokers but also packs smoked). Lung cancer data were obtained using
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hospital records. T hus the two measurements were independent of each other and

therefore errors, if any, between them would be uncorrelated. However, it is also true,

that those who have cancers are more likely to recall their smoking habits better than

those who did not have cancers (controls). As cases would have a higher rate of smoking

recall than the controls, using a self-reported variable for measurement of smoking, the

error in the measurement of smoking habit would be differentiated based on the case-

control status between cases and controls. Hence this measurement error is BOT H

independent of each types of measurements but differentiated based on who is the case

and who is the control. Hence, this measurement error is referred to as independent

differential measurement error.  Note here, that even though one backdoor path

between smoking and lung cancer is closed as L, the confounding variable is conditioned

on, another path, that of "Lung Cancer - U1 - Self-reported Smoking - Smoking" is open

and cannot be closed as U1 is unmeasurable. T his is also an example of recall bias that is

characteristic of case control studies that depend on individual recall of events for case

determination. 

Discussion
In summary,  directed acyclic causal graphs (causal DAGs) represent in the language of

graphs the nodes, and directed edges ("paths") the causal association between different

variables in the context of epidemiological studies. T he aim of a causal graph is to

represent the structure of biases that threaten internal validity of a study. In general,

presence of measurable confounders (represented as L in the graph) indicate the need

for adjustment or conditioning on so that any backdoor paths that exist between the

exposure variable and the outcome variable can be blocked and a true d-separation can

be achieved. On the other hand, adjusting for colliders on the backdoor paths that exist

between an exposure variable and an outcome variable open up the backdoor path if

they are adjusted for and thus lead to spurious association and selection bias. T he third

type of bias that can be studied using DAGs is the measurement bias, where

measurement errors for the exposure and/or the outcome variable can lead to

misclassification and biased information leading to threats to internal validity of a study. 

DAGs are useful tools but they have limitations. DAGs are helpful for uncovering

presence of confounding, selection bias, and measurement biases in epidemiological

studies, but DAGs by themselves do not offer a solution or panacea to these errors.

Secondly, DAGs by themselves do not provide information on counterfactuals that are

needed for establishment of causal linkages between exposures and outcomes or

interventions and outcomes in epidemiological studies (cite Rothman, Hernan). T hese

limitations of DAGs are addressed using single world intervention graphs (SWIGs) that

were proposed by Richardson and Robins (cite Richardson and Robins). Briefly, SWIGs are
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causal graphs that can accommodate the counterfactual information in a causal

structure. In this paper, we discussed only a few basic models to introduce the concept of

directed acyclic causal graphs in epidemiology. We will extend these concepts for

longitudinal and cohort studies. We will also discuss the cases for counterfactual theories

of causation and how SWIGs can be used to explore causal relationships between

variables. 
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