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Introduction

The learning of symbolic algebra is a complex endeavor, and
students tend to struggle with many concepts. Research
reports have highlighted many dif�culties, including
problems with the equal sign (Kieran 1981), understanding
the conventions of use of algebraic letters (Küchemann 1979),
writing equations to solve problems (Stacey and MacGregor
1999), algebraic expressions (Graham and Thomas 2000) and
developing structure sense (Arcavi 1994). Less is known
about the structural relations between components of
algebraic thinking (Oldenburg 2009, 2010). What concepts
and skills support the understanding of other concepts and
skills? Such knowledge could prove to be useful for the
design of teaching sequences. The present paper uses data
gathered from items administered online and a statistical
data mining method to draw some conclusions. The data
mining method used is that of statistical implicative analysis
(SIA). This method searches for relations of implication in
the data set. Such a statistical implication A→B says that
high values on A are an indicator that B will have high values,
but not necessarily that high values of B indicate high values
of A. A common instance is when knowledge tested for B
(e.g., counting to 10) is pre-requisite for knowledge tested for
A (e.g., counting from 50 to 60). This contrasts with
correlation and all analysis and hypothesis testing methods
that build on it because correlation is a symmetric measure
and thus detects only similarity but no directional
information. Moreover, it is able to deal with complex

structures that cannot be modeled by the linear hierarchies
used in Rasch models (Stacey & Steinle 2006).

Method: Statistical Implicative Analysis

Statistical methods based on the correlation matrix can
reveal important insights into linear structures between
observed or even latent variables. However, they are not
adequate when one is interested in detecting the direction of
an in�uence because the correlation matrix is itself
symmetric. Therefore, several methods from data mining
that are capable of giving information about the direction of
a relationship may interest researchers in educational �elds.
Such methods do not look for correlations or similarities
within data but for implications.

Two of these methods that have attracted some interest are
Inductive Item Tree Analysis and Statistical Implicative
Analysis. The former method is based on knowledge space
theory (Doignon & Falmagne 1985), and algorithms to carry
it out have been developed and implemented by Schrepp
(2003) and Ünlü & Sargin (2010). These algorithms try to �nd
a transitively consistent graph of implications (i.e., a→b and
b→c guarantee that a→c) between items. Unfortunately,
these approaches are only suited for data sets of very modest
size, as the computational complexity is very high. Moreover,
studies with simulated data have shown that the power in
detecting implications is only slightly better than for the
method of Statistical Implicative Analysis that will be
described now.
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Statistical Implicative Analysis (SIA)

The SIA method (Gras et al. 2008) was invented by Regis Gras
and has already been widely applied in many �elds,
including educational research. The book by Gras et al.
(2008) contains several chapters on mathematics education,
including the chapter on algebra knowledge by Croset,
Trgalova and Nicaud (2008). They used SIA to discover what
properties of algebraic expressions predispose students to
evoke particular rules (including false rules). Malisani and
Spagnolo (2009) investigated how the kind of approach
students take to open-ended text problems implies what
kind of result they produce.

There is a reference implementation of the basic algorithm
and various extensions in the software CHIC by Gras et al.
(2008). Unfortunately, this software cannot be applied
directly to the present data because it cannot handle missing
data, i.e., items omitted by students. Therefore, the method
has been re-implemented by the �rst author inside the
statistical programming system R. The dif�culty of missing
data was able to be circumvented, because in our analysis we
only considered implications between two variables and
therefore, in analyzing the implication between two speci�c
items we can restrict the data set to those students that gave
answers to both items. This is certainly adequate if the
omissions are due to the fact that the students did not
consider an item at all, but if the students considered the
item and left it blank because they didn’t know what to
answer, it would be better to count this as wrong answer.
However, this was not possible in the present study, so we
only use pairwise non-missing data.

There are two versions of SIA, the classical and the entropic
version. We now describe the classic version which is simpler
and then add some remarks on the entropic version. Let us
assume we have    observed cases and determined for each
case the values of two binary variables   and   (so the data
we have consists of two  -dimensional vectors with entries
0 and 1) and we want to decide whether it is reasonable to
conclude that   implies  , in the following sense: If in a case
the value of   is 1, then the value of   is likely to be 1 as well.
As a logical implication   is always true unless A is true
(written  ) but B is false (written  ); a single case
with   (using the logical “and” sign ∧) shows
that the implication does not hold in the strict sense of logic.
However, in a statistical approach, some counter examples
may result from random noise and thus we compare the
number of observed counterexamples   with the number

of counterexamples that one would expect if the variables
were independent. As counterexamples to the implication 

  are only given by cases with  , this

expected number is    where    is the

number of cases with   and    is the number of cases

with    (note the bar over    means logical not). In SIA
one uses the following test quantity to make the comparison:

The implication intensity is then de�ned by the probability 
 of getting   as large as the observed one (i.e.,

getting a smaller number of counter examples) if the
variables   and   were independent:

 is a probability and thus has values between 0 and 1
and values close to 1 indicate empirical support for the
implication. The graphs that will be shown below are de�ned
by having a directed edge from    to    (in other words,
showing that    implies  ) if    is larger than  ,
where   is the cut-off value (e.g., 0.05).

Some comments on this measure of implication intensity are
in order. As all calculations are done with pairwise data (�rst 

 and  , then   and  , then   and  ), it may be the case
that both   and   have   above a certain cut-off
value but   does not. This is a drawback of the method
only if you suppose that there should be strict transitive
implicative relations behind the scene, and counterexamples
are assumed to be due only to measurement error. In this
case, one would like to reveal the consistent logical theory,
and this should have transitivity of implication. On the other
hand, not all counter-examples may be due to measurement
errors, i.e., the hypothesis A may capture enough to
(statistically) guarantee  , but    may include some other
features that are needed to ensure  , although   alone is not
enough. Thus, a failure of transitivity indicates that A alone is
too “small” to be a good indicator for  . Another way to put
this: The counterexamples to   and   each may
be few, but they may combine to weaken 

 considerably.

One may wonder why SIA works with the rather complicated
expression q instead of just the rate of counter examples. The
reason is that if A is very dif�cult (i.e. nA small) and B is very

easy (i.e.,    small) it is almost impossible to have any

counterexamples. In fact, from a purely logical point of view,
a trivial item (i.e., that can be solved by everyone) is implied
by all items and an impossible item that is not solved by
anyone implies all other items. The denominator in the
de�nition of   is designed in such a way that it compensates
for this effect. In fact, these two special cases will result in
zero implicative intensity, simply substituting the extreme
special case    makes    unde�ned as it results in 0/0,
but in this case, one can transform the expression to see that
in the limit   we have 

A simple extension of the method is required to deal with
data with interval scale variables as may result from partial
credit ratings that are expressed as numbers in the interval
[0,1], so that we have  . In this
case the expression for    has to be calculated by a slightly
more complex formula:
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Here,    and    is the

standard deviation of    while    is the standard

deviation of  .

Especially for large data sets and for data from partial credits
it has been shown that   may not be the best measure, as it
may overestimate some implications. Gras et al. (2008)
present an improved version that measures entropy to judge
the implication intensity. The calculations are somewhat
more dif�cult, but the interpretation is similar. The fact that
the actual values of    can be markedly different when
applying the two methods hints at a general problem of the
method: The actual values depend on factors such as the
method and the sample size, and hence sensible
comparisons should be made only between implications
measured with the same method in the same data set.

Application of SIA to algebra items

In this paper, SIA is used to analyze logical implication
between test items that are dichotomously coded as correct
(score 1) or incorrect (score 0). SIA detects pairs of items 

  and    where having item   correct implies a high
probability of having item   correct as well. This is written
as  . A useful interpretation appeals to the logically

equivalent form    which indicates that having item 
  correct is (statistically) necessary for having item A

correct. Educationally, such an implication may be an
intrinsic necessity (e.g., a pre-requisite where the knowledge
tested by item    is clearly part of the knowledge tested by
item  ) or the result of a more subtle in�uence of learning 

 on learning   (these seem the most interesting outcomes
for educational research) or it may be simply an empirical
observation perhaps explained by a third factor (e.g., all
students who can do advanced calculus items can also do
basic spelling, due to learning age). Generally, we do not
expect both   and   unless the items are testing
knowledge that is similar (parallel items) for the student
group. For example, if item    is ‘solve  ’ and
item    is ‘solve  ’ and item    is ‘solve 

’, we expect   and   (at least
to some extent, although empirical data shows that this is far
from a perfect implication), and    and  . For a
population of students in the early stages of learning algebra
we do not expect that    and    because it is
known that solving equations with variables occurring more
than once is conceptually different and needs to be learned
separately (see the discussion of arithmetical vs. non-
arithmetical equations in Filloy (2008, chapter 4)).

Method: Test and Data

The ‘SMART::tests’ (abbreviation of “speci�c mathematics
assessments that reveal thinking”) have been developed by

Kaye Stacey, Vicki Steinle, Beth Price and Eugene Gvozdenko
at the University of Melbourne, They are online tests
(www.smartvic.com) on a broad range of school
mathematics topics and are intended to be used by teachers
who assign their students to selected tests as formative
assessment when appropriate in their teaching programs
(Stacey et al. 2009). The tests address a wide range of
mathematical conceptions, are delivered and assessed by
computer, and report to teachers on individual student’s
stage of learning and common errors and misconceptions.

The data used for this study consists of the responses of 1634
students in Years 7, 8 and 9, from a varied group of secondary
schools in Victoria (Australia) in the years 2008 and 2009.
For the items reported in this paper, the number of
responses per item varied from 305 to 693 (mean 475).

For the present study we focus on the 37 algebra-related
items from a large set of items used as a �rst step in the
development of the �nal tests. As part of the initial item
calibration and evaluation process, students were presented
with a large number of items (more than could be done in the
time available) in different orders, so all items were
encountered early in the test by some students. Some
students chose which items to answer themselves, but some
teachers selected the sections to be answered by their
classes. All the items are in multiple choice format. Table 1
lists some of the items; the Appendix lists all items in the
form presented to students along with item success rates
(percent of responses correct). Due to the multiple-choice
format, students are not expected to have any technical
problems with entering their answers. However, they may
leave items blank, and there will be a variety of reasons for
this: accidental omission, deliberate omissions due to
students’ perception of item dif�culty, running out of time or
being instructed by their teacher to only do certain parts.
The cluster description in Table 1 is derived from theoretical
content analysis.
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Item Item task Cluster description

I506_1 Is   ? (true or false) Arithmetic

I506_6 Is   ? (true or false) Arithmetic

I506_10 Is   ? (true or false) Arithmetic

I479_1 Is   ? (true or false) Transformational algebra

I479_10 Is   ? (true or false) Transformational algebra

I490
Sue weighs 1kg less than Chris. Chris weighs y kg. We write Sue’s weight in

algebra as: a) y-1; b) x; c) 1-y; d) 24; e) 1y; f) 90 (choose one answer)
Set up expressions representing quantities

I495
Sam is s cm shorter than Eva. Eva is 95cm tall. We can write Sam’s height in

algebra as: a) 95-s; b) 95s; c) s-95; d) s; e) 94; f) –s95 (choose one answer)
Set up expressions representing quantities

I497
David is 10cm taller than Con. Con is h cm tall. We write David’s height in

algebra as: a) 10+h; b) 10h; c) r; d) C=D+10; e) h10; f) 18 (choose one answer)
Set up expressions representing quantities

I494

At a bike shop, there are b bikes (2 wheels each) and t trikes (3 wheels each).

Choose the equation that says that there are a total of 100 wheels.

Choices: a) b+t=100; b) 2b+3t=100; c) 35b+10t=100

Set up relational equations

I498_1

Some students had to �nd some values of x to make this equation true.

x+x+x=12. Mark the work of each student as correct or incorrect:

Mary wrote x=2, x=5 and x=5 (Mary is correct/ incorrect)

Variable conventions, obeying variable rules

I498_2 Like 498_1: Millie wrote x=9, x=2 and x=1 (Millie is correct/ incorrect) Variable conventions, obeying variable rules

I498_3 Like 498_1: Mandy wrote x=4 (Mandy is correct/ incorrect) Variable conventions, obeying variable rules

I575

p stands for an unknown number. Write in mathematical symbols: ‘Multiply p

by 6, then add 10 to the result.’

a) p×6=x+10; b) (p+6)10 c) 6p10; d) 6p+10; e) p×(6+10); f) 16p; g) p16

(choose one answer)

Set up expressions with numbers (involving

order of operations and implicit multiplication).

I581
Shortened formulation: Bicycle rent with �xed fee of $25 and a charge of $8

per hour. Which expression for the cost would the teacher prefer?
Set up functional equations

Table 1. Sample items.

The 37 items for this study are all relevant to learning
algebra. Items with the same initial item number (e.g., I506_1
and I506_2) were presented together (see Appendix) and tend
to represent related knowledge. The items were based on
research literature to test for stages of learning and known
misconceptions. After initial experimentation using
qualitative and quantitative methods, all items had been
turned into multiple choice format. Diagnosis of
misconceptions by the full SMART test system depends on
actual responses not only the number of correct answers
(Price et al. 2013).

The data preparation consisted of re-coding the entries of
the students-items matrix to three values: missing, 0
(incorrect) and 1 (correct). No further pre-processing or

hypothesis formation is necessary to apply the method of
SIA.

Results

Item level analysis

The �rst analysis that has been carried out is a plain
calculation of implication intensities and representing them
as a graph. Interestingly, the items related by implications
turn out to be of similar types that can be easily interpreted.
For a cut-off of α=0.005, i.e., displaying only implication
arrows if  , the graph is shown in �gure 1.
There are 20 items shown in the graph. The remaining 37 –
20 = 17 items are not linked to others at this cut-off level.
This means that implications between these variables may

= 212×17
6×17

3 × (2 × 5) = 6 × 15

= 1000 − 1717000−17
17

= 333x
11x

8d − 3g = 3g − 8d

ϕ ≥ 1 − α = 0.995
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exist, but their implication intensity is less than 99.5% and
hence in this presentation they are deemed to be unlinked.

Figure 1. The implicative graph for cut-off of α=0.005

The interesting fact is that this structure, created from the
data without any pre-formulated hypothesis, can be easily
interpreted: Items that are joined by mutual arrows are – in
the statistical sense of SIA – equivalent. For example, I490_1,
I495_1 and I497_1 form such a cluster of almost equivalent
items. In fact, these are all about setting up expressions
representing quantities (   and thus
their equivalence is in line with expectations. There are
differences in cognitive demand between these items (e.g.,
the success rates are 61%, 54%, 57% respectively) but
students correct on one are very highly likely to be correct on
the others. Next, the three parts of I498 are found by SIA to
be (almost) equivalent and their content allows grouping
them under the cluster of items testing variable conventions.
Between these clusters there are two arrows going from the
�rst to the second cluster, i.e., indicating that students who
can successfully set up expressions will not violate variable
conventions. Or, put the other way round: Obeying variable
conventions seems to be a necessary condition for being
successful in setting up expressions.

Another interesting feature is that there are arrows leading
from I577 and I575 to nearly all other items. We speculate
that this is because the algebraic notation required in these
items is more complex as it involves two operations where
the order is important and implicit multiplication needs to be
understood. Hence, these items are dif�cult and mastering
them is a good indicator for broader algebraic pro�ciency.
The full interpretation of the graph by grouping most items
into seven clusters based on links in the graphs is given in
Figure 2.

Figure 2. The graph from �gure 1 with cluster

interpretations added.

With more tolerance (i.e., a higher cut-off α), more arrows
will be displayed, thus integrating items that are linked to
others on weaker evidence. For α=0.01, new items and arrows
show up, but the overall structure and interpretation remains
the same (see Figure 3). For example, the cluster “arithmetic”
grows but its relations to other clusters stays rather weak. In
Fig. 3 “variable conventions I” are those related to the unique
variable-value principle (in one calculation each symbol
represents just one number), while variable conventions II
relate to values for variables not being speci�ed by naming
convention. These two aspects of variable conventions
appear to be rather independent of each other. But again,
variable convention II is implied by others, but not vice versa,
indicating that it is to some extent a necessary condition for
success in algebra. Moreover, Fig. 3 reveals that some aspects
of transformational algebra together form an island like
setting up relational equations.

Figure 3. The implicative graph for cut-off of α=0.01 and

showing implication intensities.

y − 1,   95 − s,   h + 10)
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Analysis by scales

To explore this structure further we de�ned scales by
averaging over non-missing responses to items that assess
related content as con�rmed by inspection and revealed by
the former analysis (last section). The grouping of items into
scales is informed by the results of the SIA analysis given
above, but it differs slightly to re�ect theoretical
considerations on the items. The resulting scales are shown
in Table 2. Note that Cronbach alpha values are rather low for
several of the scales, but this is expected as items are not

constructed according to the idea of a one-dimensional
construct, but rather to explore students’ thinking broadly.
Moreover, subsequent analysis will not use classical
multivariate analysis and will not draw conclusions from
classical hypothesis tests using scale values. Hence, the low
Cronbach alpha are not an issue of real concern here. There is
one item, I493 (see Appendix), which did not �t well into any
cluster or scale because it is the only item that presents an
equation and then asks for the interpretation of the variables
in it.
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Scale name Description Items Cronbach alpha

Arith Arithmetical calculations I506_1,…, , I506_10 0.61

Transform Algebraic transformations I479, 10 sub-items
0.36 (0.46 with _08

removed)

VarConv Conventions of variables naming (e.g., unique value)
I502, 3 sub-items and I498, 3-sub-

items
-0.08

ModelExprs Use expressions to model real world situations I497_1, I490_1, I495_1, I581 0.62

ArithExpr
Use expressions to express mathematical

calculations
I575_1, I577_1 0.57

ModelEqs Model situation with an equation in one variable I579, I580, I491, I494 0.18

InterpretEq Interpret the meaning of an equation I493 -

Table 2. Scales formed from the items

Normalized sum scales for the scales in Table 2 have been
calculated by averaging over the non-missing entries in the
data set. Because of this procedure, the number of usable
cases was larger than in the item-based approach above.
Hence, the entropic version of SIA was used to calculate
implication weights. The entropic version and the fact that
partial credits have less variance than the dichotomous 0-1
coded items result in lower implication intensities and hence
a cut-off α=0.2 was used to produce the graph at the top of
Figure 4. This graph connects 5 of the 7 clusters. With a cut-
off of α=0.25, the graph shown at the bottom of Figure 4 is
produced. This shows implications between all 7 clusters.

Figure 4. The entropic implicative graphs for scales with

cut-off α=0.2 (above) and with α=0.25 (below)

The results largely con�rm the conclusions drawn above.
First, note that obeying variable conventions (VarConv) is
implied only by ArithExpr at cutoff α=0.2, or turned around,
without knowing the conventions of variables, fewer other
things can be achieved (lowering the cut-off to 0.25 one sees
also InterpretEq implies VarConv). The same holds true for
Arith which is a necessary condition, especially for

Transform (transformational algebra) which is in turn
necessary for ModelEqs (modelling with equations). This is a
part of algebra that requires extensive knowledge and skills,
so success in it implies (in a statistical sense) that one will be
successful in almost all other areas of algebra as well.
ModelExprs (modeling with expressions) is required via
ArithExpr (setting up arithmetical expressions) for ModelEqs
(modeling with equations), which seems quite sensible.

Analysis by pairs of scales

The last kind of implicative analysis applied to the data was
the search for pairs of scales that together imply good
performance on a third scale. This kind of application of SIA
has, to the best of our knowledge, never been used before. We
are looking for implications of the form  , i.e., the
presence of two indicators that together imply some
consequence. As scales are encoded as values from the unit
interval [0,1] the logical conjunction can simply be realized
by multiplication: Given an interval scaled   one
sets  . because in the dichotomic case the
product is only 1 if both values are 1, and otherwise it is only
close to 1 if both numbers are close to 1.

Note that, if    or  , then in ordinary logic 
  holds, so that it is not a surprise when the SIA

also shows this relationship; it does not decrease entropy or
increase knowledge. Thus, of greatest interest are the cases
where both    and    have an implication
intensity below the threshold, but    is above. The
following table lists the implications with intensity >0.85 in
decreasing order, and marks those with a double asterisk **,
where    and    both have implication weight
below 0.8 and marks with a single asterisk those where both
are below 0.85.

A ∧ B → C

, ∈ [0, 1]Ai Bi

(A ∧ B :=)i Ai ⋅Bi

A  → C B → C

A ∧ B → C

A → C B → C

A ∧ B → C

A  → C B → C
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Implication  Intensity Implication A→C Intensity Implication B→C Intensity

ArithExpr ∧ InterpretEq → ModelExprs 0.915 ArithExpr → ModelExprs 0.788 InterpretEq → ModelExprs <0.75 **

Transform ∧ ModelExprs → Arith 0.882 0.882 Transform → Arith 0.851 ModelExprs → Arith <0.75

Transform ∧ ModelEqs → Arith 0.877 Transform → Arith 0.851 ModelEqs → Arith 0.797

ArithExpr ∧ InterpretEq → VarConv 0.868 ArithExpr → VarConv 0.817 InterpretEq → VarConv 0.759 *

ArithExpr ∧ ModelExprs → VarConv 0.861 ArithExpr → VarConv 0.817 ModelExprs → VarConv <0.75 *

Table 3. List of A˄B→C implications with intensity >0.85

The �rst row (with the double asterisk) shows that neither
setting up arithmetical expressions nor the ability to
interpret equations alone is suf�cient to be good at
modelling with expressions, but the combination is. This
seems sensible as it shows that modelling with expressions
involves their construction (ArithExpr) and interpretation
(InterpretEq). The second and third row give information
that is not new, because being good in transformational
algebra already implies what is found here. The �nal two
rows in Table 3 also make sense, as they add an element of
algebra knowledge to the knowledge on arithmetical
expressions.

Discussion and Conclusion

The results from this study reveal a rich structure of
implications among students’ ability to deal with algebraic
tasks. The un-biased data mining method SIA carried out by
the �rst author reveals clusters of items that are easily
understood to be connected by the established
understanding of the learning of algebra which guided the
construction of the items by the second author and
colleagues working on the SMART tests. Moreover, besides
implications that are to be expected (e.g., that obeying
variable conventions is a necessity for further insightful
algebraic work), it shows some implications that are
interesting – and also some missing implications that are
worthy of note. Both present and absent implications may
improve understanding of the learning of algebra. One such
observation is that the modeling of situations with equations
that de�ne general relations (i.e., not just functional
relations) between variables are an island that is not closely
connected to the rest of the items (when analyzed at the item
level). This use of algebra is, however, important in many
modeling situations, and hence it should be given special
attention in teaching. Moreover, setting up expressions that
represent numbers (or encode number operations) implies
many other dimensions and can thus be seen as an
important ability to develop. Interesting missing
implications are between canceling in number fractions

(such as  ) and in rational expressions (e.g.,  ). This

may be because algebraic letters in calculations distract or
dismay beginners so that they give up immediately.
Alternatively, they may assume that results in algebra should
contain a variable.

The results in this paper are to be treated with some caution.
One reason is that it is not yet settled which implicative
intensities should be considered to be suf�ciently high to
have importance. Another reason is that there are variations
of the method, and it is not clear what version produces
’best‘ results. We have dealt with the issue of not having a
broadly accepted ‘signi�cance level’ by giving the graphs for
different cutoffs, which gives an optical impression of the
stronger and the weaker implications. Another reason is we
have interpreted the observed implications by linking them
back to known phenomena of learning algebra, and these
could be questioned. Thus, one should investigate if similar
relations occur in other test data on algebraic pro�ciency and
investigate further how results �t with the theoretical
understanding of the learning of algebra.

Appendix: Screen Dumps and Success

Rates of Items

This Appendix lists the 37 items as presented online to the
students (in then-current Moodle) together with their
success rates. The order of items here is by item number,
whereas students were presented with items in random
sequences. The success rate is de�ned as the number of
correct responses as a percent of the number of all responses
(i.e., ignoring omissions).

Item 479: Success rates in the same tabular structure are:

A ∧ B → C

12×17
6× 17

33x
11x
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69% 42%

47% 60%

63% 69%

63% 37%

51% 73%

Item 490: Success rate 61%
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Item 491: Success rate 23%
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Item 493: Success rate 18%
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Item 494: Success rate 31%
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Item 495: Success rate 54%
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Item 497: Success rate 57%
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Item 498: Success rates 47%, 51%, 70%
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Item 502: Success rates 82%, 61%, 85%
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Item 506: Success rates in the same tabular structure are:
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65% 61%

76% 61%

80% 73%

74% 76%

68% 69%
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Item 575: Success rate 37%
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Item 577: Success rate 17%
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Item 579: Success rate 77%
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Item 580: Success rate 36%
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Item 581: Success rate 36%
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