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This paper develops a geometric framework for analyzing remainder terms in additive prime and

prime-like problems. The approach is based on a multiplicative decomposition of the deviation into an

explicit small-prime residue structure and a medium-to-large-prime tail exhibiting intrinsic

exponential curvature. This decomposition leads to the formulation of the Prime Curvature Geometry

Hypothesis (PCGH), together with an associated curvature constant Ω, intended to govern pointwise

remainder envelopes beyond the scope of the classical Fundamental Lemma of sieve theory. [1]

Specializing the framework to the Goldbach problem yields the Prime Curvature Geometry Conjecture

for Goldbach (PCGC–Goldbach) and an explicit curvature constant Ωprime. The resulting conjectural

bounds are compatible with Hardy–Littlewood A predictions in the asymptotic limit, while providing a

geometric mechanism that organizes deviation behaviour across finite analytic windows and cutoff

scales.

An explicit bounding envelope for the Goldbach remainder is derived and shown to control the exact

remainder uniformly. This envelope is proved not to be an asymptotic proxy: the exact remainder

exhibits non-vanishing exponential curvature within cutoff cells, preventing pointwise asymptotic

equivalence. This distinction clarifies the limits of scale-based approximations and isolates the

geometric source of deviation.

The present paper is restricted to the derivation and formal statement of the geometric framework,

associated hypotheses, and bounding envelopes. Numerical validation, certified bounds over large

finite ranges, and reduction theorems relating PCC–Goldbach to Hardy–Littlewood–A and Bombieri–

Vinogradov–type hypotheses [2][3] are developed in subsequent work.
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1. Introduction

1.1. Motivation for a General Geometric Framework

Additive problems involving primes share a common structural feature: their main terms are governed

by local congruence conditions imposed by the small primes, while their error terms reflect global

fluctuations in the distribution of primes. Classical conjectures such as the Hardy–Littlewood prime–pair

conjectures incorporate this observation by introducing finite correction factors derived from the sieve.

However, the Hardy–Littlewood framework is not a universal predictive principle. Its successes and

limitations both indicate that a deeper, more structural description of analytic remainders is required.

HL–A Encodes Small-Prime Structure But Does Not Generalize

For problems such as Goldbach representations, the normalized Hardy–Littlewood predictions match

empirical data with striking accuracy. This agreement is explained by the fact that Harding–Littlewood

Conjecture A (HL–A) captures precisely the finite congruence restrictions enforced by the small primes.

Yet HL–A fails to organize the full behaviour of primes. It does not supply a coherent global model of

remainder terms; it ties the abundance of twin primes to that of “lucky primes”; and it provides no

mechanism for describing fluctuations across multiple analytic scales. Thus HL–A is an effective

particular solution for certain additive problems, but it is not a general framework from which all such

predictions can be derived.

This limitation is a primary motivation for first developing a general geometric model, and only

afterwards tuning it to the Goldbach setting.

Primorial Structure and Scale Separation

The sieve of Eratosthenes imposes deterministic exclusion patterns modulo the primorials  p#
k. As  k

  increases, these patterns refine but still arise from the same finite rule set. This hierarchy induces a

natural separation of scales in the behavior of primes:

Small primes: rigid congruence obstructions.

Intermediate scales: structured but non-deterministic fluctuations, responsible for the “curvature”

phenomena observed in localized prime correlations.

Large scales: weak correlations resembling statistically independent noise.
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Any analytic model that respects sieve structure must therefore separate remainder terms according to

these scales.

The Need For a Remainder Geometry.

Empirical data from Goldbach pair counts, prime tuples, and short intervals show that analytic deviations

cannot be represented by a single global error term. Rather, they decompose into

a small-prime factor capturing deterministic congruence structure,

a curvature term describing intermediate-scale deviations,

and a tail term reflecting large-scale fluctuations.

HL–A implicitly models only the first of these components. A general “remainder geometry” is required

to describe the other two.

Why the General Model Must Precede the Goldbach Case

If one begins directly with the Goldbach problem, any proposed correction or curvature equation risks

appearing ad hoc. In contrast, if the deviation structure is derived from a general geometric

decomposition compatible with sieve constraints, then the Goldbach geometry becomes the unique

specialization of the framework. HL–A appears as one particular class of main-term corrections, and the

resulting conjecture becomes structurally motivated and falsifiable.

In this sense, HL–A motivates the general geometric model precisely because it fails to generalize: its

partial successes identify the small-prime contribution that any model must contain, while its

limitations reveal the necessity of a broader framework.

1.2. Goals of This Paper

The objectives of this work are:

to develop a hypothesis of general curvature geometry of primes from first principles,

to specialize this framework to the Goldbach setting,

to state PCGC–Goldbach,

to provide the theoretical foundation for empirical validation and reduction theorems (treated in

subsequent papers).
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1.3. Main Statements

Goldbach’s conjecture asserts that every sufficiently large even integer 2n can be expressed as a sum of

two primes. Let

G(2n) = ∑
m∈Z

1prime(n − m) 1prime(n + m)

denote the number of such Goldbach representations. The Hardy–Littlewood A conjecture (HL–

A) [4] predicts the asymptotic behaviour

G(2n) ∼ SGB(2n)
2n

log2(n)
,

where SGB(2n) := 2C2S(2n) is the twin prime constant C2 multiplied by the classical singular series.

Despite overwhelming heuristic support, particularly after incorporating Hardy–Littlewood circle-

method corrections, HL–A remains unproved and lies beyond the reach of classical sieve methods [1]. The

obstruction is the well-known sieve barrier: after sieving by primes up to x1 / 2, no further cancellation is

available to control prime correlations at the scale required for HL–A. Nevertheless, extensive heuristic

and computational evidence indicates that Hardy–Littlewood–type predictions accurately describe

Goldbach pair counts across wide finite ranges; see, for example, the computational validation in [5]. This

tension between strong empirical agreement and the limitations of existing analytic tools motivates the

search for additional underlying structure.

This barrier suggests that any successful approach must exploit additional structure beyond classical

sieve estimates.

The purpose of the present paper is not to prove HL–A, but to derive a geometric framework that governs

deviations from Hardy–Littlewood–type predictions in additive prime problems. Goldbach’s problem

serves as a motivating example, but the framework developed here applies more generally to prime-like

sets and structured configuration families.

Then, for a symmetric window of radius M, define the localized Goldbach count

G(2n; M) = ∑
0 < |m | ≤M

1prime(n − m) 1prime(n + m),

and let G̊(2n; M) denote a corresponding Hardy–Littlewood–type predictor restricted to the same window.

The deviation

ε(2n, M) :=G(2n; M) − G̊(2n; M)
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may be viewed as a function on the two-parameter space (2n, M).

New contribution. This paper introduces a prime curvature geometry for such deviations. The central

hypothesis is that remainder terms in additive prime problems admit a multiplicative decomposition

separating:

a finite structural factor determined by very small primes, and

a tail factor arising from medium and large primes, whose dominant behaviour is governed by a

renormalized curvature constant.

This decomposition induces a natural geometric interpretation of remainder growth across analytic

scales and explains the emergence of exponential-type bounds in short-interval problems.

The goal of this paper is to derive this geometric framework and formulate the corresponding general

curvature hypothesis. Its specialization to Goldbach, numerical validation, and reduction theorems are

treated in after this paper.

2. Fundamental Definitions

2.1. Euler–Cap

The Euler–cap constraint was introduced and motivated in previous work [5] as a structural regulator for

finite–scale Goldbach analysis. In the present work it is adopted uniformly as an admissibility condition

on window parameters; its use here is inherited from that framework rather than introduced for the

purposes of the present conjecture.

Definition 1 (Euler–Cap and Admissible Window Size).

For a given central value n, define the Euler cap by

Ecap(n) :=
(2n + 1) − √8n + 1

2n
.

The Euler cap determines the maximal fractional size of a symmetric window about  n  for which the

mapping

m⟼ (n − m)(n + m)

remains injective, with both factors positive and distinct.

Given a window parameter α ∈ (0, 1], the associated window radius is defined by
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M := ⌊ min (α, Ecap(n))n⌋.

Thus Ecap(n)  enforces a structural upper bound on admissible window sizes, while α  allows additional

restriction when required.

Unless explicitly stated otherwise, all window parameters in this paper are assumed to satisfy the Euler–

cap constraint. Since Ecap(n) → 1 as n → ∞, the choice α = 1 is asymptotically admissible and may be used

safely in large–n regimes.

The Euler–cap restriction is therefore treated as part of the ambient analytic framework throughout this

paper, and not as a conjectural or optimizable parameter. Its effect of bypassing small-prime weight

sensitivity is a convenient but secondary consequence.

More generally, this serves as an example of the normalization issues that must be addressed when

applying the PCGH framework to the formulation of new conjectures.

2.2. Geometric Terms

Many variables in this paper are treated as geometric parameters rather than as functions in the analytic

sense. Just as one would not normally write  x = r(x, y, z)cosθ(x, y, z), we avoid functional notation for

quantities that are best understood as coordinates, lengths, or changes of scale.

Our primary coordinate system is (n, m). The variable n denotes a position along the central axis, while m

 denotes a displacement from that position. Capital letters such as M and N  represent lengths measured

along the same axis, rather than coordinates themselves.

The parameter

L := √2M

is introduced as a change of scale corresponding to the effective length of a short interval. It should not

be interpreted as a function of  M, but rather as a coordinate transformation to a different scale.

Accordingly, L is treated as a continuous parameter.

When it is necessary to relate the window size to the central coordinate, a dimensionless scale parameter 

α is introduced. This parameter specifies a window length via

M = nα,

and should be interpreted as a relative scale, not as a slope or direction in the (n, m)-plane. In particular, α

 converts a coordinate magnitude into a length; it does not define a line or trajectory in the coordinate
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space.

In contexts where α varies with n, α(n) denotes a varying scale, so that M = nα(n). This represents a family

of window sizes indexed by n, rather than a curve in the (n, m)-plane.

Because this framework mixes discrete variables with continuous scale parameters, care is required when

interpreting non-integer quantities. Unless stated otherwise, an expression of the form  nα(n)  is

interpreted as ⌊nα(n)⌋ when discretization is required and the Euler–cap is not in effect, and otherwise as

specified in Definition 1. By contrast, the parameter L is treated as continuous; applying a floor operation

to L generally leads to inaccurate results and is avoided.

2.3. Admissible Parity

The parity restriction was introduced in previous work  [5]. Here it is used purely as an admissibility

convention for windowed sums and products.

Definition 2 (Parity–Admissible Window Index Set).

Let n ∈ N and let M ≥ 1. The symmetric window is defined as

IM := {m ∈ Z: 0 < |m | ≤ M}.

The parity–admissible index set is defined as

Ipar(n; M) := {m ∈ IM : n + m ≡ 1 (mod2)}.

Equivalently, Ipar(n; M) consists of those shifts m with 0 < |m | ≤ M for which both n − m and n + m are odd.

Unless stated otherwise, all summations over window variables m  in this paper are implicitly restricted

to m ∈ Ipar(n; M).

2.4. Goldbach Singular Series Factors

Definition 3 (Goldbach Singular Series Factors).

For an even integer 2n, the local semiprime correction factor [4] is defined as

S(2n) := ∏
p∈P∖ { 2 }

p∣n

p − 1
p − 2

.

The prime–pair constant [4] is defined as

C2 := ∏
p∈P∖ { 2 }

1 −
1

(p − 1)2 .( )
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The corresponding Goldbach singular series factor [4] is defined as

SGB(2n) := 2C2S(2n).

2.5. Complementary and Full Euler–Type Products

In addition to the local semiprime correction factor S(2n) defined above, it is occasionally convenient to

refer to the complementary and full Euler–type products obtained by modifying the divisibility condition

on the prime index.

Definition 4 (Complementary and Full Local Semiprime Products).

The complementary local semiprime product is defined as

S
∁(2n) := ∏

p∈P∖ { 2 }
p∤n

p − 1
p − 2

,

and the corresponding full product is defined as

S
∙ (2n) := ∏

p∈P∖ { 2 }

p − 1
p − 2

.

Convention (Notation). A superscript ∁  indicates replacement of the divisibility condition  p ∣ n  by  p ∤ n,

while a superscript  ∙   indicates removal of the divisibility condition entirely. No additional structure is

implied.

2.6. Effective Local Modulus

Definition 5 (Effective Local Modulus).

Let n ∈ N and let p be an odd prime. Then the minimum contributing prime is defined as

pmin (n) :=
3, 3 ∣ n,
5, 3 ∤ n.

Definition 6 (Admissible Primes for Effective Moduli).

For each n ≥ 2, let

Peff(n) := {p ∈ P: p ≥ pmin (n)}.

Throughout this paper, Qp(n) is regarded as defined only for p ∈ Peff(n).

For any odd prime qmin , define the partial Euler product

Q
( qmin )
p := ∏

q∈P
qmin ≤q≤p

(q − 1).

{
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In analogy with the prime–indexed quantity  Qp(n), it is useful to name the cumulative small–prime

contribution associated to a cutoff scale  L. Accordingly, the envelope–scale effective local modulus is

defined as

Qp(n) :=Q ( pmin ( n ) )
p .

Thus Qp(n) encodes the cumulative residue structure imposed by the odd primes up to p, with the only n-

dependence arising from the choice of base prime pmin (n) according to whether 3 ∣ n. This convention is

tailored to the singular–series geometry underlying Goldbach–type problems.

For the geometric analysis of monotonic changes in aggregated quantities, it is useful to introduce a

natural envelope scale along the n-axis. Let {pi} denote the increasing sequence of odd primes starting at 

pmin (n). Then the envelope length associated to the prime interval [pi, pi+ 1) is defined as

N ( 3 )
i := Q

( 3 )
pi+ 1

2
− Q

( 3 )
pi

2
,

N ( 5 )
i := Q ( 5 )

pi+ 1

2
− Q ( 5 )

pi

2
.

These quantities represent the natural block sizes over which the local residue structure induced by the

primes below pi+ 1 remains fixed.

The squaring reflects the Goldbach geometry  (n − m)(n + m) = n2 − m2, so that changes in the effective

modulus Qp(n)  induce corresponding blocks along the  n-axis. Within each such envelope, aggregated

quantities are expected to exhibit coherent (and typically monotonic) behavior.

For convenience, and for use in short–interval and envelope–scale expressions, we define the effective

local modulus at scale L by

Q(2n; L) := ∏
p∈Peff (n )
Qp (n ) ≤L

(p − 1) = ∏
p∈Peff (n )
Qp (n ) ≤L

(p − 1).

Convention (Interpretation of Cutoff Inequalities). Throughout this paper, whenever an inequality or

cutoff condition of the form Qp(n) ≤ L  is used, it is understood that the effective local modulus Qp(n)  is

defined with the base prime  pmin (n)  fixed as in Definition  5. No restriction on  p  is imposed beyond 

p ≥ pmin (n).

2.7. Additional Series Operators

The classical Hardy–Littlewood singular series S(2n) is naturally an asymptotic object. For finite–window

analysis it is convenient to introduce auxiliary operators that partition the series into base and tail

( ) ( )
( ) ( )
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components relative to a square cutoff.

Definition 7 (Cutoff Operators).

Define the square cutoff operator

Sq(x) := x2.

The function Q( ⋅ ) may also be used as a cutoff operator.

We use the tags head and tail to denote the base (small–prime) and tail (large–prime) components relative

to a given cutoff.

Definition 8 (Cutoff Components of S).

Let M > 0 and n ≥ 2. Then define

S
Sq

head(2n; M) := ∏
p∈P∖ { 2 }

p∣n
p2 ≤M

p − 1
p − 2

, S
Sq

tail(2n; M) := ∏
p∈P∖ { 2 }

p∣n
p2 >M

p − 1
p − 2

.

S
Q
head(2n; L) := ∏

p∈Peff (n )
p∣n

Qp (n ) ≤L

p − 1
p − 2

, S
Q
tail(2n; L) := ∏

p∈Peff (n )
p∣n

Qp (n ) >L

p − 1
p − 2

.

S
Sq(2n)  := S(2n),

S
Q(2n)  := ∏

p∈Peff (n )
p∣n

p − 1
p − 2

.

Empty products are interpreted as 1.

Identity 1 (S Head–Tail Products).

S(2n) = S
Sq(2n) = S

Sq

head(2n; M)SSq

tail(2n; M) ∀M > 0,

S
Q(2n) = S

Q

head(2n; L)SQ

tail(2n; L) ∀L > 0.

Proof. These identities follow by design of having the tail term continue immediately after the head term

ends. ◻

Identity 2 (S Equality).

SSq(2n) = SQ(2n)

Proof. Both products are taken over primes dividing  n, with admissibility restricted to  p ∈ Peff(n)  as in

Definition 18. The only term that could appear in SSq(2n) but not in SQ(2n) is p = 3.

However,  S
Sq(2n)  contains a  p = 3  factor only if  3 ∣ n. In that case  pmin (n) = 3, so  3 ∈ Peff(n), and the

corresponding term also appears in SQ(2n). Thus both products range over the same prime divisors of n,
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and are identical. ◻

Definition 9 (Effective Moduli Interval Max).

Q(2n; L)  :=QP0 ( 2n ;L ) (n),

P0(2n; L)  := max {p ∈ Peff(n) : p ∣ n, Qp(n) ≤ L},

with P0(2n; L) := pmin (n) if the set is empty.

Identity 3 (Equivalent Tail Terms).

S
Q

tail(2n; L) = S
Sq

tail(2n; (P0(2n; L))2) ∀L ≥ pmin (n) − 1.

Proof. Both tail products are taken over primes  p ∈ Peff(n)  dividing  n. By definition of  P0(2n; L), the

condition Qp(n) > L is equivalent to p > P0(2n; L). Hence both sides are products over the same index set

{p ∈ Peff(n) : p∣n, p > 2, p > P0(2n; L)},

and therefore agree. ◻

Identity 4 (Equivalent Header Terms).

S
Q

head(2n; L) = S
Sq

head(2n; (P0(2n; L))2) ∀L ≥ pmin (n) − 1.

Proof. Both header products are taken over primes  p ∈ Peff(n)  dividing  n. By definition of P0(2n; L), the

condition Qp(n) ≤ L is equivalent to p ≤ P0(2n; L). Hence both sides are products over the same index set

{p ∈ Peff(n) : p∣n, p > 2, p ≤ P0(2n; L)},

and therefore agree. ◻

The above identities do not necessarily hold for  ∙  and ∁ operators. As the Q operator will retain exclusion

of primes not in Peff(n), while the Sq operator will essentially flip an exclusion to an inclusion. As such the

following identity is added:

Identity 5 (S complement conversion at the pmin  cutoff).

For every n ≥ 2,

S
Sq ,∁(2n) = S

Sq ,∁
head 2n; (pmin (n) − 1)2

S
Q ,∁(2n) ∀n ≥ pmin (n).

2.8. HL–A Predictor Corrected for Density and Short Intervals

Definition 10 (Short–Interval HL–A Predictor).

For Goldbach configurations  (n − m, n + m)  with local window  0 < |m | ≤ M, define the Hardy–Littlewood

Conjecture A predictor (including the standard circle–method correction) (HL–Windowed) for ordered

( )
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pairs by

G̊HL(2n; M) := 2C2S(2n) ∑
m∈ Ipar ( 2n ;M )

ω(n − m)ω(n + m).

The decomposition of  S  into base and tail components and the resulting restriction of prime

contributions are specific to the present work. The use of weighted summation in place of the classical 

x / log2x  density factor was introduced in previous work  [5]  and is retained here to permit finite–scale

bounds.

3. A General Predictive Geometry for Prime–Like Sets

Many problems in analytic number theory can be formulated as follows: one seeks to count how often

certain structured candidate configurations fall into specified “prime–like” sets, in order to construct a

suitable analytic prediction for that count and to understand the deviation between measurement and

prediction. This section establishes a unified framework for that purpose and serves as the general

backbone for the specialized Goldbach geometry in later sections.

3.1. Prime–Like Sets and Candidate Configurations

Let

S1, S2, S3, …

be a sequence of prime–like sets.

Definition 11 (Prime–Like Set).

A subset Sj ⊂ N is called prime–like if membership is determined by a multiplicative divisibility–type rule;

that is, there exists a {0, 1}–valued indicator Dj(n), depending only on residue constraints for n, such that

n ∈ Sj ⟺ Dj(n) = 1.

Examples include: primes, primes in fixed congruence classes, integers avoiding a set of forbidden prime

factors, survivors of iterated sieves, or any structured set defined by local multiplicative restrictions.

Let

C = {Ci : i ∈ I}

be a family of candidate vectors, where

Ci = C ( 1 )
i , C ( 2 )

i , C ( 3 )
i , … .( )
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Each coordinate C ( j )
i  is to be tested for membership in the corresponding prime–like set Sj.

3.2. Measured Joint Incidence

The total measured incidence is defined by

G(C; S1, S2, …):= ∑
i∈ I

∑
j≥ 1
1Sj C

( j )
i ,

which counts how many components of how many candidate vectors lie in the respective prime–like

sets.

This formulation includes, as special cases:

Goldbach configurations (n − m, n + m) with S1 = S2 = {primes},

twin–prime patterns (n, n + 2),

prime k–tuples,

survivors of restricted sieves,

cross–correlation patterns of primes across multiple offsets.

3.3. The Prediction Problem

The objective is to construct a closed–form analytic predictor

G̊(C; S1, S2, …),

which satisfies:

dependence only on the structural residue data defining the sets Sj;

multiplicative behavior analogous to Hardy–Littlewood type predictions;

incorporation of both small–prime constraints (CRT–type) and medium–prime geometric

fluctuations;

accurate specialization to the case where the Sj are genuine primes.

This is the general prediction problem, of which the classical Hardy–Littlewood heuristics are a special

instance.

3.4. Deviation

Once G̊ is defined, the deviation is set as

( )
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ε(C; S1, S2, …):=G(C; S1, S2, …) − G̊(C; S1, S2, …).

Two questions then arise:

1. How large can ε be, relative to the structure of the sets Sj?

2. How does the geometry of the small and medium primes dictate the size, curvature, and oscillatory

behaviour of these deviations?

The framework developed in the sequel interprets deviation not as an analytic error, but as a geometric

curvature quantity built multiplicatively from contributions of the residue structure of the small primes

and a tail factor encoding medium–prime fluctuations.

3.5. Purpose and Scope of This Section

The remainder of this section develops:

a CRT–inspired multiplicative base product capturing small–prime structure across the sets Sj;

a medium–prime tail factor producing a universal curvature term;

a corresponding curvature constant governing asymptotic fluctuations;

a generalized Hardy–Littlewood–type prediction functional G̊;

a deviation bound of the form

| ε | ≲ (window normalization) × (curvature term).

This provides the structural foundation for the specialized Goldbach geometry studied later and prepares

the ground for reductions and applications in subsequent sections.

3.6. Predicted Counts

Given a family of candidate vectors  C = {Ci}  and prime–like sets  S1, S2, …; consider the task of

constructing an analytic prediction for the joint incidence count

G̊(C; S1, S2, …).

Two classical approaches exist, one based on local density heuristics and one based on sieve theoretic

product series, but neither is adequate on its own. A blended multiplicative–geometric predictor will

ultimately emerge as the appropriate generalization.
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3.6.1. Density–Based Prediction

Using a method specified by Iwaniec and Kowalski, if the coordinates of the candidates C ( j )
i  behave with

little correlation, one may attempt a purely density–based estimate [1]:

G̊density(C; S1, S2, …):= ∑
i

∏
j
ω C ( j )

i , Sj ,

where ω(x, Sj) denotes the local density or “probability weight” for an integer x to lie in the prime–like set 

Sj. Such estimates work well for uncorrelated random models, but even mild arithmetic correlations can

render them unreliable. The multiplicative structure ∏jω(C ( j )
i , Sj) implicitly assumes independence across

coordinates, but arithmetic progressions modulo small primes create systematic dependencies that

violate this assumption. These correlations accumulate multiplicatively across the product, leading to

systematic over- or under-estimation that cannot be corrected by normalization alone. Correct

normalization of the weights ω is also essential.

3.6.2. Pointwise Sieve Prediction

A second approach mentioned in works by Harman and by Iwaniec and Kowalski uses pointwise sieve

estimates [6][1], typically expressed as product series describing local sieving constraints:

G̊sieve(C; S1, S2, …):= ∑
i

∏
j

1 − f C ( j )
i , S1, S2, … Pj(Sj) .

Here  Pj(Sj)  encodes the local exclusion probability induced by the small primes defining  Sj, while the

correction factor  f( ⋅ )  accounts for residual terms, local obstructions, and normalization discrepancies

arising in the sieve. pointwise sieves capture local structure accurately, but they do not correctly handle

medium–prime correlations or global normalization.

3.6.3. A Combined Predictor

A more accurate predictive functional blends density weighting with explicit sieve corrections  [6][1],

yielding

G̊(C; S1, S2, …):= ∑
i

∏
j

1 − f C ( j )
i , S1, S2, … Pj(Sj) ω C ( j )

i , Sj .

This form simultaneously

incorporates local sieving structure through the multiplicative correction factors 1 − fPj,

( )

( ( ) )

( ( ) ) ( )
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adjusts global normalization via the density weights ω,

and captures both rigid small–prime obstructions and coarse medium–prime statistical behavior.

In the special case where the sets Sj  correspond to the primes, this functional reduces to a generalized

Hardy–Littlewood–type predictor.

For such an expression to be meaningful beyond heuristic averaging, the resulting prediction must be

asymptotically convergent and uniformly controlled with respect to the underlying scale parameters. In

particular, convergence must hold at the level of finite windows or logical groupings, rather than only

after global averaging.

Remark. Failure of uniform asymptotic control at finite scales is precisely the obstruction encountered in

classical sieve methods [1], and motivates the introduction of a geometric correction framework.

The failure of existing predictors to achieve uniform asymptotic control at finite scales motivates the

introduction of a geometric correction, developed in the sections that follow.

3.7. Remainder Deficits

Given a candidate configuration family C and prime–like sets S1, S2, …, the remainder deficit is defined as

ε(C; S1, S2, …):=G(C; S1, S2, …) − G̊(C; S1, S2, …).

There are two fundamentally different types of bounds one may attempt to place on ε:

(1) Statistical bounds.

Once G  and  G̊  are well understood on average, one can typically show that  ε  is statistically small. For

Goldbach pairs, for instance, numerical data up to the limits of modern computations indicate that

| ε(2n; M) | = O √2M

for the ranges of n  that can be measured directly. Such bounds, while empirically robust, are extremely

difficult to establish analytically.

(2) Uniform analytic bounds.

More interesting, and far more delicate, are strict analytic bounds valid for all sufficiently large C:

−R − (C; S1, S2, …) ≤ ε(C; S1, S2, …) ≤ R + (C; S1, S2, …).

By defining

( )
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R(C; S1, S2, …):= max R − (C; S1, S2, …), R + (C; S1, S2, …) ,

one obtains the symmetric form

R(C; S1, S2, …) ≥ ε(C; S1, S2, …) .

Because both G and G̊ decompose naturally over local blocks, the inequality can be refined pointwise:

R(C; S1, S2, …) ≥ ∑
i
ε C ( i ) ; S1, S2, … .

This immediately yields the trivial bound

Rtrivial(C; S1, S2, …) ≥ ∑
i

ε C ( i ) ; S1, S2, … ,

which is sharp only when all local deficits have the same sign. In general this overestimates the true

remainder by double–counting correlated fluctuations between nearby blocks.

To obtain meaningful bounds, the remainder functional must be expressed in a form parallel to the

predictor:

G̊(C; S1, S2, …):= ∑
i

∏
j

1 − f(C ( j )
i , S1, S2, …)Pj(Sj) ω(C ( j )

i , Sj).

When R  shares the same structural decomposition, substantial portions of each term can be factored

outside the summation, preventing the double–counting that plagues Rtrivial.

At first glance, one might expect that the error in such expressions is governed by the Chinese

Remainder Theorem (CRT), as summarized by Hardy and Wright [7]. However, direct CRT application to

even simple problems such as Goldbach immediately predicts remainders of the order  O(n), which is

entirely incompatible with observed behaviour. One remedy is to assume that all remainder contributions

arise from a short interval. Using an interval of size O(√2M) indeed yields empirically correct bounds on

the extremal error fluctuations, but only after introducing two additional elements:

an independent tail factor accounting for primes not controlled by the short interval, and

a measured curvature constant determining the effective interval scale.

While a single measured constant together with a new short–interval hypothesis would be sufficient for

many applications, the aim here is a more universal and structurally transparent theory.

( )

| |

| ( ) |

| ( ) |

( )
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The remainder is therefore modelled through a geometric decomposition. The total remainder is written

as a sum of local contributions:

R(C; S1, S2, …):= ∑
i
R C ( i ) ; S1, S2, … .

Each block  C ( i )   is assigned a scalar parameter for the scale  Li = Λ(C ( i ) ), and the local remainder is

postulated to factor as

R C ( i ) ; S1, S2, … = H(Li; S1, S2, …)H2(Li; S1, S2, …)T(Li; S1, S2, …)T2(Li; S1, S2, …).

The terms of Equation (62) will be defined in the following sections.

Remark (Which Set Does  p  Range Over?). Throughout this section the Euler products are written

schematically, without fixing a single ambient set from which the primes p are drawn. This is intentional.

In the simplest situations, such as the Goldbach problem treated in later sections, there is a single prime–

like set S, and all Euler products are taken over p ∈ S. In that case no ambiguity arises.

In more general configurations, however, different components of a candidate representation may be

governed by different prime–like sets. For example, in Chen–type problems one variable is restricted to

primes while the other is restricted to semiprimes, and the relevant sieving constraints are naturally

expressed using more than one underlying set. In such cases the index set for p in each Euler product is

the set appropriate to the factor being modelled: small–prime products H, H2 range over primes enforcing

local congruence restrictions, while the tail factors  T, T2  range over primes (or prime–like elements)

whose influence is only felt through global density and curvature.

Formally, one may regard each Euler product as taken over an effective prime–like support determined by

the candidate family C and the structural role of the factor under consideration. The precise specification

of this support is part of the modelling choice and must be fixed on a case–by–case basis.

For clarity, all later specializations in this paper, and in particular the Goldbach specialization, use a

single prime–like set, so that the indexing of the Euler products is unambiguous.

3.8. Construction of the Factors H, H2, T, and T2

The multiplicative decomposition (repeated from (62)

R C ( i ) ; S1, S2, … = H(Li; S1, S2, …)H2(Li; S1, S2, …)T(Li; S1, S2, …)T2(Li; S1, S2, …)

( )

( )

( )
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was motivated above as the only structure capable of avoiding the double–counting inherent in 

Rtrivial = ∑i | ε(C
( i ) ) | . A general method for constructing these factors is now outlined. This construction is

not intended to be unique, but rather to isolate the distinct regimes of behaviour that naturally arise in

sieve–type problems.

3.8.1. Small–Prime Structure: The Factors H and H2

The small primes play a qualitatively different role from the medium and large primes. Their

contribution to the remainder is not governed by a smooth Euler tail, but instead arises from discrete

residue effects, parity constraints, and local structural obstructions. Unlike medium– and large–prime

contributions, these effects do not average out over a local block  C ( i )   and therefore require explicit

treatment.

Crucially, the influence of the small primes decomposes into two distinct components:

a global, residue–averaged contribution that is stable under summation and exponentiation, and

a local, residue–sensitive correction that depends on the specific configuration of the block.

These are captured respectively by the factors H and H2.

For each configuration block C ( i )  with associated scale Li = Λ(C ( i ) ), choose a cutoff

P0 = P0(Li),

representing the largest prime whose residue behaviour remains structurally significant on the scale of 

C ( i ) . Primes p ≤ P0 contribute through explicit small–prime structure, while primes p > P0 are absorbed

into the tail factors T and T2.

As before, assume that to each prime p and family of prime–like sets (Sj) a scale parameter is associated

β p; S1, S2, … > 0,

such that the small–prime regime for the block C ( i )  is defined by

p ≤ P0(Li) ⟺ β p; S1, S2, … ≤ Li.

This compatibility between the cutoff P0(Li) and the scale function β is essential: it ensures that all residue

effects that fail to average on the scale Li are treated explicitly, while all remaining prime contributions

may be incorporated into the curvature tail.

( )

( )
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H(Li)  is a finite Euler product over the small primes p ≤ P0(Li)  capturing the global small–prime sieving

error. It incorporates no pointwise residue corrections, except for effects that have global structural

impact (for example, those splitting the problem into a fixed finite family of cases independent of P0(Li)).

The global small–prime contribution is defined by the finite Euler product

H(Li; S1, S2, …):= ∏
p≤P0 (Li )

h p; S1, S2, … ,

where  h(p; ⋅ )  is a residue–averaged multiplier describing the net sieving distortion introduced by the

prime  p. The factor  H  contains no pointwise residue information except for effects that have global

structural impact (for example, splitting the problem into a fixed finite set of cases independent of P0). At

fixed scale Li, H behaves as a constant and may be factored outside local summations.

H2(Li)  is a finite Euler product over the same primes p ≤ P0(Li)  encoding pointwise and residue–sensitive

structural effects arising from the small primes. The local small–prime correction is captured by

H2(Li; S1, S2, …):= ∏
p≤P0 (Li )

h2 p; Li, S1, S2, … .

where h2(p; ⋅ ) encodes residue–sensitive and configuration–dependent effects of the prime p. Unlike H,

this factor does not exponentiate cleanly and must remain attached to individual blocks. Its role is to

correct the global constant H for local residue patterns that do not average out on the scale Li.

Together, the factors  H  and  H2  represent the deficits of from small primes for our more general

framework. The decomposition

R C ( i ) ; S1, S2, … = H(Li)H2(Li)T(Li)T2(Li)

correctly separates:

global small–prime structure (H),

local residue corrections (H2),

multiplicative curvature from medium primes (T), and

higher–order and genuinely large–prime effects (T2).

If the small–prime contribution were treated as a single factor, these roles would be conflated, leading to

incorrect scaling and spurious overestimates of the remainder.

Remark. In the classical Hardy–Littlewood A formulation of Goldbach, the small–prime structure

separates into a global constant  C2  and a residue–dependent correction  Ssem(2n). The present

( )

( )

( )
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decomposition HH2 is directly analogous: H plays the role of the constant, while H2 is the correct term to

that constant. The advantage of the present framework is that this separation arises naturally from the

geometric scale L of each block, rather than being imposed a priori.

3.8.2. The Medium–Prime Tail T (Unified Euler Product)

In classical sieve decompositions, small–prime effects are often separated into a finite factor, with the

remaining primes treated as an exponential tail. For the present framework this separation is

undesirable: it obscures the dependence on the cutoff scale and prevents a clean analytic description of

the remainder.

Instead, the sieve correction is treated as a single Euler–type object with a scale–dependent cutoff. Let 

P0 = P0(Li) denote the cutoff prime associated with the configuration block C ( i ) , typically determined by

its scale parameter Li = Λ(C ( i ) ). Primes  p ≤ P0  contribute through explicit residue and parity structure,

while primes p > P0 contribute multiplicatively through a medium–prime tail.

The tail factor is defined by the Euler product

T(Li; S1, S2, …):= ∏
p>P0 (Li )

t p; S1, S2, … Li / β ( p ; S1 , S2 , … ) ,

where t(p; ⋅ ) encodes the local contribution of the prime p.

To normalize this infinite product, introduce the global curvature constant

Ω:= ∏
p
t p; S1, S2, … 1 / β ( p ; S1 , S2 , … ) .

The finite renormalization induced by the cutoff is then

Θ(Li; S1, S2, …):= ∏
p≤P0 (Li )

t p; S1, S2, … − 1 / β ( p ; S1 , S2 , … ) .

With these definitions, the tail admits the normalized representation

T(Li) = ΩΘ(Li)
Li,

where Ω captures the global prime–like structure, while Θ(Li) accounts for the slowly varying correction

associated with the finite cutoff. Formally, Θ(Li) → Ω − 1 as P0(Li) → ∞.

Two key structural features follow immediately:

1. The quantity raised to the power Li is the renormalized curvature constant. Define

( )

( )

( )

( )
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∼

Ω(P0) := ΩΘ(P0), Θ(P0) := ∏
p≤P0

t p; S1, S2, … − 1 / β ( p ; S1 , S2 , … ) .

All medium– and large–prime contributions appear only through this single renormalized constant 

∼

Ω(P0), while Ω remains the global curvature constant attached to the full infinite Euler product. No small

primes are absorbed into T; their effects are entirely contained in A.

2. The cutoff dependence of 
∼

Ω(P0)  is structural rather than perturbative. Each time the cutoff P0(Li)

 crosses a prime p, the factor  t(p) − 1 moves from the infinite tail into the finite renormalization product.

The bracket

∼

Ω(Li) := Ω ∏
p≤P0 (Li )

t(p; S1, S2, …) − 1 / β ( p ; S1 , S2 , … )

therefore changes by an explicitly controlled multiplicative step at each cutoff transition. This is not a

small perturbation in general; rather, it is the correct normalization ensuring that the truncated Euler

product remains consistent with the underlying geometry. Because all cutoff-dependence is confined to

the finite product, the tail retains the clean exponential form

T(Li) =
∼

Ω(Li)
Li,

and the geometry remains stable under cutoff variation.

This unified formulation is essential. Because no small primes are artificially moved into H, the tail factor

retains a coherent multiplicative structure, and the resulting curvature term 
∼

Ω(P0) becomes the natural

geometric object governing remainder deviations.

In later sections, when specific sieve problems are introduced, this general tail structure will specialize to

explicit formulas for t(p), P0(Li), and the resulting renormalized curvature constant.

3.8.3. The Medium and Large–Prime Correction T2

Large primes (those exceeding both P0(Li) and a second stability threshold) contribute only residue–level

fluctuations. Their individual contributions are far below the natural scale of the problem, and their

aggregate effect is conjecturally bounded.

A final term T2(Li) is introduced with the following three axioms:

1. T2(Li) is uniformly bounded above and below:

0 < c1 ≤ T2(Li) ≤ c2 < ∞,

( )
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2. T2(Li) absorbs all higher–order correlations not handled by H, H2, or T,

3. and in many applications, including the Goldbach case studied in Section 4, T2 can be absorbed into the 

T term once an appropriate scaling is chosen.

Thus,  T2(Li)  collects higher–order residue effects and genuinely large–prime corrections and

conjecturally bounded:

T2(Li) := ∏
p>P0 (Li )

t2 p; Li, S1, S2, … Li / β ( p ; S1 , S2 , … ) .

3.8.4. Summary and General Hypothesis

The multiplicative decomposition

R(C ( i ) ) = H(Li)H2(Li)T(Li)T2(Li)

encapsulates, in a structured and modular way, the four principal sources of sieve deviation:

1. Small primes. H(Li)  records the dominant residue-class distortions arising from primes  p  whose

structural scale satisfies β(p; S1, S2, …) ≤ Li.

2. Small primes corrections. H2(Li)  records the dominant residue-class corrections arising from primes p

 whose structural scale satisfies β(p; S1, S2, …) ≤ Li. These are the primes for which local obstruction terms

do not average out over the block C ( i ) .

3. Medium primes. T(Li) collects the multiplicative tail of all primes with β(p) > Li, and its leading behaviour

is governed by a renormalized curvature constant

∼

Ω(P0) := ΩΘ(P0), Θ(P0) := ∏
β (p ) ≤Li

t(p; S1, S2, …) − 1 / β ( p ; S1 , S2 , … ) .

Here Ω  is the global curvature constant associated with the full (idealized) infinite product, while Θ(P0)

 removes exactly the portion already absorbed into A(Li). The combined constant 
∼

Ω(P0) is the quantity that

enters the exponent, and it remains stable under cutoff variation because  P0 = P0(Li)  grows only

polylogarithmically in Li.

4. Medium and large primes and higher correlations. T2(Li)  absorbs all remaining fluctuations, including

large-prime residue effects and higher–order interactions, and is conjecturally bounded or slowly

varying. It does not influence the exponential scale of R(C ( i ) ).

These components motivate the following hypothesis:

( )
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Hypothesis 1 (Prime Curvature Geometry Hypothesis (PCGH)).

Let  S1, S2, …  be any admissible family of prime–like sets, and let  C  be a structured configuration set

admitting a decomposition into local blocks C ( i ) , each equipped with a scale Li = Λ(C ( i ) ).

Let G̊(C; S1, S2, …) be an admissible prediction functional satisfying the following conditions:

(Density normalization) G̊ agrees with the expected cardinality of C under an uncorrelated prime–like

model.

(Explicit small–prime structure)  G̊  incorporates all deterministic local sieve obstructions arising from

primes p whose residue behaviour is structurally significant on the scale Li.

(Finite–scale evaluability)  G̊  admits a well–defined evaluation on each block  C ( i ) , uniformly in  Li,

without reliance on global averaging.

The analytic remainder is defined as

ε(C) :=G(C) − G̊(C).

Then ε(C) admits a uniform bound of the form

|ε(C)| ≤ R(C) := ∑
i
H(Li)H2(Li)T(Li)T2(Li),

where the factors satisfy the following structural properties:

(Global small–prime factor) H(Li) is a finite Euler product over primes p satisfying β(p; S1, S2, …) ≤ Li. It is

residue–averaged, non–pointwise, and depends only on the scale Li and the prime–like structure (Sj).

(Local small–prime correction)  H2(Li)  is a finite product over the same primes, encoding residue–

sensitive and configuration–dependent corrections that do not average out on the scale Li.

(Geometric curvature tail) T(Li) is a non–pointwise geometric term with exponential scaling

T(Li) =
∼

Ω(P0(Li))
Li

, where 
∼

Ω(P0) is a finite curvature factor obtained by aggregating the contribution

of primes p > P0(Li). The role of T(Li)  is to capture the cumulative geometric effect of the medium–

prime tail at scale Li.

(Residual corrections)  T2(Li)  consists of higher–order residue effects and genuinely large–prime

contributions and remains uniformly bounded as Li → ∞.

Moreover, the decomposition above is structural: collapsing the small–prime factors H and H2 into a single

term destroys the scale separation required for a uniform bound.

( )

qeios.com doi.org/10.32388/FMA6AW 24

https://www.qeios.com/
https://doi.org/10.32388/FMA6AW


Remark. No assumption is made in the Prime Curvature Geometry Hypothesis that the finite curvature

factor 
∼

Ω(P0) converges to a nontrivial limit as P0 → ∞. In practice, for all physically meaningful choices of

the local tail functions  t(p), one expects 
∼

Ω(P0) → 1, reflecting the rapid stabilization of large–prime

contributions. Nonconvergent behavior would require deliberately nonphysical tail models and does not

arise in standard prime–like settings.

Remark. The admissibility conditions above exclude predictors whose apparent accuracy arises solely

from global averaging or implicit absorption of remainder terms. This restriction is essential for PCGH to

address the classical sieve barrier.

Remark. The scale parameter Li = Λ(C ( i ) ) is not restricted to contiguous intervals or uniform windows. It

may represent any logical grouping of candidates appropriate to the problem at hand, including arithmetic

progressions, divisor–class partitions, primorial blocks, or other structured subsets. This flexibility

allows the Prime Curvature Geometry Hypothesis to be applied in settings where specialized averaging,

conditional structures, or nonstandard decompositions are required.

3.9. Final Note on Geometry

The argument above selects an exponential tail because the multiplicative structure of sieve deviations

becomes additive under logarithmic scaling, naturally leading to exponential behavior at the level of

aggregated remainders.

This choice is therefore canonical within the present framework. Nevertheless, there is no a priori reason

that the underlying geometry must be strictly exponential in all settings. Alternative functional families,

such as hyperbolic profiles (e.g. sinh2, or, in more structured contexts, Jacobi elliptic functions described

by Abramowitz and Stegun [8] or Lambert–W transforms described by Corless et al. [9]–may arise when

the interaction between local constraints and global renormalization exhibits cyclic or quasi-periodic

behavior across scales. A problem as rigid as Goldbach’s conjecture does not probe sufficiently many

degrees of freedom to distinguish most such higher-order geometric features; however, a derivation that

explicitly incorporates Euler-cap effects may provide the additional structure needed to do so.

Accordingly, even a complete proof of the Goldbach specialization would not, by itself, uniquely

determine the full geometric form of the tail factor T beyond the leading order. More refined distinctions

are expected to emerge only in problems involving additional structural parameters or higher-

dimensional configurations.
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Finally, standard geometric operations, such as angle addition and subtraction, may be formulated

abstractly in terms of set operations on the underlying candidate classes Ci, providing a natural algebraic

interpretation of curvature interactions within the framework.

Remark. PCGH is motivated by structural considerations and by the behaviour of explicit sieve

computations, but is not offered as a theorem. Its purpose is to supply a coherent organizing principle for

the remainder phenomena across many prime-like configurations. In the next section, the framework is

specialized to the Goldbach/HL–Windowed setting and a concrete conjecture tailored to that problem is

derived. Eventual proof of such an individual conjecture should not be interpreted as a universal

confirmation of the hypothesis itself.

4. Specialization to the Goldbach / HL–Windowed Geometry

This section instantiates PCGH  1 in the classical Goldbach setting. The aim is to obtain an explicit

analytic form of the remainder functional

ε(2n; L) :=G(2n; M) − G̊HL(2n; M),

where G(2n; M) denotes the measured number of Goldbach pairs in the window  |m | ≤ M, G̊HL(2n; M) is the

HL–A prediction restricted to the same window, and L is a scale parameter governing the geometry of the

remainder.

At this stage L  is treated as an abstract scale; its concrete identification in terms of M  will be justified

below. As in Section 3, all remainder behavior is organized through the multiplicative decomposition

RHL(2n; L) = HHL(2n; L)HHL
2 (2n; L)THL(2n; L)THL2 (2n; L).

4.1. Hardy–Littlewood Conjecture A for Goldbach Windows

In order to apply PCGH to the Goldbach problem, we must first select an appropriate predictor function.

Hardy and Littlewood proposed the following asymptotic predictor Hardy–Littlewood Conjecture A (HL–

A) for Goldbach representations:

2C2S(2n)
2n

logn
.

In previous work  [5], this predictor was adapted to long intervals by replacing the global density factor

with a general weighted sum,

2C2S(2n) ∑
m∈ Ipar ( 2n ;M )

ω(n − m)ω(n + m).
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Motivated by this formulation, let the Hardy–Littlewood Windowed predictor (HL–Windowed) restrict the

same structure to a local Goldbach window,

G̊HL(2n; M) := 2C2S(2n) ∑
m∈ Ipar ( 2n ;M )

ω(n − m)ω(n + m),

as specified in Definition  10. This represents a finite–window specialization of Hardy–Littlewood

Conjecture A rather than a distinct conjecture.

Equivalently, for Goldbach configurations  (n − m, n + m)  with local window  |m | ≤ M, the Hardy–

Littlewood  A predictor (including the standard circle–method correction) for ordered pairs may be

written schematically as

2 ∏
p∈P∖ { 2 }

1 −
1

(p − 1)2 ∏
p∈P∖ { 2 }

p∣n

p − 1
p − 2

∑
m∈ Ipar ( n ,M )

ω(n − m)ω(n + m),

where P ∖ {2} denotes the set of odd primes.

Here:

the first product is the classical singular series, converging to the twin Hardy–Littlewood constant C2;

the second product represents the small– and medium–prime sieve residual arising from the

obstruction p ∣ n;

the sum over m encodes the local density within the Goldbach window.

This HL–A predictor is a special case of the general predictive framework introduced previously, with

irrelevant primes omitted once their associated local moduli exceed the window scale.

Remark. A naïve replacement of the Hardy–Littlewood weight  1/ logx  by  li(x) /x  is inappropriate in a

windowed setting. The correct analogue requires integration over the window itself, which induces a

continuous correction that must be paired with a corresponding window-normalized constant. When

both effects are included, the resulting corrections largely cancel, explaining the empirical effectiveness

of the classical Hardy–Littlewood normalization in finite windows.

Remark (Predictor Improvements). The framework developed here naturally suggests more accurate

finite-n  predictors, obtained by incorporating additional cutoff-dependent correction factors. Such

refinements may improve numerical agreement over limited ranges.

( ( ))( )

qeios.com doi.org/10.32388/FMA6AW 27

https://www.qeios.com/
https://doi.org/10.32388/FMA6AW


The objective of the present work, however, is not to optimize finite-range accuracy, but to formulate a

conjecture grounded in a predictive structure that has withstood more than a century of scrutiny. For this

reason, the classical Hardy–Littlewood form, deferring any modified predictors, whose finite-n behaviour

remains comparatively untested, to potential future studies.

Hardy–Littlewood Conjecture  A proposes an asymptotic predictor for Goldbach representations, but no

proof is known that this predictor converges to the measured Goldbach count G. Empirical investigations,

including the computational study in [5], nevertheless indicate strong agreement over large ranges.

Remark (Euler Cap In the HL–A Normalization).

The Hardy–Littlewood prediction

ĜHL(2n) = 2C2S(2n)nω2(n)

necessarily entails the presence of a saturation mechanism: the total Goldbach mass at level 2n  cannot

grow without bound as the size of a local window increases. In this sense, HL–A implicitly assumes the

existence of a cap. In the present framework, this saturation is known explicitly via what we call the Euler

cap, which bounds the total mass by a fixed multiple of 2nω2(n).

Accordingly, while a local proxy of the form

∑
m∈ Ipar ( n ,M )

ω(n − m)ω(n + m) ≈ 2Mω2(n)

is accurate whenever M = o(n), it must necessarily saturate as M approaches n.

The Euler cap does not affect the geometric structure developed in this paper. Its role becomes relevant

only when analytic proxy formulas are invoked, where it suppresses spurious growth, such as additional

logarithmic factors, that would otherwise arise for large α = M /n.

A detailed discussion of the Euler cap and its role in the HL–A normalization is given in previous work [5].

Throughout the present paper, the analysis remains in the pre-cap regime, where M is sufficiently small

that the linear local proxy remains valid.

Remark (Goldbach Notation and Conventions).

Throughout the Goldbach section:

G(2n; M) denotes the number of Goldbach pairs (n − m, n + m) with m ∈ Ipar(n, M);

G̊HL(2n; M) denotes the Hardy–Littlewood A circle–method prediction restricted to the same window,

dropping unnecessary primes;
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Q(2n; L) denotes the effective local modulus;

S
∁(2n; L) is the complement truncated semiprime correction factor;

Ω̂prime(2n; L) is the renormalized prime curvature factor defined in (114).

Unless otherwise stated, Goldbach pairs are counted as ordered pairs (n − m, n + m); for unordered pairs the

factor 2 is omitted.

4.2. The Goldbach Configuration and Natural Scale

For fixed even 2n, the configuration set is

C ( i ) = {(n − m, n + m) :m ∈ Ipar(n, M).

This is a symmetric block of size 2M; its natural scale is

L := √2M.

This scale is not arbitrary: it is the unique one for which (i) the classical HL–A prediction stabilizes, (ii)

residue-class distortions from small primes remain controlled, and (iii) extremal deviations grow no

faster than O(Llogn / loglogn). The scale  L := √2M  therefore plays the same role here that the block scale 

Λ(C ( i ) ) played in the general hypothesis.

4.3. Prime–Like Sets and the Scale Function β(p)

In the Goldbach setting, all arithmetic structure is generated by the genuine primes. Accordingly, a single

prime–like set

S = P,

with focus on the construction of an appropriate scale function

β(p), with p ≤ P0(Li) ⟺ β(p) ≤ Li,

is compatible with the geometry of a symmetric Goldbach window.

For a fixed even integer 2n, the local configuration is considered

m ∈ Ipar(2n; M),

to seek to understand which primes exert structurally significant influence on the distribution of

Goldbach pairs within this window.

Empirical inspection and heuristic analysis indicate that the relevant residue structure is governed by a

family of rapidly growing effective moduli. The lower cutoff prime is first introduced
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pmin (n) :=
3, 3 ∤ n,
5, 3 ∣ n.

This definition reflects a peculiarity of the Goldbach configuration: when  3 ∤ n, exactly one of n − m  or 

n + m  is divisible by 3  for every odd m. In that case, the prime 3 acts as a fixed sieving prime across the

entire window and does not contribute to local variation. Only when  3 ∣ n  does the prime  3  participate

nontrivially in the local residue structure, necessitating its inclusion among the small primes. This

behavior is unique to Goldbach-type configurations and motivates the definition of pmin (n).

For each odd prime  p, recall from Definition  5 that the effective local modulus attached to the even

integer 2n is

Qp(n) := ∏
q∈Peff (n )

q≤p

(q − 1),

where  pmin (n) ∈ {3, 5}  is chosen according to the condition  3 ∣ n. Thus Qp(n)  measures the size of the

residue–class orbit induced by all odd primes q < p, with each factor (q − 1) reflecting the effective sieving

density at modulus q.

In contrast to the raw primorial  ∏q< pq  suggested by a naive application of the Chinese Remainder

Theorem, the use of  (q − 1)  aligns with the Hardy–Littlewood singular–series geometry: for Goldbach–

type problems, each prime contributes according to its admissible residue classes rather than its full

modulus.

The rapid growth of Qp(n) induces a natural and empirically accurate cutoff criterion for the influence of a

prime p on a Goldbach window. In writing

Qp(n) ≤ L ⟺ Qp(n) ≤ L := √2M,

it is shown that primes satisfying this condition exert coherent local influence on the window 

m ∈ Ipar(n, M). Primes beyond this threshold affect the count only through smooth, aggregate fluctuations

and are therefore absorbed into the medium–prime tail THL(2n; L) in the remainder decomposition.

This construction yields a Goldbach–specific realization of the general scale separation framework

developed in Section  3. The effective moduli Qp(n)  determine the appropriate small–prime cutoff P0(L),

and hence the scale function β(p), in a manner consistent with both the Hardy–Littlewood prediction and

the observed geometry of Goldbach deviations.

{
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4.4. The Small–Prime Factors HHL(2n; L) and HHL
2 (2n; L)

Only a few small primes appear in the effective modulus Qp(n), but these primes impose the dominant,

non–averaging residue–class constraints on the Goldbach window. It is therefore natural to expect the

finite–scale factors HHL and HHL
2  to mirror the respective roles of the prime–pair constant C2 and the local

correction factor S in the Hardy–Littlewood formulation.

The combined small–prime contribution HHL(2n; L)HHL
2 (2n; L) is given by the finite product

HHL(2n; L)HHL
2 (2n; L) := ∏

p∈Peff (n )

Qp (n ) ≤L

h(p; n)h2(p; n),

where, in the Goldbach setting, the local factor satisfies

h(p; n)h2(p; n) =
p − 2, if n lies in an admissible residue class modulo p,
p − 1, if p ∣ n.

This decomposition motivates separating the residue–averaged and configuration–dependent

components. The global small–prime factor is defined as

HHL(2n; L) := ∏
p∈Peff (n )

Qp (n ) ≤L

(p − 2),

and the local correction factor as

HHL
2 (2n; L) := ∏

p∈Peff (n )

p∣n
Qp (n ) ≤L

p − 1
p − 2

.

The latter quantity is the finite–scale analogue of the classical Hardy–Littlewood semiprime correction.

Therefore the notation S is extended to the cutoff scale L by setting

S(2n; L) := S
Q

head(2n; L) :=HHL
2 (2n; L).

Likewise, S∁head(2n; L) uses the condition p ∤ n, while S ∙
head(2n; L) removes the divisibility restriction.

Both HHL(2n; L) and SQ

head(2n; L) are finite Euler products. Indeed, the cutoff condition Qp(n) ≤ L is satisfied

only by the first few primes, since Qp(n)  grows super–factorially with  p. As a result, the cutoff index

increases only when L  grows by several orders of magnitude. In this context, rapid convergence is not

meaningful: the contribution of the small–prime factors is determined entirely by very small primes.

Consequently, HHL(2n; L) and SQ

head(2n; L) are piecewise constant functions of L, changing only at isolated

“phase transition” points where a new prime p enters the small–prime range. Between these transitions,

{
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the small–prime contribution is fixed, and the variation in the remainder geometry is driven almost

entirely by the tail factor THL(2n; L).

At this point it is worth noting the following relationship,

HHL(2n; L)HHL
2 (2n; L) = HHL(2n; L)SQ

head(2n; L).

=
HHL(2n; L)SQ

head(2n; L)SQ ,∁
head(2n; L)

S
Q ,∁(2n; L)

,

=
HHL(2n; L)SQ , ∙

head(2n; L)

S
Q ,∁
head(2n; L)

,

= ∏
p∈Peff (n )

Qp (n ) ≤L

p − 2 ∏
p∈Peff (n )

p∣n
Qp (n ) ≤L

p − 1
p − 2

/S
Q ,∁
head(2n; L).

= ∏
p∈Peff (n )
Qp (n ) ≤L

p − 1 /S
Q ,∁
head(2n; L).

This leads to more natural notation for header terms,

HHL(2n; L)HHL
2 (2n; L) =

Q(2n; L)

S
Q ,∁
head(2n; L)

4.5. The Medium–Prime Tail THL(2n; L)

For the Goldbach specialization, the medium primes are those with Qp(n) ≤ L. Their contribution to the

remainder is encoded in the tail factor

THL(2n; L) := ∏
p∈Peff (n )
Qp (n ) ≤L

t(p; n)L /Qp ( n ) ,

where Qp(n) is the effective local modulus from Definition 5. In the HL–A Goldbach setting the PCGH tail

multiplier is

t(p; n) = p − 2,

reflecting the loss of two residue classes modulo p for admissible Goldbach pairs.

In the abstract PCGH geometry the tail is re-expressed as an exponential curvature term T(L) = (ΩΘ(L))L.

For the HL–A setting it is convenient to separate a single global constant and a finite renormalization

( )( )
( )
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factor that depends on 2n and the cutoff L.

Fix the base prime qmin = 5 and recall the auxiliary moduli Q ( 5 )
p   from Definition 5. The prime curvature

constant by the convergent Euler product is defined as

Ωprime := ∏
p∈P
p≥ 5

(p − 2)1 /Q ( 5 )
p .

This constant depends only on the Goldbach prime–pair geometry and is independent of n and M.

For each even integer  2n  and Euler–cap admissible window size M, the renormalized curvature factor is

defined as

Ω̂prime(2n; L) := Ωκ ( n )
prime ∏

p∈Peff (n )
Qp (n ) ≤L

(p − 2) − 1 /Qp ( n ) ,

where  κ(n) ∈ {
1

2 , 1}  is a bounded exponent accounting for the choice  pmin (n) ∈ {3, 5}  in Definition  5.

When 3 ∤ n one has pmin (n) = 5 and κ(n) = 1; when 3 ∣ n the extra contribution from the prime 3 is absorbed

into the exponent κ(n) =
1

2 . The precise value of κ(n) is not important for the bounds that follow; only that

it is uniformly bounded and depends at most on the residue class of nmod3.

A straightforward rearrangement of the Euler products then shows that

THL(2n; L) = Ω̂prime(2n; L) L.

Thus all dependence on the medium primes above the cutoff is captured by a single scale–invariant

curvature constant Ωprime, together with a finite renormalization determined by the small primes below

the cutoff and the residue of n modulo 3. Between successive renormalization scales (when a new prime

enters the small–prime range) the map L ↦ Ω̂prime(2n; L) is constant, and all variation in the tail is carried

by the power L.

Remark (Role of the Renormalized Curvature Factor). The factor  Ω̂prime(2n; L)  is not introduced to create

additional growth in the remainder term, but to ensure that the small–prime block together with its tail

behaves smoothly as the cutoff moves.

Corollary  A.1 shows that, when a new prime  p
∗

  crosses the cutoff, its factor  (p
∗

− 2)  is gradually

transferred from the tail into the small–prime product: just before the transition it appears in the tail

with a fractional exponent L /Qp
∗

(n) ∈ (0, 1), and at the transition it is fully absorbed into HHL(2n; L). The

renormalization in Ω̂prime(2n; L) is chosen so that this transfer leaves the product

HHL(2n; L)THL(2n; L)

( )
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continuous as a function of L, even though HHL(2n; L) and THL(2n; L) separately have discrete jumps at the

renormalization scales.

As more primes are shifted from the tail into the small–prime base, the finite renormalization in  (114)

cancels an increasing portion of the infinite product defining the curvature constant. Along any sequence

of scales passing through successive cutoffs this drives

Ω̂prime(2n; L) ⟶ 1,

while logTHL(2n; L) retains exactly the leading L / loglogL behaviour from Lemma A.2, in the sense that

logTHL(2n; L)
L / loglogL

= 1 + o(1) (L → ∞),

for each fixed residue class of  nmod3. Thus  Ω̂prime(2n; L)  serves as a renormalizing bridge: it enforces

continuity of the curvature geometry for the HHL
⋅ THL block across phase transitions, while its deviation

from 1 remains uniformly bounded and asymptotically negligible at the scale of the overall remainder.

Remark (Alternate Notation). While the usage of  Ω̂prime(2n; L)L  allows for analytic analysis, the exponent

really just reminds one it is a curvature. A more abbreviated notation:

Ξ(2n; L) := Ω̂prime(2n; L)L.

eliminates the need to record the exponent separately.

4.6. The Residual Factor THL2 (2n; L)

Conceptually, the factor T2(2n; L) collects all residue–dependent corrections coming from primes p with

Qp(n) > L := √2M,

that is, primes whose effective moduli are so large that they do not create coherent structure inside the

Goldbach window m ∈ Ipar(n, M), but still distinguish cases such as p ∣ n versus p ∤ n.

Without loss of generality, and to make the dependence on 3 ∣ n transparent, consider first the case 3 ∣ n,

so that pmin (n) = 3 and

Qp(n) = Q ( 3 )
p := ∏

q∈P
3 ≤q<p

(q − 1),

with the complementary case 3 ∤ n handled with slight adjustment, the same applies by replacing Q ( 3 )
p

 with Q ( 5 )
p .
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At the level of a single prime, there is no reason to expect T2(2n; L) to be numerically close to 1: for the first

”very small” prime p
∗

 above the cutoff, the residue correction at that prime multiplies the tail by

p
∗

− 1

p
∗

− 2
when p

∗
∣ n.

For instance, if p
∗

= 11 then this local factor is 10/9 ≈ 1.11. Globally, however, the corresponding change

in logT2 is attenuated by the large modulus Qp
∗

(n), so the net effect on the tail at scale L is already small.

The key point is that this local correction is already included in the definition of the effective moduli. A

naive primorial geometry would use

Qprim
p := ∏

q∈Peff (n )
q<p

q,

so that the loss of one residue class at  p∗   would appear in the tail as an extra factor of order 

(p∗ − 1) / (p∗ − 2). Instead, Definition 5 replaces each q by (q − 1), so that in the 3 ∣ n case

Q
( 3 )
p = ∏

q∈P
3 ≤q<p

(q − 1).

This  (q − 1)–based scaling makes the main tail THL(2n; L) slightly larger than in the primorial model, by

essentially the same amount that T2(2n; L) contributes.

Moreover, T2(2n; L)  only contains residue adjustments for primes with Qp(n) > L, and these adjustments

always reduces the effective tail when p ∣ n. Since the choice of Qp(n) makes THL(2n; L) conservative even in

the semiprime–saturated case where every small prime divides n, the overall remainder bound

| ε(2n, L) | ≤ 2
Q(2n; L)

S
Q ,∁
head(2n; L)

∼

Ω(2n; L)
L

remains valid if one simply sets

THL2 (2n; L) ≡ 1

in the geometry. The corresponding statements for the case 3 ∤ n follow by the same argument with Q ( 5 )
p

 in place of Q ( 3 )
p .

In summary, T2 is not numerically 1 at the level of a single prime, but its effect is (i) diluted by the large

moduli  Qp(n)  and (ii) pre-compensated by the  (q − 1)–based definition of  Qp(n). For the purpose of

conservative upper bounds on  | ε(2n, L) | , it is therefore safe and conceptually cleaner to set THL2 (2n; L) = 1.

( )
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4.7. Specialized Remainder Decomposition

Collecting the small–prime factors HHL(2n; L), the semi–local correction  S
Q ,∁
head(2n; L), and the medium–

prime tail  THL(2n; L)  from the preceding subsections, and taking  THL2 (2n; L) ≡ 1  as justified above, the

Goldbach remainder envelope takes the form

RHL(2n; L)  := 2
Q(2n; L)

S
Q ,∁
head(2n; L)

Ω̂prime(2n; L) L L := √2M,

= 2
Q(2n; L)Ξ(2n; L)

S
Q ,∁
head(2n; L)

Ξ(2n; L) := Ω̂prime(2n; L) L.

where Ω̂prime(2n; L) is the renormalized curvature factor defined in (114), built from the universal constant 

Ωprime  of  (113). The factor  2  reflects the standard convention of counting ordered Goldbach pairs 

(n − m, n + m); for unordered pairs this factor is omitted.

The expression (127) will serve as the exact geometric remainder envelope in the Goldbach specialization

of the Prime Curvature framework. Its conjectural role is stated explicitly in the next section.

Remark (Primorial vs. (q − 1) scaling). It is instructive to contrast the (q − 1)–based moduli Qp(n) with the

more naive ”primorial” choice  ∏3 < q< pq. In a primorial model one would retain an explicit residual tail

factor T2  to account for residue corrections at primes just above the cutoff. The resulting bound can be

tuned to match extremal deviations, but it is less well behaved away from those spikes.

By working instead with the  (q − 1)–scaled moduli  Qp(n)  and absorbing the corresponding cost into 

THL(2n; L), the residual factor  T2  becomes superfluous: its effect is already accounted for in the

conservative choice of tail exponent, and the simplified envelope  RHL(2n; L)  still captures the correct 

L / loglogL scale from Lemma A.2. In this sense the (q − 1) scaling trades a small loss of extremal sharpness

for a gain in uniform coverage, which is precisely what is needed for a remainder geometry intended to

control ε(2n; L) pointwise rather than only at its extremes.

4.8. Prime Curvature Geometry Conjecture For Goldbach

We now state the specialization of the general curvature framework to the Goldbach configuration. The

full conjectures are expressed using the exact remainder functional  RHL(2n; L)  derived in this section;

bounding envelope forms, when used, serve only as analytic tools and are not part of the statement.

Conjecture 1 (Prime Curvature Geometry Conjecture for Goldbach (PCGC–Goldbach)).

( )

( )
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For every even integer 2n ≥ 4 and every admissible window size M within the Euler cap, the Goldbach pair

counts satisfy

G(2n; M) − G̊HL(2n; M) ≤ RHL(2n; L), L := √2M,

where the remainder envelope RHL(2n; L) is defined in (127).

Remark (Strength Relative to HL–Windowed). As discussed in the entrance criteria for PCGH, the

curvature framework developed in this paper is formulated under a pointwise asymptotic assumption on

the main term. In the Goldbach setting, this takes the form

G(2n; M) = G̊HL(2n; M)(1 + o(1)),

which is obtained via control of the normalized remainder RHL(2n; M) / G̊HL(2n; M).

This assertion is strictly stronger than the classical Hardy–Littlewood  A conjecture, which governs

averaged behaviour and does not claim pointwise convergence of individual Goldbach counts.

Accordingly, it is logically possible for Hardy–Littlewood A to hold while PCGC–Goldbach fails.

The role of PCGH is therefore not to justify the Hardy–Littlewood main term, but to isolate the additional

geometric regularity required for pointwise control of deviations once such a main term is assumed.

Remark (On Power–Envelope Variants). One might consider a family of envelope inequalities of the form

G(2n; M)A − G̊HL(2n; M)A ≤ RHL(2n; L)A, L := √2M, A ≥ 1.

For A ≠ 1, this implicitly imposes additional shape constraints on the deviation G − G̊HL  (e.g.  penalizing

large excursions differently) and, absent an independent structural justification, effectively introduces a

tunable parameter into the conjecture. Accordingly, PCGC–Goldbach is stated with the canonical choice 

A = 1. Nevertheless, it is informative to test  (131) empirically for other values of  A, since such

measurements may suggest a sharper (falsifiable) refinement if a natural value of A  emerges from the

data.

Remark (From Pair Counts to Densities). The quantities G(2n; M) and G̊HL(2n; M) are best interpreted not as

fundamental combinatorial objects, but as finite-window measurements of an underlying Goldbach pair

density. From this perspective, the role of HL–Windowed is not to assert the existence of individual pairs,

but to provide an asymptotic model for this density.

The conjectures formulated in this paper therefore concern the boundedness and convergence of these

density measurements, rather than pointwise pair counts. This places the Goldbach problem in direct

| |

| |
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analogy with the theory of singular series, where convergence and normalization, rather than exact

enumeration, are the primary analytic objects.

Remark (Short–Interval Obstructions). Even with the use of a windowed semilocal correction term 

S(2n; M), the Prime Curvature Geometry framework does not preclude the existence of isolated short

intervals in which all admissible Goldbach pairs are cancelled by divisibility constraints arising from

medium or large primes that do not divide 2n. Such primes do not contribute to S(2n; M), and therefore

their effect is invisible to semilocal corrections tied solely to the target value.

These obstructions do not represent a failure of the conjecture. Any cancellation pattern constructed

entirely from medium and large primes can be extended only over a finite range, on the order of the

number of terms of a primorial, before exhausting the supply of primes capable of aligning obstructively

without contributing to the correction structure. Consequently, such phenomena cannot persist once the

interval reaches a scale at which asymptotic windowed weights accurately reflect prime density, at which

point cancellation effects necessarily re-enter the analytic correction terms.

This observation underscores that PCGC--Goldbach controls averaged behaviour and sufficiently large

windows, but should not be interpreted as predicting a minimal short--interval scale for convergence. In

particular, intervals of size M = nα(n)  with  α(n) = O(
logk n

n )  may exhibit out of bounds predictions unless

appropriate window--dependent weighting is employed.

4.9. Bounding Envelope (Derived)

The Goldbach deviation satisfies the abstract bound

| ε(2n; L) | ≤ RHL(2n; L),

where RHL(2n; L) is the exact geometric remainder envelope defined in (127).

For analytic comparison and for identifying admissible growth regimes, it is convenient to work with an

explicit bounding envelope derived from Lemma A.2. With L = Q(2n; L), define

R̂HL(2n; L) :=
c(2n; L)L

S
Q ,∁
head(2n; L)

,

where the correction factor c(2n; L) is given by the explicit product formula (A.25).

By Lemma A.4, the factor c(2n; L) satisfies

c(2n; L) ≥ 2, c(2n; L) ↘ 2 (L → ∞),
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uniformly in n. In particular, c(2n; L) decreases monotonically as the effective modulus cutoff increases,

reflecting the progressive absorption of medium–prime curvature into the exact envelope.

Combining this with the definition of  RHL  in  (127), Lemma  A.2 implies that the bounding envelope 

R̂HL(2n; L) is conservative and asymptotically sharp:

RHL(2n; L) ≤ R̂HL(2n; L) = RHL(2n; L) 1 + oL(1) ,

uniformly over the admissible parameter ranges.

Remark (Logical Status of Derived Bounds). Any theorem or lemma derived conditionally from PCGC–

Goldbach may be viewed as a weaker conjecture obtained by relaxing the exact geometric envelope RHL to

a dominating bound. Such weakened statements retain substantial analytic content; sufficient for growth

estimates, admissible window analysis, and comparison arguments; while discarding detailed geometric

assumptions that are not essential for these purposes.

The bounding envelope  R̂HL  is not part of the conjectural framework itself. It is a derived analytic tool

used for comparison arguments, growth estimates, and the identification of admissible window scales.

No claim is made here regarding how frequently the true deviation approaches saturation of this bound.

In summary, PCGC–Goldbach isolates a single geometric envelope governing the deviation of windowed

Goldbach counts from the Hardy–Littlewood prediction. The remainder is controlled by:

explicit small–prime structure through the effective moduli Qp(n);

finite divisibility corrections through SQ ,∁
head(2n; L); and

a renormalized exponential curvature factor associated with the medium–prime tail.

The conjecture itself is stated entirely in terms of the exact envelope RHL; the bounding envelope  R̂HL

 serves solely as an analytic surrogate.

5. Conclusion

This paper develops a finite–scale geometric framework for analyzing remainder terms in additive prime

problems and formulates a precise curvature bound for Goldbach representations. The central structural

feature is the separation of arithmetic effects into three distinct components: a finite small–prime factor

governed by effective moduli, a divisibility correction capturing genuine discontinuities in the central

parameter n, and a renormalized medium–prime tail that controls scale–dependent fluctuations.

( )
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In the Goldbach setting, the effective moduli Qp(n)  induce a sequence of scale thresholds at which new

primes enter the small–prime range. Each such transition produces a discrete change in the finite Euler

product, while the associated tail factor interpolates smoothly across the cutoff. This mechanism

explains how piecewise–constant local structure can coexist with globally stable remainder envelopes

without recourse to global averaging or asymptotic smoothing.

PCGC–Goldbach asserts that the deviation from the Hardy–Littlewood prediction is uniformly bounded

by an explicit geometric envelope constructed from these components. The conjecture is stated in its full,

non–proxy form; simplified bounding envelope expressions are introduced to simplify calculations and

to elucidate growth rates and threshold behaviour and play no role in the formulation of the bound itself.

A key feature of the framework is that divisibility–driven discontinuities are retained explicitly, rather

than being absorbed into error terms. This preserves honesty at finite scales and avoids spurious

smoothness in regimes where arithmetic structure is dominant. At the same time, scale–induced

discontinuities are neutralized by the renormalized tail, yielding a stable geometric description across all

admissible window sizes.

The curvature formulation presented here provides a clean structural alternative to classical sieve–based

remainder analysis. It isolates the precise sources of non–averaging behaviour and organizes them into a

scale–consistent bound. Subsequent work will address numerical calibration of the curvature envelope

and extensions to related additive problems, including mixed prime–semiprime configurations, where

multiple prime–like sets interact at finite scales.

5.1. Consequences and Outlook

The curvature framework developed here is intentionally local: it separates the Goldbach geometry into a

small–prime block, a finite divisibility correction, and a renormalized medium–prime tail, with an

explicit remainder functional RHL(2n; L). PCGC–Goldbach asserts that this remainder envelope is globally

valid for all admissible windows M and all 2n ≥ 4.

In subsequent work on reductions, this geometric envelope will be used in a attempt to translate PCGC–

Goldbach into more classical consequences. Under the conjecture one recovers, for example:

asymptotic agreement between measured Goldbach counts and the Hardy--Littlewood prediction

across a wide range of logarithmic window scales where asymptotic weighting applies;
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existence of prime pairs in intervals of length  M = nα(n)  throughout regimes in which windowed

asymptotic weights accurately reflect prime density, including scales where  α(n)  approaches

polylogarithmic order;

and a pathway toward strengthening short--interval Goldbach results by improving the curvature

threshold at which such windowed asymptotic control becomes effective.

If successful, these reductions will show that PCGC--Goldbach is not merely a

reformulation of circle--method heuristics, but a genuinely geometric hypothesis

whose validity propagates through a broad class of Goldbach--type statements

once the appropriate analytic regime is reached.

Beyond Goldbach, the same renormalization mechanism applies to other additive problems whose

remainder terms are governed by Hardy–Littlewood singular series. PCGH indicates that, once a

curvature envelope is established for a given configuration, one may systematically transfer it into

asymptotic predictions and short–interval existence results for the corresponding prime patterns.

Developing these extensions, and sharpening the curvature thresholds in the Goldbach case, is delegated

for future papers.

5.2. Conceptual Motivation

The geometric organization adopted in this paper was shaped in part by structural ideas encountered

outside analytic number theory. In particular, several mechanisms that arise naturally in energy–based

and hierarchical learning frameworks provided useful conceptual guidance.

In energy–based models  [10]  by LeCun et al., the introduction of new degrees of freedom reshapes the

effective energy landscape, requiring a global rebalancing of previously stable configurations.

Analogously, in the present framework, the entry of a new prime into the small–prime range induces a

discrete renormalization step, while the associated tail factor compensates to preserve global stability.

Related phenomena appear in large–scale optimization methods  [11][12]  by Bottou et al., where local

updates propagate globally only after crossing scale–dependent thresholds. Hierarchical representations

in document and graph processing [13] by Haffner and LeCun exhibit similar behavior: discrete structural

augmentations produce phase–like transitions in global representations.

These parallels are not intended as formal analogies or sources of mathematical justification. Rather,

they reflect a shared structural pattern, namely, that global behaviour can remain stable despite discrete,
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scale–triggered updates to the underlying structure. Recognizing this pattern informed the separation of

small–prime factors, divisibility effects, and curvature tails employed in this paper.

Appendix A. Additional Lemmas

A.1. Cutoff Interpolation via Geometric Tail

Lemma A.1 (Cutoff Interpolation Via Geometric Tail).

Let β(p) be a strictly increasing scale function on the primes. Let h(p) > 0 and t(p) > 0 be local multiplicative

factors.

Define the cutoff index P0(L) by

p ≤ P0(L) ⟺ β(p) ≤ L,

and define

H(L) := ∏
p≤P0 (L )

h(p), T(L) := ∏
β ( p ) >L

t(p)L / β ( p ) .

Let  p1  be the smallest prime with  β(p1) > L. Then as L  increases through the cutoff value L = β(p1), the

product H(L)T(L) undergoes a multiplicative jump given by

H(β(p1))T(β(p1))

H(β(p1) − )T(β(p1) − )
=

h(p1)

t(p1)
.

Proof. For L < β(p1), the prime p1 belongs to the tail, so

T(L) = t(p1)L / β ( p1 ) ∏
p> p1

t(p)L / β ( p ) .

Since 0 < L /β(p1) < 1, this contribution varies continuously in L.

At the cutoff  L = β(p1), the exponent of  t(p1)  reaches  1, and the prime  p1  moves from the tail into the

header. Thus

T(β(p1)) = ∏
p> p1

t(p)β ( p1 ) / β ( p ) , H(β(p1)) = h(p1) ∏
p< p1

h(p).

Immediately before the cutoff,

H(β(p1) − ) = ∏
p< p1

h(p), T(β(p1) − ) = t(p1) ∏
p> p1

t(p)β ( p1 ) / β ( p ) .

Taking the ratio gives
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H(β(p1))T(β(p1))

H(β(p1) − )T(β(p1) − )
=

h(p1)

t(p1)
,

as claimed. ◻

Corollary A.1 (Goldbach Cutoff Interpolation).

In the Goldbach setting, let the scale function be

β(p) :=Qp(n),

and take the local factors

h(p) = t(p) := p − 2.

Then the geometric tail is given by

THL(2n; L) := ∏
p∈Peff (n )

Qp (n ) >L

(p − 2)L /Qp ( n ) .

Across each cutoff transition  L = Qp1
(n), the factor  (p1 − 2)  passes from the tail into the small–prime

product exactly as its tail exponent reaches  1. Since  h(p) = t(p), the cutoff interpolation introduces no

discontinuity: the combined product HHL(2n; L)THL(2n; L) is continuous across all prime cutoffs.

A.2. Overall Bounding Envelope

Lemma A.2 (Overall Bounding Envelope).

Let  n ∈ N  and let  M ≥ 1  be Euler–cap admissible, and set  L := √2M. Define the Goldbach remainder

bounding envelope

R̂HL(2n; L) :=
c(2n; L)L

S
Q ,∁
head(2n; L)

,

where c(2n; L)  is defined by (A.25). Then  R̂HL(2n; L) ≥ RHL(2n; L)  for all admissible L. Moreover,  R̂HL cannot

serve as an asymptotic proxy for  RHL: there is no function  η(2n; L) → 0  as  L → ∞  (along Euler–cap

admissible scales) such that

RHL(2n; L) = R̂HL(2n; L)(1 + η(2n; L))

for all sufficiently large admissible L. Equivalently, RHL(2n; L) / R̂HL(2n; L) → ⧸1.

Proof. Fix an admissible L, and define the cutoff endpoints of its cell by

L0 := max {Qp(n) :Qp(n) ≤ L}, L1 := min {Qp(n) :Qp(n) > L},
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and set  ci := c(2n; Li)  for  i ∈ {0, 1}. Then L ∈ (L0, L1], and on this cutoff cell the quantities L0, L1, c0, c1  are

fixed.

By definition of R̂HL and the cutoff identities, then

RHL(2n; Li) = R̂HL(2n; Li) =
ciLi

S
Q ,∁
head(2n; Li)

, i ∈ {0, 1}.

By Corollary  A.1, the envelope admits a continuous interpolation between successive cutoffs, and

normalizing at L1 we may write

RHL(2n; L) =
c0L0

S
Q ,∁
head(2n; L)

c1L1

c0L0

L /L1
.

Dividing by R̂HL(2n; L) =
c0L

S
Q ,∁
head ( 2n ;L )

 gives

ρ(2n; L) :=
RHL(2n; L)

R̂HL(2n; L)
=

L0

L

c1L1

c0L0

L /L1
= γ − 1e ( γ− 1 )ω,

where

γ :=
L
L1
∈

L0

L1
, 1 , ω := log

c1L1

c0L0
> 0.

Differentiation yields

dρ
dγ

= γ − 2e ( γ− 1 )ω(−1 + γω),

so ρ has a unique stationary point at γ∗ := 1/ω, which is a minimum when γ∗ ∈ (
L0

L1
, 1). At this point,

ρmin = ρ(γ∗ ) = ωe1 −ω.

In particular, along any sequence of cutoff cells for which ω → ∞, we have ρmin → 0, hence there exists an

admissible sequence L
∗

→ ∞ (with L
∗

 chosen at the within-cell minimizer) such that

RHL(2n; L∗ )

R̂HL(2n; L
∗

)
= ρ(2n; L∗ ) ⟶ 0.

On the other hand, at the endpoint L = L1 we have ρ(2n; L1) = 1.

Now suppose for contradiction that there exists η(2n; L) → 0 such that RHL(2n; L) = R̂HL(2n; L)(1 + η(2n; L)) for

all sufficiently large admissible L. Then

( )

( )

( ] ( )
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ρ(2n; L) =
RHL(2n; L)

R̂HL(2n; L)
= 1 + η(2n; L) ⟶ 1,

as L → ∞, contradicting the admissible sequence L
∗

→ ∞ with ρ(2n; L
∗

) → 0. Therefore no such η exists,

and R̂HL is not an asymptotic proxy for RHL.

In particular, R̂HL provides a uniform upper envelope for the Goldbach remainder but does not capture its

pointwise asymptotic behaviour. ◻

Remark (Stress–Test Regimes for Scale–Only Envelopes). Lemma A.2 shows that the Goldbach remainder 

RHL(2n; L) cannot be captured, even asymptotically, by any envelope depending only on the scale L up to a

vanishing relative error. The obstruction is the intrinsic exponential interpolation of the remainder

within cutoff cells, which is not controlled by scale alone.

Consequently, the framework identifies admissible regimes in which any uniform O(L) or O(√2M)–type

bound must necessarily be either non–tight or overly conservative. These regimes provide natural stress

tests for scale–based remainder models.

A.3. Bounding Envelope Constant Per Envelope

Lemma A.3 (Bounding Envelope Constant Per Envelope).

Assume the analytic remainder bounding envelope is written in the form

R̂HL(2n; L) :=
c(2n; L)L

S
Q ,∁
head(2n; L)

,

where c(2n; L) is chosen so that

RHL(2n; L) ≤
c(2n; L)L

S
Q ,∁
head(2n; L)

for all admissible L ≥ pmin (n) − 1.

Fix n, and let p = p(L) be the cutoff prime determined by

Qp(n) ≤ L < Qp +(n),

where p +   denotes the next cutoff prime after p  in the cutoff order. (Equivalently, p  is the largest cutoff

prime with Qp(n) ≤ L.) Then the envelope constant is given explicitly by

c(2n; L) = c 2n; Qp(n) = 2 ∏
q∈Peff (n )

Qq (n ) >Qp (n )

(q − 2)Qp ( n ) /Qq ( n ) .

In particular, c(2n; L) is constant on each envelope interval [Qp(n), Qp +(n)).

( )
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Proof. Fix n. On a cutoff envelope interval [Qp(n), Qp +(n)), the index set {q :Qq(n) ≤ L} is unchanged, so the

envelope normalization used to define c(2n; L) is unchanged; hence c(2n; L) is constant on this interval and

equals its cutoff value c(2n; Qp(n)).

At the cutoff L = Qp(n), the exact remainder in the product form is expressed as

RHL(2n; Qp) = 2
Q(2n; L)

S
Q ,∁
head(2n; Qp)

Ξ(2n; Qp),

Using the envelope definition

c(2n; Qp) :=
RHL(2n; Qp)S

Q ,∁
head(2n; Qp)

Qp
,

then

c(2n; Qp) = 2QpS
Q ,∁
head(2n; Qp) ∏

q∈Peff (n )
q>p

(q − 2)Qp /Qq / S
Q ,∁
head(2n; Qp)Qp

Simplifying,

c(2n; Qp) = 2 ∏
q∈Peff (n )

q>p

(q − 2)Qp /Qq.

Since c(2n; L)  is constant on  [Qp, Qp +), this also gives c(2n; L) = c(2n; Qp)  for all L  in the envelope, proving

(A.25). ◻

A.4. Monotonic Envelope

Lemma A.4 (Monotonic Envelope Constant for the Remainder Bounding Envelope).

Assume the analytic remainder bounding envelope is written in the form

R̂HL(2n; L) :=
c(2n; L)L

S
Q ,∁
head(2n; L)

,

where c(2n; L) is chosen so that

RHL(2n; L) ≤
c(2n; L)L

S
Q ,∁
head(2n; L)

for all admissible L.

Then c(2n; L) is monotone nonincreasing in L:

c(2n; L + ΔL) ≤ c(2n; L) for all ΔL ≥ 0.

( ) ( )
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Moreover,

lim
L→ ∞

c(2n; L) = 2.

Proof. Fix n. Let the cutoff scales be

Qp0
< Qp1

< Qp2
< ⋯,

where  p0 < p1 < p2 < ⋯  are consecutive odd primes in the cutoff order, and  Qp  denotes the effective

modulus at prime p (with base prime pmin (n) ≥ 5).

Case 1: L and L + ΔL lie in the same cutoff envelope. If

L, L + ΔL ∈ [Qp0
, Qp1

),

then the set {p :Qp ≤ L}  is unchanged, hence the envelope normalization defining c(2n; L)  is unchanged.

Therefore

c(2n; L + ΔL) = c(2n; L).

At a cutoff scale  L = Qp(n), the envelope constant admits an explicit representation in terms of the

geometric tail. By Lemma A.3;

c(2n; Qp) = 2∏
q> p

(q − 2)Qp /Qq.

This expression is exact and characterizes the envelope constant associated with the cutoff primep.

Taking logarithms yields

logc(2n; Qp) = log2 + Qp∑
q> p

log(q − 2)
Qq

,

where the sum runs over the primes in the geometric tail. The superfactorial growth of  Qq  ensures

absolute convergence of the series and makes the dependence on the cutoff p explicit.

Let p0 < p1 be consecutive cutoff primes, and enumerate the tail primes as

p1 < p2 < p3 < ⋯, pi > p0.

Then subtracting (A.38) at p0 and p1 yields

f(2n; Qp0
) := logc(2n; Qp1

) − logc(2n; Qp0
)

  = Qp0

∞

∑
i= 1

(p1 − 1)log(pi+ 1 − 2) − (pi+ 1 − 1)log(pi − 2)

(pi+ 1 − 1)Qpi
.

All weights 
Qp0

( pi+ 1 − 1 )Qpi
 are strictly positive, so the sign of each summand is determined by
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gi := (p1 − 1)log(pi+ 1 − 2) − (pi+ 1 − 1)log(pi − 2).

Sign of gi. Since pmin (n) ≥ 3, we have pi ≥ 3 for all i ≥ 1. Define,

ϕ(x) :=
log(x − 2)
x − 1

.

If x = 3 then ϕ(x) = 0.

Otherwise, a direct derivative computation shows

ϕ′(x) =

x− 1

x− 2 − log(x − 2)

(x − 1)2 < 0 (x ≥ 7),

and

ϕ′(x) = 0 (x = 5),

so ϕ is strictly decreasing on [7, ∞). Hence, for all i ≥ 1,

log(pi+ 1 − 2)

pi+ 1 − 1
<

log(pi − 2)

pi − 1
⟺ (pi − 1)log(pi+ 1 − 2) < (pi+ 1 − 1)log(pi − 2).

Since p1 ≤ pi, we have p1 − 1 ≤ pi − 1, and therefore

(p1 − 1)log(pi+ 1 − 2) ≤ (pi − 1)log(pi+ 1 − 2) < (pi+ 1 − 1)log(pi − 2),

which implies gi < 0 for all i ≥ 1 where pi ≥ 7.

Thus every summand in (A.40) is strictly negative, and

f(2n; Qp0
) < 0, hence c(2n; Qp1

) < c(2n; Qp0
).

This proves strict decrease across each cutoff, and therefore monotone nonincrease for all ΔL ≥ 0.

Limit as L → ∞. From (A.25) and the superfactorial growth of Qq, we have Qp /Qq → 0 rapidly as q → ∞, so

each tail factor satisfies

lim
q→ ∞

(q − 2)Qp /Qq = 1.

Hence the infinite tail product converges to 1, and

lim
p→ ∞

c(2n; Qp) = 2.

Since c(2n; L) is constant within each cutoff envelope, this implies

lim
L→ ∞

c(2n; L) = 2.

◻
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