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Out-of-distribution (OOD) detection is crucial in many real-world applications. However, intelligent models are often trained

solely on in-distribution (ID) data, leading to overcon�dence when misclassifying OOD data as ID classes. In this study, we

propose a new learning framework which leverage simple Jigsaw-based fake OOD data and rich semantic embeddings

(‘anchors’) from the ChatGPT description of ID knowledge to help guide the training of the image encoder. The learning

framework can be �exibly combined with existing post-hoc approaches to OOD detection, and extensive empirical

evaluations on multiple OOD detection benchmarks demonstrate that rich textual representation of ID knowledge and fake

OOD knowledge can well help train a visual encoder for OOD detection. With the learning framework, new state-of-the-art

performance was achieved on all the benchmarks. The code is available at https://github.com/Cverchen/TagFog.
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Introduction

When deploying well-trained AI models in real-world applications, AI models often encounter samples which are di�erent

from the distributions of training data[1][2][3]. Such out-of-distribution (OOD) samples are often from unknown classes which

did not appear during model training. Mis-classifying OOD samples into previously learned in-distribution (ID) classes could

lead to serious consequences such as in the autonomous driving and the intelligent healthcare applications. Therefore, it is a

desired ability for the AI model to accurately detect whether a new data is an OOD sample or from one of previously learned

classes.

Various approaches have been developed for solving the OOD detection problem. Most approaches train a decent classi�er on ID

data, then use the feature output of the penultimate layer, logits output of the classi�er, or the softmax probability vector

output to design a score function[4][5][6][7]. The de�ned score is typically lower for OOD data compared to ID data. However,

training only on ID data can cause overcon�dence, with models assigning high con�dence to unseen OOD data[8].
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Figure 1. OOD detection performance of di�erent methods on the CIFAR100

and ImageNet100-I benchmarks.

If certain OOD samples are available during training, the model will gain knowledge of data that are characterized di�erently

from the ID data. This would help the model better identify OOD data later. However, obtaining OOD data in certain real-world

applications is often time-consuming or costly. Based on above considerations, researchers have proposed various strategies to

generate fake OOD data from available ID training data. One way is to use generative adversarial networks (GANs)  [9]  for

generating fake OOD samples based on available ID data  [10][11][12][13]. However, it is often challenging for GANs to generate

expected OOD samples due to the unstable training and di�culty in generating realistic OOD samples based on only ID

samples [14][15]. Instead of generating fake OOD data in the input space as by GANs, OOD knowledge may also be gained from the

feature space. For example, VOS  [16] synthesizes virtual OOD features from the low likelihood regions of ID data in the high-

level feature space to help improve OOD detection. This method assumes a strict Gaussian distribution for ID data, which is

often unrealistic. Di�erent from directly generating OOD data to gain OOD knowledge, the pre-trained large vision-language

model CLIP [17] has recently been used to help OOD detection considering that much knowledge, including OOD knowledge, has

been learned by the CLIP model  [18][19][20]. However, this approach requires unrealistic OOD data labels and the pre-trained

visual encoder during OOD detection.

In this study, we propose a simple yet e�ective learning framework TagFog (Textual anchor guidance and Fake outlier

generation) to train a visual model for OOD detection based on a simple fake OOD generation strategy and a CLIP-based textual

guidance with the description of ID knowledge from the ChatGPT  [21]. The fake OOD data are generated o�ine by the simple

Jigsaw transformations [22] on training ID images such that fake OOD data are similar to corresponding ID data at patch level,

but di�erently at the image level. In this way, fake OOD data would contain knowledge which is semantically shifted from that

of ID data, and therefore can be considered as challenging OOD samples to help the model better discriminate between ID and

real OOD data. On the other hand, the textual description of each ID class from the ChatGPT contains richer information

compared to the solely ID class name, and therefore CLIP’s embedding of the ChatGPT description would contain semantically

more information about ID knowledge. In this study, the CLIP’s textual embeddings of ID knowledge as anchors are used to

guide the training of the image encoder with contrastive learning, such that the image encoder can learn to extract richer and

more compact representations from images. Our approach demonstrates the power of using textual guidance and fake OOD data
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for OOD detection, as supported by extensive empirical evaluations on multiple OOD detection benchmarks. The main

contributions are summarized below.

A simple yet e�ective learning framework which uses fake OOD data and rich textual embeddings of ID classes to help train a

better image encoder. Notably, the framework can be �exibly fused with many existing methods.

The �rst usage of ChatGPT for more informative and semantic embeddings of ID knowledge which are used to guide training

of the image encoder for OOD detection.

Extensive experimental evaluations on multiple OOD detection benchmarks, with state-of-the-art performance obtained

from our approach.

Preliminaries

Out-of-Distribution Detection

Suppose    classes of training data are available to train a classi�er. In the OOD detection task, the classi�er is expected to

decide whether a new data belongs to one of the   classes or from any unseen class. Data from the   classes are in-distribution

(ID), while data from any unseen class are out-of-distribution. OOD detection can be viewed as a binary classi�cation task.

Usually, a scoring function    based on the classi�er’s output at certain layer is designed for OOD detection, where    is the

threshold. For any new data as input to the classi�er, when the score is above the threshold  , the input data is determined as

ID. Otherwise, the input is considered as OOD.

Pre-trained Vision-Language Model CLIP

Knowledge learned only from images is limited. In contrast, visual-language contrastive representation learning achieves

much better performance on downstream tasks. A representative vision-language model is CLIP which includes a text encoder

and an image encoder[17]. 400 million image-text pairs on websites are crawled for training of the CLIP model, based on the

contrastive InfoNCE loss by maximizing the similarity between matched image-text pairs and minimizing the similarity for

mismatched pairs. Both the text encoder and the image encoder of the well-trained CLIP are expected to encode semantically

rich information from the corresponding text and image input.

Method

Overview

Our framework TagFog is illustrated in Figure 2. The framework mainly contains two parts. The �rst part (i.e., upper part of

Figure 2) makes use of fake OOD data to help train a  -class classi�er, where the fake OOD data are generated based on

the training data of    ID classes and expected to help the classi�er better discriminate between ID data and real OOD data

during inference. The second part (i.e., lower part of Figure 2) novelly applies ChatGPT to generate descriptive text for each ID

class, and such text is then fed into the pretrained and �xed CLIP’s Text Encoder to create semantic embedding for the

corresponding ID class. The embedding serves as the anchor for all training data of the corresponding ID class, and the anchors

of all    ID classes are used to help guide the training of the Image Encoder based on the alignment between the associated

anchor and the projection of the Image Encoder output for each ID data. In addition, the idea of SupCon[23]  is utilized to

perform supervised contrast learning on all projected ID and fake OOD embedding vectors. With the help of the ChatGPT-
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generated semantic guiding and the fake OOD-involved contrastive learning and classi�er training, the Image Encoder is

expected to learn to generate compact ID feature representations while leaving much spare regions for OOD data in the feature

space.

Figure 2. Overview of the proposed learning framework TagFog for OOD detection. Upper part: fake OOD data are generated based

on the Jigsaw strategy and, together with the ID data, used to train the image encoder   and the classi�er head  . Lower part: the

description of each ID class from ChatGPT is fed to the pretrained and �xed CLIP’s Text Encoder to obtain the semantic embedding

as anchor for the ID class. The anchors are used to guide the training of the image encoder based on the contrastive loss   and 

.

Fake Outlier Generation (FOG)

Usage of OOD data during classi�er training has been shown helpful to improve OOD detection performance[15][13][24][25].

However, most OOD detection methods[4][26][27] train a classi�er based only on ID data and therefore the classi�er would not

contain any knowledge of OOD data. On the other hand, approaches using fake OOD data during classi�er training are either

based on unstable GAN models[10]  or make overly constrained feature space assumptions[16], which often includes a

complicated fake OOD generation process and may not work e�ectively in various real applications.

In this study, we propose a simple yet e�ective fake OOD data generation strategy based on the Jigsaw technique. Speci�cally,

for each ID training image, the image is divided into multiple image patches which are then randomly shu�ed and rearranged

to form a new image. The synthesized new image is considered as a fake OOD data for model training. Because the Jigsaw

process disrupts the overall structure and contextual information in the original image, the original semantic information is

altered, resulting in semantic o�set from the original image. In other words, the semantics of object(s) of interest in the

original image is largely distorted due to the shu�ing of image patches. Since some image patches in the fake OOD data contain

parts of ID objects, the fake OOD data would contain information which is partially similar to but semantically shifted from the

ID image, thus can be served as challenging OOD data during model training. In addition, the image patches containing only

background information appear both in the fake OOD data and the corresponding ID data. In order to di�erentiate the fake OOD

data from the ID data, the classi�er would need to focus on learning from the (foreground) object regions, thus alleviating the
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overcon�dence issue of mis-classifying OOD data as an ID class due to unique background in the ID data[28]. Note that the

Jigsaw technique has been used recently in the FeatureNorm method[29], not for model training, but for layer selection after the

model is trained as usual. In contrast, here the Jigsaw-based fake OOD data are used for model training.

Textual Anchor Guidance (TAG)

More compact and semantically informative representations are bene�cial for OOD detection[20][27]. In order to help the

classi�er learn to extract more relevant semantic information from input images, here we utilize the large-scale language

model ChatGPT and the large-scale vision-language model CLIP to help guide the training of the image classi�er. Speci�cally,

ChatGPT is used to generate semantically rich description for each ID class (Table 1), and the textual description is then fed to

the CLIP’s Text Encoder to obtain the semantic embedding (namely ‘anchor’) of the ID class. The anchors are expected to

contain more semantic information than the textual embedding of solely ID class names. To align with the associated anchor,

the visual encoder’s outputs for each input image is projected into the semantic embedding space, and both the image encoder

and the projection module will be trained such that the projected visual embedding for each input image is as close to the

associated textual anchor as possible.

ID class name Textual description from ChatGPT

bee insect, black and yellow stripes, …

cloud visible mass of condensed water vapor,…

cup small container for drinking, made of…

sea large body of saltwater covering most of…

Table 1. Demonstrative textual descriptions of ID classes. The textual description of each ID class is obtained by asking ChatGPT

“Please describe the {ID class name}”.

Model Training

The image encoder  , the classi�er head  , and the projection module   need to be trained. Note that the output of the classi�er

head is  -dimensional, with    outputs for ID classes and one output for OOD class. As usual, the cross-entropy loss

function   is used to train the encoder and the classi�er head,

where   and   are respectively the number of all ID training images and fake OOD images,   is the output probability for the 

-th training image belonging to the  -th class, and   is the corresponding ground-truth output (  or  ).

For the CLIP-based textual guidance, denote by    the textual description from the ChatGPT for the  -th ID class, and 

 the corresponding anchor vector from the output of the CLIP’s text encoder for the  -th ID class. In order to attract

the projected visual embedding for each input image close to the associate anchor, the contrastive loss   is designed as below
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where   is the projected visual embedding for the input ID image  , and   represents the cosine similarity

between the two embeddings   and  .    is the indicator function and   is the temperature scaling factor. By minimizing 

, the image encoder   and the projection module   (here with structure Linear-BN-ReLU-Linear) will be trained such that

the projected visual embeddings of the same ID class will be close to the associated anchor, therefore helping the image encoder

extract more compact and semantically informative features.

To further di�erentiate fake OOD images from anchor-guided ID images, the supervised contrastive loss    is utilized

following the idea of SupCon[23],

where  , A(i) represents all the sample indices in the mini-batch that includes the sample with index i, and P(i) is the

subset of A(i) in which all the corresponding samples share the same class label as the that of the sample with index  .   is the

temperature scaling factor.

Overall, the image encoder  , the classi�er head  , and the projection module   can be trained by minimizing the combined loss

function  ,

with coe�cients   and   balancing the three loss terms.

Model Inference

Once the model is well trained, the image encoder together with the classi�er head is used to detect whether a new image is OOD

or not. Since our method focuses on model training, any post-hoc OOD detection strategy can be utilized during model

inference. By default here the recently proposed post-hoc method ReAct[30] is used for OOD detection. Note that only the logit

values of the   ID classes are used to calculate the ReAct score, although the output of the fake OOD class in the classi�er head

may also be investigated to further improve the OOD detection performance.
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ID

Dataset
Method

OOD Datasets
Average

SVHN LSUN-R LSUN-C iSUN Textures Places365

F A F A F A F A F A F A F A

CIFAR10

MSP 61.22 86.99 41.62 93.84 34.30 95.40 43.14 93.21 53.40 90.19 54.51 88.74 48.03 91.40

Mahalanobis 67.25 89.51 48.37 92.38 91.65 74.55 44.24 92.68 45.92 91.96 66.11 85.79 60.59 87.81

ODIN 53.56 77.48 17.31 94.63 13.64 96.09 19.87 93.55 46.65 80.85 49.72 79.92 33.46 87.09

Energy 41.25 87.69 24.19 95.01 11.37 97.63 26.40 94.16 42.52 89.10 40.04 88.71 30.96 92.05

ViM 53.75 88.67 34.17 94.34 82.31 87.18 31.41 94.25 36.15 92.83 49.64 88.86 47.90 91.02

DICE 36.42 91.46 31.57 93.77 7.10 98.67 36.94 92.05 47.02 88.41 46.74 86.05 34.30 91.73

BATS 41.42 87.84 24.17 95.02 11.35 97.63 26.36 94.16 42.13 89.29 40.04 88.71 30.91 92.11

ReAct 43.19 87.56 24.82 95.12 12.23 97.53 26.90 94.31 41.95 90.02 40.78 89.00 31.65 92.26

DICE+ReAct 36.90 91.31 31.59 93.71 7.29 98.64 37.15 92.10 46.76 88.61 46.76 86.12 34.41 91.75

FeatureNorm 2.37 99.45 33.42 94.71 0.10 99.93 27.01 95.65 23.03 95.65 58.96 87.95 24.14 95.55

LINe 45.38 87.96 39.25 92.61 9.75 98.19 41.52 91.74 58.37 84.14 53.02 85.70 41.22 90.06

VOS 35.73 93.74 25.54 95.29 18.47 96.55 30.17 94.16 44.16 90.07 44.18 88.13 33.04 92.99

LogitNorm 12.68 97.75 15.29 97.45 0.53 99.82 15.36 97.43 31.56 94.09 32.31 93.92 17.96 96.75

CIDER 2.89 99.72 23.13 96.28 5.45 99.01 20.21 96.64 12.33 96.85 23.88 94.09 14.64 97.10

 
TagFog

(Ours)
6.19 98.75 6.50 98.74 2.12 99.43 6.36 98.75 16.13 97.12 25.14 95.14 10.41 97.99

CIFAR100 MSP 69.74 84.73 66.89 85.65 77.08 81.83 69.40 84.77 80.08 77.65 78.38 78.81 73.60 82.24

Mahalanobis 92.62 66.80 89.00 68.46 98.83 49.58 88.45 68.44 72.68 74.57 92.87 63.26 89.07 65.18

ODIN 79.74 81.40 37.63 93.21 72.66 85.93 39.59 92.58 73.07 80.42 80.39 77.22 63.85 85.13

Energy 68.90 87.66 59.71 88.58 73.21 84.46 64.03 87.50 79.61 78.22 77.74 79.64 70.53 84.34

ViM 73.70 84.45 61.30 88.05 92.76 69.87 61.92 87.34 57.93 86.31 81.01 76.54 71.43 82.09

DICE 53.60 90.22 79.84 81.17 40.03 92.52 79.79 80.96 78.65 77.46 82.31 76.76 69.04 83.18

BATS 62.05 89.31 50.38 91.21 73.70 84.55 55.97 90.30 72.93 84.50 72.61 82.03 64.61 86.98

ReAct 58.24 90.02 50.82 90.98 70.70 85.75 55.91 90.18 70.85 85.39 71.85 82.25 63.06 87.43

DICE+ReAct 48.20 91.19 84.18 78.79 32.05 93.71 82.23 79.65 66.74 83.96 80.28 77.96 65.61 84.21

FeatureNorm 15.98 96.59 96.57 61.80 4.56 98.95 93.56 65.15 51.67 83.54 93.61 56.83 59.33 77.07

LINe 52.02 91.01 65.66 86.87 47.76 91.23 69.27 85.90 71.22 83.37 80.90 77.21 64.47 85.93

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
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ID

Dataset
Method

OOD Datasets
Average

SVHN LSUN-R LSUN-C iSUN Textures Places365

F A F A F A F A F A F A F A

VOS 78.36 80.58 69.77 84.77 77.38 83.61 69.65 85.48 76.60 80.58 80.47 77.57 75.37 81.96

LogitNorm 51.34 91.79 88.80 78.67 6.82 98.70 90.16 75.55 77.02 77.52 77.79 79.56 65.32 83.63

CIDER 31.36 93.47 80.39 81.54 43.68 89.45 78.23 81.33 35.51 91.70 82.80 72.71 58.66 85.03

 
TagFog

(Ours)
37.88 92.77 35.45 93.46 13.94 97.46 35.99 93.10 66.74 86.88 76.00 79.13 44.33 90.47

Table 2. OOD detection performance on the CIFAR10 and the CIFAR100(ID) benchmarks with model backbone ResNet18. ↑

indicates that larger values are better and ↓ indicates that smaller values are better. All values are percentages.

ID Dataset Metrics
Method

MSP Mahalanobis ODIN DICE VIM Energy BATS ReAct

CIFAR10

F 40.95 55.69 33.06 36.63 38.35 26.69 29.85 27.76

A 92.09 91.99 89.64 90.72 93.10 93.75 93.17 93.60

  DICE+ReAct FeatureNorm LINe VOS LogitNorm CIDER TagFog (Ours)

F 36.85 29.76 42.97 27.01 16.95 16.10 11.17

A 93.29 90.72 89.42 94.04 96.93 97.25 97.72

CIFAR100

  MSP Mahalanobis ODIN DICE VIM Energy BATS ReAct

F 78.29 93.86 64.01 68.14 61.51 59.60 69.41 56.73

A 79.25 55.21 83.44 83.53 85.00 83.64 87.52 88.30

  DICE+ReAct FeatureNorm LINe VOS LogitNorm CIDER TagFog (Ours)

F 50.56 65.61 54.52 80.53 70.81 50.66 45.28

A 84.22 80.12 86.32 79.03 79.44 86.70 90.20

Table 3. OOD detection performance on the CIFAR10 and the CIFAR100 benchmarks with model backbone ResNet34. Valuesare

average percentages over six OODdatasets.

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

↓

↑

↓

↑

↓

↑

↓

↑
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Model Metrics
Method

MSP ODIN Mahalanobis Energy GradNorm ViM KNN BATS

ResNet50

F 58.54 42.43 80.60 46.72 41.94 57.97 40.04 44.81

A 87.92 91.66 60.74 91.12 89.09 88.94 90.68 90.84

  DICE ReAct DICE+ReAct FeatureNorm LINe CIDER TagFog (Ours)

F 32.63 39.85 40.51 61.33 34.66 39.74 29.50

A 93.19 92.12 91.77 84.12 92.55 92.80 94.67

ResNet101

  MSP ODIN Mahalanobis Energy GradNorm ViM KNN BATS

F 55.56 38.48 77.85 43.82 43.57 51.21 39.12 39.32

A 88.74 92.20 66.35 91.87 87.88 90.78 91.60 91.81

  DICE ReAct DICE+ReAct FeatureNorm LINe CIDER TagFog (Ours)

F 31.53 39.98 35.52 48.23 33.77 39.03 28.53

A 93.50 92.26 92.42 89.23 92.81 92.40 94.66

Table 4. OOD detection performance on the ImageNet100-I benchmark with model backbones ResNet50 and ResNet101. Values are

average percentages over four OOD datasets.

Experiments

Experimental Settings

Datasets

Our method is evaluated on two sets of OOD detection benchmarks. Each benchmark includes one training ID set, one test ID set

and several OOD test sets. For CIFAR[31] benchmarks, CIFAR10 and CIFAR100 were respectively used as the ID datasets, and six

datasets were used as OOD test sets, including Textures[32], SVHN[33], iSUN[34], Places365[35], LSUN-C[36], and LSUN-R[36]. For

large-scale ImageNet benchmarks, two di�erent sets of 100 ImageNet[37]  classes, namely ImageNet100-I[20]  and

ImageNet100-II[38], were used as ID sets considering that both sets have been used in related literature, and four OOD test

datasets, Places[35], Textures, iNaturalist[39], and SUN[40] were used for evaluation. There are no overlapped classes between

OOD datasets and corresponding ID datasets. Please see Supplementary Section A for more dataset details.

Experimental details

Following previous studies[27][4][30], ResNet18[41]  and ResNet34 were used as the model backbone on CIFAR benchmarks

(please also see results with WideResNet28-10[8] in the Supplementary Table 8), and ResNet50 and ResNet101 were used on the

↓

↑

↓

↑

↓

↑

↓

↑
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ImageNet100 benchmarks. To generate fake OOD data, each CIFAR image was divided into    patches and then randomly

rearranged, and similarly each ImageNet100 image was divided into    patches. For CIFAR10, two jigsaw images were

generated per ID image. For CIFAR100 and ImageNet100, one jigsaw image was generated per ID image. For CLIP’s Text

Encoder, CLIP-L/14 based on ViT-L/14 was adopted which has a 768-dimensional output. The projection module consists of

two fully connected layers with architecture Linear-BN-ReLU-Linear and with hidden layer dimension    the input feature

dimension of the projection module.

For the ID training sets and all fake OOD data during training, each image was randomly cropped and resized to   for the

CIFAR sets or   for the ImageNet100 training set, while maintaining the aspect ratio within a scale range of 0.2 to 1. In

addition, random horizontal �ipping, color jittering and grayscale transformation were performed on each image. The model

was trained up to 200 epochs using stochastic gradient descent with momentum 0.9 and weight decay 1e-4. The initial learning

rate was 0.05, and the learning rate was warmed up from 0.01 to the initial learning rate 0.05 in the �rst 10 epochs when the

batch size was larger than 256. The learning rate decayed by a factor of 10 at the 150-th and the 180-th epoch on CIFAR10, at the

150-th epoch on CIFAR100, and at the 100-th, 150-th, and 180-th epoch on ImageNet100. The batch size was 512 for CIFAR and

128 for ImageNet100. The temperatures   and   were set to 0.1, and   and   were both set to 1.0 for all experiments. During

testing, only center cropping and resizing were applied on each test image. More details on baselines and ReAct score are in the

Supplementary Sections B and C.

Metrics

The evaluation metrics include the false positive rate (F: FPR95) of OOD samples when the true positive rate of ID samples is at

95%, and the area under the receiver operating characteristic curve (A: AUROC).

E�cacy Evaluation of the Method

Table 2 summarizes the performance of our method and numerous competitive OOD detection methods from the literature on

CIFAR10 and CIFAR100. The compared post-hoc methods, which do not require model retraining, include MSP[4],

Mahalanobis[5], ODIN[26], Energy, ViM[7], DICE[42], BATS[43], ReAct[30], FeatureNorm[29], and LINe[44]. The compared

methods requiring model training include VOS[16], LogitNorm[8], and CIDER[27]. We present performance on all OOD datasets

as well as the average performance. As Table 2 shows, our method establishes state-of-the-art average performance on both

CIFAR10 and CIFAR100 benchmarks. For example, our method substantially outperforms VOS which produces fake OOD data in

feature space assuming a strict conditional Gaussian distribution (e.g., on the CIFAR10 benchmark, FPR95 10.41% vs. 33.04%,

AUROC 97.99% vs. 92.99%). It also surpasses the current SOTA method CIDER (e.g., on the CIFAR100 benchmark, FPR95

44.33% vs. 58.66%, AUROC 90.47% vs. 85.03%). Our method achieves nearly an absolute 3% improvement in AUROC and

absolute 15% improvement in FPR95 over the best method on the CIFAR100 benchmark. Similar results can be observed with

the model backbone ResNet34 (Table 3), where our method again outperforms all current methods. The detailed performance

on six OOD datasets with the backbone ResNet34 and results with the backbone WideResNet28-10 on both benchmarks are in

the Supplementary Section D.

The superior performance of our method is also con�rmed on the two ImageNet100 benchmarks. Besides the aforementioned

baselines whose performance on either ImageNet100 benchmark was reported in literature, the baselines KNN[45]  and

GradNorm[46] were also included for comparison. As shown in Table 4, our method with both model backbones achieves state-

of-the-art average performance on the ImageNet100-I benchmark. The detailed performance on each OOD dataset and the

4 × 4

8 × 8

2×

32 × 32

224 × 224

τ τ ′ λ1 λ2
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superior performance of our method on the other benchmark ImageNet100-II were included in Supplementary Table 10 and

Table 11.

Fake OOD Data

CIFAR100 ImageNet100-I

ResNet18 ResNet50

Average Average

F A F A

      63.06 87.43 39.85 92.12

✔     48.97 89.17 37.28 93.42

  ✔   53.65 88.38 32.89 93.78

    ✔ 54.87 88.27 35.76 93.40

✔ ✔   48.59 89.68 31.95 94.00

  ✔ ✔ 48.62 89.82 32.35 93.87

✔   ✔ 47.53 89.57 33.50 93.82

✔ ✔ ✔ 44.33 90.47 29.50 94.67

Table 5. Ablation study of the proposed learning framework.

Ablation Study

Extensive ablation studies were performed to con�rm the e�ect of each component in the proposed learning framework. As

Table 5 shows on two benchmarks CIFAR100 and ImageNet100-I, when only one of the three main components (fake OOD data

and two loss terms   and  ) is available, the model performs better than the baseline without any of the three components

(i.e., rows 2-4 vs. row 1). Combination of any two components often leads to increased performance (rows 5-7) and already

surpasses the best baseline on the CIFAR100 benchmark (AUROC 89.57%-89.82% vs. 87.43%). Inclusion of all three

components achieves the new state-of-the-art performance (last row), demonstrating the complementarity of the three

components in improving OOD detection performance.

In addition, more detailed ablation study on the text-guided learning was performed. Speci�cally, when the proposed

ChatGPT-generated textual description (Figure 3, “ChatGPT”) was replaced by the traditional simple description of each class

(“Standard”) in the form of “a photo of [ID class name]”, or the ChatGPT-based anchor embedding was replaced by a randomly

generated embedding (“Random”) for each ID class, OOD detection performance was clearly downgraded on both CIFAR

benchmarks (Figure 3). Similar results were obtained on the ImageNet100 benchmark (Supplementary Figure 2). This supports

that both ChatGPT’s textual description and CLIP’s textual embeddings as anchors are helpful in guiding the learning of image

encoder for OOD detection. Additional experiments on the validity of text selection and visualizations of more compact visual

representations obtained from the proposed learning framework were in Supplementary Section E.

LCI LSC

↓ ↑ ↓ ↑

LCI LSC
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Figure 3. Ablation study of the text-guided learning on CIFAR10 and CIFAR100 benchmarks with backbone ResNet-18. All values

are the average performance on the six OOD datasets. The proposed text-guided learning (‘ChatGPT’) is better than its two ablated

versions.

Sensitive and Generalizability Studies

The proposed learning framework is insensitive to the choice of hyper-parameters in a large range, including the temperature

factors    and  , the weighting coe�cients    and    in the loss function, and the number of fake OOD data used for model

training. As Figure 4 demonstrates, when   and   vary in the range  ,   and   in the range  ,   in the range 

, the number of fake OOD data in the range   (i.e., generating 1 to 4 fake OOD images for each of

the 50,000 ID images), the model performs stably (as shown in Figure 4: last sub�gure representing the standard deviation

(std) of performance on all hyper-parameters) and is better than the best baseline ReAct in AUROC, CIDER in FPR95 on the

CIFAR100 benchmark. Similar results were obtained on the other benchmarks (Supplementary Figure 3).

τ τ ′ λ1 λ2

τ τ ′ [0.05, 0.4] λ1 λ2 [0.7, 1.5] λ2

[0.7, 1.5] [1 × 50, 000, 4 × 50, 000]
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Figure 4. Sensitivity study of hyper-parameters   and  ,   and  , and the number of fake OOD data. All experiments are on the

CIFAR100 benchmark with model backbone ResNet18. The dashed line indicates the performance of the best baseline. Last

sub�gure: y-axis represents the standard deviation (std) of performance (A and F), x-axis represents �ve hyper-parameters,

where N represents the number of fake OOD data.

Method

ResNet50 ResNet101

F A F A

MSP 58.54/43.99 87.92/91.99 55.56/44.23 88.70/91.85

Energy 46.72/38.22 91.12/92.78 43.82/36.57 91.87/93.35

ViM 57.97/38.89 88.94/93.99 51.21/52.46 90.78/91.53

ReAct 39.85/29.50 92.12/94.67 39.98/28.53 92.26/94.66

Table 6. Fusion of our learning framework with various post-hoc OOD methods on the ImageNet100-I Benchmark. For each paired

values by ‘/’: the left one is from the original baseline and the right one is from the fusion one. Values are average percentages over

four OOD datasets.

A further bene�t of our learning framework is its �exible fusion with existing post-hoc OOD detection methods, where the

proposed score function in the post-hoc methods are simply adopted for OOD detection after model training with our learning

framework. Table  7 and Table  8 show that the fusion of our learning framework with each representative post-hoc method

often improves the OOD detection performance compared to the original method on both the ImageNet100 and CIFAR

benchmarks.

τ τ ′ λ1 λ2

↓ ↑ ↓ ↑
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Method

ResNet18 ResNet34

CIFAR10 CIFAR100 CIFAR10 CIFAR100

F A F A F A F A

MSP 48.03/26.57 91.40/96.19 73.60/58.24 82.24/85.63 40.95/26.52 92.09/96.05 78.29/59.26 79.25/85.82

Energy 30.96/10.51 92.05/97.95 70.53/47.42 84.34/89.46 26.69/11.29 93.17/97.64 69.41/53.30 83.64/88.82

ViM 47.90/20.61 91.02/96.57 71.43/72.50 82.09/81.76 38.35/11.85 93.75/97.79 61.51/55.19 85.00/87.95

ReAct 31.65/10.41 92.26/97.99 63.06/44.33 87.43/90.47 27.76/11.17 93.29/97.72 50.56/45.28 88.30/90.20

Table 7. Fusion of our framework with various OOD methods on the CIFAR Benchmarks. Values are average percentages over six

OOD datasets.

Related Work

OOD detection methods can be categorized into the following three groups based on accessible extra data and models.

In-distribution data only

OOD detection methods with only ID data can be divided into two categories. One is training-based approach that incorporates

regularization during model training[47][48][49], and the other is post-hoc approach which performs post-processing or

additional analysis on the generally trained model to capture the discrepancy between ID and OOD data without model

retraining. For example, the training-based method G-ODIN[50]  uses a divisor/dividend structure to measure the anomaly

degree of input data, and LogitNorm[8]  normalizes logits before the cross-entropy loss to reduce overcon�dence.

CIDER[27] uses prototype construction during training, via which data from the same ID class become more compact and close

to the associated ID-speci�c prototype, achieving best performance on the CIFAR10 benchmarks. In contrast, our approach uses

semantically rich CLIP text embeddings as prototypes and achieves better performance on multiple benchmarks.

Di�erently in post-hoc methods, OOD scores are designed often based on information from top layers of generally trained

neural networks, like softmax outputs[4][51][52], logits[53][54][6], gradients[55][26], feature embeddings[5][7][56][57][29], and

model weights[42][44]. Our approach uses the state-of-the-art ReAct score[30] which improves the e�ect of the energy score by

pruning high-activation feature components from the penultimate layer.

Extra real or fake OOD data

OOD detection performance is often improved when additional OOD data is accessible[24][25]. However, acquiring real OOD data

is usually expensive. As an alternative solution, generating fake OOD data for OOD detection becomes popular and economically

friendly. GANs have been used to generate synthetic OOD data[10][15][12], but struggling with generation of complicated images

and unstable training. VOS[16] assumes Gaussian-like feature distributions to synthesize outliers, while FeatureNorm[29] uses

input-level fakes to �nd the layer in the pre-trained network with the largest di�erence in feature norm between ID and ODD

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
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data for OOD score design. Di�erently, our approach uses a simple yet e�ective Jigsaw strategy to generate challenging OOD

data which are locally similar to but globally di�erent from real ID data for model training, without complex generation process

or extra assumptions.

Extra-modality model

Recently, large vision-language models such as CLIP[17]  and ALIGN[58]  have enabled major advancements in cross-modality

studies. However, their usage as auxiliary tools for OOD detection remains limited. Fort et al.[18]  send extra OOD text not

included in ID classes to CLIP’s text encoder for OOD detection. ZOC[19] train a label generator on CLIP’s visual encoder to guide

OOD detection, and similarly Ming et al.[20]  design an OOD score based on the CLIP’s visual and text encoders. However, all

these studies require additional OOD labels and visual encoders. Unlike these studies, our approach does not need any extra OOD

label and CLIP’s visual encoder.

Conclusion

In this study, a novel learning framework was proposed for OOD detection by using the Jigsaw-based fake OOD data and text-

guided learning. The specially designed fake OOD data generation and the ChatGPT-based CLIP embedding for each ID class

help the image encoder learn to extract more compact and semantic feature representation, which in turn helps discriminate

between ID and OOD data as supported in extensive empirical evaluations. The new state-of-the-art performance of the

proposed learning framework was obtained on the widely used benchmarks. Its �exible fusion with post-hoc methods indicates

that the learning framework may be easily combined with various new methods in future.
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