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the aim of METAGENE-1 is to capture the full distribution of genomic information present within this

wastewater, to aid in tasks relevant to pandemic monitoring and pathogen detection. We carry out

byte-pair encoding (BPE) tokenization on our dataset, tailored for metagenomic sequences, and then

pretrain our model. In this paper, we �rst detail the pretraining dataset, tokenization strategy, and

model architecture, highlighting the considerations and design choices that enable the effective

modeling of metagenomic data. We then show results of pretraining this model on our metagenomic

dataset, providing details about our losses, system metrics, and training stability over the course of

pretraining. Finally, we demonstrate the performance of METAGENE-1, which achieves state-of-the-

art results on a set of genomic benchmarks and new evaluations focused on human-pathogen
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pandemic monitoring, biosurveillance, and early detection of emerging health threats.
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1. Introduction

The development of large language models trained on internet-scale text datasets has revolutionized

natural language processing, �nding increasingly broad applications across numerous domains. In recent

years, this modeling technology has been adapted to genomic sequences—e.g., DNA or RNA strands that

carry genetic information—leveraging the wealth of data generated by advances in genome sequencing

over the past few decades[1][2][3][4][5]. These large genomic models aim to harness modeling power for

tasks such as genome classi�cation, phenotype prediction, gene network inference, human genome

analysis, and biological design for medical and therapeutic applications. To date, most of these models

have been trained on human genomes or on curated collections of genomes from selected species[6][7].

Parallel to these developments, there has been signi�cant work on large-scale health monitoring driven

largely by widespread public health crises, such as the COVID-19 pandemic[8][9]. One notable example of

this is the genomic monitoring of wastewater, which involves sequencing material from samples of

municipal sewage[10][11]. Wastewater contains a complex mix of organic materials generated from human

activities and, when collected across multiple time points and locations, can reveal valuable information

about the microbiome at a societal scale[12][13]. Consequently, there have been various efforts to collect

wastewater and sequence metagenomic information, i.e., information about the diverse collections of

organisms and organic material present in these samples[14][15][16]. A key motivation for much of this

work is the potential to track the prevalence of human pathogens, effectively creating an early warning

system for pandemics. Multiple ongoing initiatives are collecting vast amounts of metagenomic

information to monitor genomic trends, estimate the prevalence of sequences of interest, and detect new

or emerging potential pathogens[11][17][13].

These wastewater metagenomic sequencing efforts present two signi�cant opportunities. First, they

provide a novel and rich source of metagenomic data, rivaling the scale of datasets used to pretrain large

language models (i.e., trillions of nucleic acid base pairs), encompassing highly diverse genomic

information across the broad human-adjacent microbiome[18][19]. This metagenomic data often exhibits

unique distributional characteristics in terms of genomic sequence length, heterogeneity, and

composition/type of organisms, distinguishing it from previous genome modeling datasets. Second, this

data opens up a new domain area for downstream applications of foundation models trained on this

information. Such models could be �ne-tuned for various tasks crucial to pathogen monitoring,

including tracking frequencies, trends, and growth of different sequence types; representation learning
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and embedding for sequenced metagenomic reads; sequence alignment, error-correction, and in�lling;

and human pathogen detection and taxonomic classi�cation[11].

In this paper, we take an initial step toward developing a metagenomic foundation model by pretraining

a model on a large, new dataset sequenced from wastewater. This metagenomic dataset, which has never

before been used for model training, provides a unique resource for modeling the broad distribution of

sequences present in the human microbiome. Speci�cally, we pretrain a 7-billion-parameter

autoregressive transformer model, which we refer to as METAGENE-1, on a diverse corpus of DNA and

RNA sequences comprising over 1.5 trillion base pairs sourced from wastewater samples, which were

processed and sequenced using deep metagenomic (next-generation) sequencing[20][11]. This dataset,

comprising short uncurated sequences from tens of thousands of species, allows METAGENE-1 to excel at

representing the complexities of microbial and viral diversity, providing unique advantages in

biosurveillance applications. METAGENE-1 adopts a decoder-style language model architecture, similar to

those found in the GPT and Llama families of models[21][22], which we describe and motivate in more

detail in Sec. 3.3. This choice allows us to take advantage of the broad (and rapidly growing) ecosystem of

techniques and infrastructure focused on this class of models. An overview of METAGENE-1 data, model

architecture, and applications is shown in Figure 1.

Figure 1. Overview of METAGENE-1 and applications. Wastewater samples are collected and undergo deep

metagenomic sequencing to generate DNA and RNA sequences totaling over 1.5 trillion base pairs. These

sequences are tokenized using byte-pair encoding (BPE) to create the pretraining dataset. The data is used to

train METAGENE-1, a 7B-parameter transformer model that enables a wide range of metagenomic analysis

and monitoring applications.

In the following sections, we �rst describe our metagenomic dataset and detail the tokenization strategy

used to process the sequence data. We then provide comprehensive details of the METAGENE-1 model

architecture and of the pretraining process on our dataset. Subsequently, we develop, and demonstrate
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our model’s performance, on pathogen detection and metagenomic embedding benchmarks.

METAGENE-1 achieves state-of-the-art performance on these and other standard genomic evaluation

tasks—designed to evaluate models trained on human and animal genomes—highlighting its

generalization capabilities. As an initial demonstration of the downstream application potential, we

construct an anomaly detection scenario, and show that METAGENE-1 performs well on this out-of-

distribution detection task. We hope our paper serves as an initial step toward a foundation model for

metagenomic data, which in the future can be �ne-tuned to aid in public health applications such as

pathogen monitoring and early detection of emerging health threats.

2. Related Work

Language models trained on genomic sequences have been an area of active research, with many aiming

to train on long DNA sequences from speci�c species, gained from publicly available sources. For

instance, models such as DNABERT[1], HyenaDNA[2], GROVER[23], and Caduceus[24]  are examples

primarily trained on long sequences of human DNA. These models typically use encoder-based

architectures or decoder-only non-transformer architectures, aiming to handle long sequence lengths.

For tokenization, these initial human-focused genome models have commonly employed either  -mer

tokenization (with �xed values like  =3) or single-nucleobase tokenization.

Recently, the scope of genomic models has expanded to include multi-species datasets, with models like

DNABERT-2[4], NucleotideTransformer[3], GENA-LM[5], SpliceBERT[25], and DNAGPT[26] being trained on

a mix of human genome data and manually curated sets from other species (for example, mixes of

species from a taxonomic class, such as collections of mammals). Some of these models have also

explored alternative tokenization strategies, such as byte-pair encoding, learned for their particular

genomic distributions[4][5][23][27].

Our metagenomic foundation model differs from these prior works in a few important ways. First, our

pretraining dataset comprises shorter metagenomic sequences (arising from metagenomic next-

generation/massively-parallel sequencing methods) performed on samples of human wastewater

collected across many locations; these samples contain potentially tens-of-thousands of species across a

wide range of taxonomic ranks, and capture a representative distribution of the full human-adjacent

microbiome. This includes both recognized species and many unknown or unclassi�ed sequences (see

Sec. 3.1). Another distinction is the model architecture: we use a decoder-only transformer model, akin to

the Llama and GPT model families, which we further motivate in Sec. 3.3.

k

k
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3. METAGENE-1: Metagenomic Foundation Model

We pretrain a 7-billion-parameter autoregressive transformer language model, referred to as

METAGENE-1, on a novel corpus of diverse metagenomic DNA and RNA sequences comprising over 1.5

trillion base pairs. This dataset is sourced from a diverse set of human wastewater samples, which were

processed and sequenced using deep metagenomic (next-generation) sequencing methods. Before

training, we carry out byte-pair encoding (BPE) tokenization on our dataset, tailored for these nucleic

acid sequences. The following sections provide detailed descriptions of the pretraining dataset,

tokenization strategy, and model architecture, highlighting the considerations and design choices that

enable the effective modeling of metagenomic data.

Figure 2. Overview of the metagenomic data collection and sequencing pipeline for model pretraining. The

process begins with the collection of wastewater (left), which contains genomic fragments from a diverse

collection (e.g., tens of thousands) of constituent organisms (center). These samples are processed via high-

throughput metagenomic sequencing to produce millions of paired-end reads (right), each consisting of

hundreds of base pairs. The complete dataset comprises over 1.5 trillion base pairs of metagenomic sequences

used for model pretraining.

3.1. Metagenomic Dataset

One of the goals of our metagenomic foundation model is to train on a genomic dataset that captures the

immense diversity of the microbiome surrounding humans. To achieve this, we leverage a newly

collected metagenomic dataset—never before used in model training—comprising material from a broad

range of organisms, including bacteria, viruses, cells from human and other eukaryotes, and a diverse

array of other species, which was collected via metagenomic sequencing of human wastewater (i.e.,

municipal in�uent). This approach contrasts with prior genomic sequence models, which often focus on

curated collections of speci�c (known) species or genomic types. By incorporating DNA and RNA
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sequences collected from wastewater, we aim to model the complexity of microbial and viral interactions

in human-associated environments.

The dataset was generated using deep metagenomic sequencing, speci�cally leveraging Illumina

sequencing technology, commonly referred to as next-generation sequencing (NGS) or high-throughput

sequencing, in which billions of nucleic acid fragments are simultaneously sequenced in a massively

parallel manner. This method produces paired-end reads, where each read consists of two contiguous

sequences of base pairs from opposite ends of a DNA or RNA fragment1. Paired-end reads can offer

advantages in accuracy and alignment over single-end reads, particularly for complex metagenomic

samples. Notably, the nature of metagenomic NGS results in much shorter reads compared to datasets

used in many previous large genomic models. In our dataset, most reads range from 100 to 300 base pairs

in length (after adapter removal and quality trimming), which introduces unique challenges for

modeling, but also provides a rich diversity and large set of biological information. We illustrate this

metagenomic data collection and sequencing pipeline in Figure 2.

This metagenomic sequence corpus was collected over a six-month period by the Nucleic Acid

Observatory (NAO)  [11]  in collaboration with partners (Marc Johnson and Clayton Rushford at the

University of Missouri2 and Jason Rothman in Katrine Whiteson’s lab3 at the University of California,

Irvine). Samples of wastewater were sourced from multiple locations across the United States, in

particular from cities in California and Missouri. After wastewater samples were collected, the material

was �ltered and nucleic acids extracted[28][29]  before undergoing metagenomic sequencing. In full, the

metagenomic dataset for pretraining comprises over 1.5 trillion base pairs. Our hope is that this careful

sampling and processing approach yields a clean dataset for sequence modeling, which captures a wide

array of genomic content, offering a strong foundation for the training of METAGENE-1.

We show an estimate of the metagenomic composition of this pretraining dataset in Figure 3, using the

Kraken 2[30] sequence classi�cation software (see Figure 7 for a more-detailed view). At the highest level,

this visualization shows that 55% of reads are hits for bacteria, 2% of reads are eukaryotes

(predominantly Homo sapiens), 2% of reads are viruses, and 41% of reads have no hits and are unclassi�ed

or of unknown origin.
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Figure 3. Metagenomic composition of the METAGENE-1 pretraining dataset, estimated via

Kraken 2[30] sequence classi�cation, and visualized via Krona[31]. See Figure 7 for a more-detailed view.

3.2. Tokenization

In developing our metagenomic foundation model, we sought a tokenization strategy that would enable

high-accuracy sequence modeling, accommodate novel nucleic acid sequences, and align with best

practices in modern large language models. We opted for byte-pair encoding (BPE) as our tokenization
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method, as it satis�es these criteria, and drawing inspiration from its successful application in recent

genomic models.

BPE offers several advantages for our model. Unlike �xed-length  -mer tokenization, it allows for

�exible token sizes, which is bene�cial for capturing varying levels of genomic information, and can

allow the model to adapt to different sequence patterns and structures. Moreover, BPE’s ability to

tokenize novel sequences is particularly valuable for modeling diverse metagenomic sequences

containing unknown, varied, and possibly novel organisms. The method also has the potential to capture

semantic information within a vocabulary of tokens, which can lead to more nuanced representations of

genomic data.

To implement this strategy, we �rst trained a BPE tokenizer on a uniformly-at-random sampled subset of

our pretraining dataset, comprising 2 billion base pairs. After analyzing the distribution of token sizes

and considering training ef�ciency, we settled on a vocabulary size of 1,024 unique tokens. This

vocabulary size strikes a balance between capturing suf�cient genomic complexity, maintaining

suf�ciently long sequence lengths (based on the distribution of token sizes), and allowing for

computational ef�ciency. Following this tokenizer training, we applied this BPE tokenizer to our entire

pretraining dataset, effectively preparing it for model ingestion and training, yielding a set of  370

billion tokens ( 1.69 trillion base pairs) for pretraining. We give a table showing full tokenizer details,

including a list of all special tokens, in Appendix B.

3.3. METAGENE-1 Architecture

For our metagenomic foundation model, we pretrain a 7-billion-parameter autoregressive language

model, using a standard dense transformer architecture, similar to the architecture used in popular

language models such as the GPT and Llama model families[21][22]. Speci�cally, we implement a decoder-

only style transformer with a causal language modeling objective, where the model aims to predict the

next token in a sequence based on the previous tokens.

This architecture choice for METAGENE-1 stands in contrast to some of the alternative approaches

explored in recent genomic models, which include BERT-style bidirectional encoders[1][4][27]  or non-

attention based architectures[2][32]. Our decision to use this particular model architecture was driven by

the following motivations:

k

∼
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�. Ecosystem: By aligning with this widely-adopted architecture, we can take advantage of the growing

ecosystem of techniques and associated implementations developed for autoregressive decoder-

only transformer models. This extends to both pretraining optimizations and downstream

applications in �ne-tuning and inference.

�. Infrastructure: Given our large dataset size, this architecture allows us to leverage scalable

pretraining infrastructure speci�cally designed for distributed training of this model type. This

infrastructure has demonstrated success in recent language models, enabling ef�cient training on

massive datasets.

�. Data characteristics: The nature of our metagenomic sequence data, which primarily consists of short

sequences, does not necessitate architectures designed for extremely long context lengths. This

makes the transformer a suitable and ef�cient choice for our use case.

We next describe some of the speci�c con�guration details of METAGENE-1. First, the model operates

with a context length of 512 tokens, which is suf�cient for all of the metagenomic sequences in our

pretraining dataset. For ef�ciency, we pack shorter sequences within this context window, a process

detailed in Section 4.3 below. We use an attention mask which prevents attention between the distinct

packed sequence reads. METAGENE-1 consists of 32 layers and 32 attention heads, with an embedding

size of 4096 and a hidden layer size of 11008. We employ root mean square layer normalization

throughout the model, with a normalization epsilon of 1e-5. These con�gurations result in a model with

approximately 7 billion parameters in total. All architecture details are summarized in Table 1.
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Model Details METAGENE-1

Architecture Llama-2-7B

Embedding Size 4096

Intermediate Size 11008

Number of Attention Heads 32

Number of Hidden Layers 32

Vocabulary Size 1024

Sequence Length 512

Normalization RMSNorm

Regularization -loss

Position Embedding Rotary

Bias None

Warmup Steps 2000

Batch Size 30720

Weight Decay 0.1

Learning Rate Schedule Cosine Decay

Initial Learning Rate

,  , 

Table 1. METAGENE-1 architecture details.

4. Pretraining METAGENE-1

4.1. Training Infrastructure

Our model is trained on four nodes, each equipped with 8 H100 SXM5 GPUs interconnected via Ethernet

with 40 GB/s bandwidth. This interconnect bandwidth poses a signi�cant performance bottleneck, as it

z

6 × 10
−4

β1 β2 0.9 0.95
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is an order of magnitude slower than NVIDIA’s In�niBand and faster Ethernet interconnects. Despite this

limitation, we were able to achieve 40% model FLOPS utilization (MFU)  [33]  by employing a hybrid

sharding strategy. Speci�cally, we use PyTorch’s HYBRID_SHARD_ZERO2 strategy implemented in its

Fully Sharded Data Parallel (FSDP) utilities. This design choice provides the bene�t of model and

optimizer state sharding within each node, while practicing standard data parallelism across nodes to

reduce the inter-node communication overhead. In practice, it only requires an all-reduce operation on

the gradient buckets during the optimizer step.

For training, we use a global batch size of 30,720, a sequence length of 512, and a micro-batch size of 48.

We observe this combination to offer the best trade-off between high MFU and reduced memory usage; it

also allows us to shard the optimizer state and gradients within a single node. Further tests on fewer

nodes yield MFU values of   and   for 1-node and 2-node setups, respectively. These results suggest

that interconnect bandwidth was the main bottleneck in our training environment.

Node failure. During training, we experienced three node failures, one GPU failure, one network failure,

and one disk failure. All failures required us to restart the training from the latest checkpoint.

4.2. Stability

Figure 4. We show  -loss during pretraining, which aids and gives an indicator of

stability.

0.51 0.47

z
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Foundation model pretraining is prone to suffer from training instability, which can be more pronounced

when scaling models to billions of parameters [34]. Such instabilities often arise during the middle or late

stages of training, and are often characterized by a sudden spike in loss and/or other divergent behaviors.

Failure to identify these problems can result in considerable wasted compute resources. Additionally, the

characteristics of the input data have been shown to in�uence training stability, as highlighted by recent

work in large multimodal language models [35].

Given that we scaled directly from sub-billion parameters to a 7 billion parameter model, and that

training on metagenomic sequences is less studied compared to natural language, we anticipated a

relatively high risk of encountering stability issues. To mitigate such risks, we followed best practices

from  [34]  and implemented a variant of the z-loss, referred to as max-z-loss, introduced by  [36]  with a

coef�cient of 2e-4. We opted against the recommendation of QK-layer normalization [35] to preserve the

Llama architecture and leverage optimized inference pipelines.

During training, we monitored the norms of the language model head, the query, key, and value outputs,

as well as the gradient norms. [34] empirically shows that a signi�cant increase in any of these metrics

may signify potential instability, allowing us to intervene early by restarting the training. Fortunately, no

stability issues were observed, and these metrics remained consistent throughout the training process.

4.3. Context Stuf�ng

A signi�cant portion of our dataset contains sequences with fewer tokens than our model’s context

length. To optimize compute ef�ciency and avoid wasting resources on padding tokens, we pack the

sequence dimension with multiple samples, where applicable. We modify the attention mask to ensure

that tokens from different samples cannot attend to one another. This is implemented using the variable

length function in FlashAttention-24[37] which avoids materializing the full mask, which would have been

inef�cient.

4.4. Continual Pretraining

After the initial stage of pretraining is complete, we carry out a second stage of pretraining which

constitutes about 9% of our total number of pretraining tokens. In this second stage of training, we

extend our dataset to a broader distribution of genomic sequences relative to our original metagenomic

distribution, and we follow practices for continual learning, such as annealing the learning rate both to
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enact a warmup period (i.e., a linear ramp up to account for the shifted data distribution), and a cooldown

period (i.e., a ramp down of the learning rate at the end of training for improved performance[38]).

The modi�ed training distribution aims to allow for us to maintain performance on metagenomic tasks,

such as metagenomic embedding and classi�cation, while also achieving improved performance on a

broader set of genomic tasks (i.e., tasks involving non-metagenomic data). For this, we sample sequences

from the dataset provided by[4], which includes genomic sequences from known organisms—both from

human genomes and a curated selection of genomes from multiple species (e.g., fungi, mammalian,

invertebrate, bacteria)—and shuf�e it into our metagenomic reads at a 1:8 ratio.

5. Empirical Results

5.1. Pretraining Performance

As an initial analysis of METAGENE-1, in Figure 5, we show two loss curves generated over the course of

pretraining. On the left, we show the training loss over one epoch of our 1.5-trillion-base-pair pretraining

dataset. On the right, we show the validation loss, computed on a held-out portion of our metagenomic

dataset. In the training curve we note that there are slight systematic oscillations over the course of

training, which occur due to pseudo-random data shuf�ing (implemented for ef�ciency reasons);

however, these do not appear in our validation loss curve.

Figure 5. METAGENE-1 loss curves during pretraining. We show training loss (left), and validation loss on a

held out metagenomic sample (right).
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5.2. Pathogen Detection Benchmark

Our initial experiments evaluate METAGENE-1’s reliability in detecting human pathogens. To this end, we

construct four datasets with binary labels, aiming to classify human pathogens versus non-pathogens.

These datasets are constructed from four distinct sequencing deliveries, which are excluded from our

pretraining data. For each delivery, we extract two sets of sequencing reads: pathogen and non-pathogen.

Pathogen reads are de�ned as a subset of sequencing reads meeting two criteria: (1) Kraken 2[30]5

identi�es at least one hit on a  -mer associated with a human-infecting virus, and (2) the read aligns

with a human-infecting virus genome in GenBank6. The sub-tasks in this pathogen detection

benchmark represent different deliveries, which vary by collection location, sequencing pipeline, date, or

a combination of these factors. Each dataset contains 1,600 training samples and 2,000 test samples. We

intentionally use a small training set to mimic real-world scenarios where rare human pathogens are

expensive to identify.

We evaluate the performance of METAGENE-1 and other genomic foundation models on the pathogen

detection datasets, measured using the Matthews correlation coef�cient (MCC). All models were trained

with a consistent set of hyperparameters: DNABERT[27] variants undergo full-model �ne-tuning, while

Nucleotide Transformer (NT)[3]  variants and METAGENE-1 are �ne-tuned using low-rank adapters

(LoRA)[39]. For sequence-level classi�cation, we use the built-in pooler for DNABERT and NT models

provided in HuggingFace Transformers[40], and use mean-pooled representations for METAGENE-1.

Additional experimental details can be found in Appendix C.1.

As shown in Table 2, METAGENE-1 consistently outperforms all other models across the Pathogen

Detection benchmark, with gains ranging from approximately 3 to 17 MCC points over the strongest

competing models. These results highlight METAGENE-1’s strong performance in pathogen detection

tasks, particularly in scenarios with diverse sequencing conditions or delivery pipelines.

k
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DNABERT-2 DNABERT-S NT-2.5b-Multi NT-2.5b-1000g METAGENE-1

PATHOGEN-DETECT (avg.) 87.92 87.02 82.43 79.02 92.96

PATHOGEN-DETECT-1 86.73 85.43 83.80 77.52 92.14

PATHOGEN-DETECT-2 86.90 85.23 83.53 80.38 90.91

PATHOGEN-DETECT-3 88.30 89.01 82.48 79.83 93.70

PATHOGEN-DETECT-4 89.77 88.41 79.91 78.37 95.10

Table 2. Results on the Pathogen Detection benchmark. The metric used for all evaluations is MCC. The

header row reports macro-averaged performance metrics. See Section 5.2 for details.

5.3. Genomic Embedding Benchmark

Next, we assess METAGENE-1’s ability to generate high-quality representations in a zero-shot manner.

These representations are crucial for lightweight development of predictive models using a frozen

foundation model  inter alia[41][42]. They enhance interpretability by enabling sparse autoencoders to

produce semantically meaningful encodings[43][44]. Additionally, they are vital for anomaly detection

methods that rely on them for effective modeling[45]. Drawing inspiration from MTEB[46], we introduce a

large-scale genomics embedding benchmark, termed Gene-MTEB, to advance the development of robust

genomics representations.

For this benchmark, we curate eight classi�cation tasks (HUMAN-VIRUS-1-4, MHPD-single, HMPD-

disease, HMPD-source, HMPD-sex), and eight clustering tasks (HVR-p2p, HVR-s2s-align, HVR-s2s-small,

HVR-s2s-tiny, HMPR-p2p,HMPR-s2s-align, HMPR-s2s-small, HMPR-s2s-tiny). Datasets for these tasks

are sourced from the Human Microbiome Project[47], and held-out portions of our metagenomic dataset.

Details and access to all benchmark datasets are provided on the project HuggingFace page. All

classi�cation tasks carry out logistic regression on top of embeddings and all clustering tasks carry out

mini-batch  -means. Embeddings for all models are accessed via mean pooling on the last hidden state.

Results on Gene-MTEB are shown in Table 3. Here, accuracy is shown for classi�cation and V-measure for

clustering tasks. We �nd that METAGENE-1 shows strong embedding performance across the board, and

in particular for HUMAN-VIRUS datasets, scoring over 6 points above all other models. Continual

k
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training with representation learning objectives, such as contrastive losses, could further enhance its

embedding quality beyond its current LM-based pretraining.
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DNABERT-2 DNABERT-S NT-2.5b-Multi NT-2.5b-1000g METAGENE-1

HUMAN-VIRUS (AVG.) 0.564 0.570 0.675 0.710 0.775

HUMAN-VIRUS-1 0.594 0.605 0.671 0.721 0.828

HUMAN-VIRUS-2 0.507 0.510 0.652 0.624 0.742

HUMAN-VIRUS-3 0.606 0.612 0.758 0.740 0.835

HUMAN-VIRUS-4 0.550 0.551 0.620 0.755 0.697

HMPD (avg.) 0.397 0.403 0.449 0.451 0.465

HMPD-SINGLE 0.292 0.293 0.285 0.292 0.297

HMPD-DISEASE 0.480 0.486 0.498 0.489 0.542

HMPD-SEX 0.366 0.367 0.487 0.476 0.495

HMPD-SOURCE 0.451 0.465 0.523 0.545 0.526

HVR (AVG.) 0.479 0.479 0.546 0.524 0.550

HVR-P2P 0.548 0.550 0.559 0.650 0.466

HVR-s2S-ALIGN 0.243 0.241 0.266 0.293 0.267

HVR-S2S-SMALL 0.373 0.372 0.357 0.371 0.467

HVR-S2S-TINY 0.753 0.753 1.000 0.782 1.000

HMPR (AVG.) 0.347 0.351 0.348 0.403 0.476

HMPR-P2P 0.566 0.580 0.471 0.543 0.479

HMPR-S2S-ALIGN 0.127 0.129 0.144 0.219 0.140

HMPR-S2S-SMALL 0.419 0.421 0.443 0.459 0.432

HMPR-S2S-TINY 0.274 0.274 0.332 0.391 0.855

GLOBAL AVERAGE 0.475 0.479 0.525 0.545 0.590

Table 3. Results on the Genomic Embedding (Gene-MTEB) benchmark. See Section 5.3 for details.
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5.4. Genome Understanding Evaluation Benchmark

We now investigate the viability of METAGENE-1 as a general-purpose foundation model. Importantly, we

aim to assess its performance on nucleotide sequences sampled from a diverse array of species. One such

example is long-sequence full-animal-genome datasets. In many prior genomic sequence models’

pretraining datasets, this type of genomic data is found in abundance[3][1][2][4]. As a pilot study, we

perform �ne-tuning experiments on the Genome Understanding Evaluation (GUE) benchmark[4], which

comprises 28 sequence-level classi�cation tasks curated from this type of genomics data.

Following  5.2, we �ne-tune low-rank adapters (LoRA)[39]  and a linear classi�cation head that projects

average-pooled representations from the last hidden layer to the class logits. This setup is aimed to

emulate downstream users with a limited compute budget. For each experiment, we perform a grid

search over linearly spaced learning rates from 1e-4 to 1e-3 and select LoRA modules from query-value

and query-key-value-dense combinations. We �x all other hyperparameters and select the best

con�guration based on validation performances. Additional details on training hyperparameters can be

found in Appendix C.2. Following the metrics selected in[4], we report Matthews correlation coef�cient

(MCC) on all but the COVID task, which instead uses the F1 score.

In Table 4, we present METAGENE-1’s performance on the GUE benchmark. Our �ndings show that

METAGENE-1 outperforms or remains competitive with state-of-the-art foundation models specializing

in multi-species genomics prediction, achieving a top score on 13 out of 28 GUE subtasks (compared with

DNABERT-2, the second highest scoring model, that achieves a top score on 7 out of 28 subtasks). Notably,

METAGENE-1 excels in Epigenetic Marks Prediction (EMP) tasks but shows room for improvement in

(Core) Promoter Detection (PD/CPD). We attribute this to limitations in the pre-training data mixture, and

believe that a more tailored pre-training dataset could potentially enhance METAGENE-1’s performance

in this area.
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CNN HyenaDNA DNABERT NT-2.5B-Multi DNABERT-2 METAGENE-1

TF-MOUSE (AVG.) 45.3 51.0 57.7 67.0 68.0 71.4

0 31.1 35.6 42.3 63.3 56.8 61.5

1 59.7 80.5 79.1 83.8 84.8 83.7

2 63.2 65.3 69.9 71.5 79.3 83.0

3 45.5 54.2 55.4 69.4 66.5 82.2

4 27.2 19.2 42.0 47.1 52.7 46.6

TF-HUMAN (AVG.) 50.7 56.0 64.4 62.6 70.1 68.3

0 54.0 62.3 68.0 66.6 72.0 68.9

1 63.2 67.9 70.9 66.6 76.1 70.8

2 45.2 46.9 60.5 58.7 66.5 65.9

3 29.8 41.8 53.0 51.7 58.5 58.1

4 61.5 61.2 69.8 69.3 77.4 77.9

EMP (AVG.) 37.6 44.9 49.5 58.1 56.0 66.0

H3 61.5 67.2 74.2 78.8 78.3 80.2

H3K14ac 29.7 32.0 42.1 56.2 52.6 64.9

H3K36me3 38.6 48.3 48.5 62.0 56.9 66.7

H3K4me1 26.1 35.8 43.0 55.3 50.5 55.3

H3K4me2 25.8 25.8 31.3 36.5 31.1 51.2

H3K4me3 20.5 23.1 28.9 40.3 36.3 58.5

H3K79me3 46.3 54.1 60.1 64.7 67.4 73.0

H3K9ac 40.0 50.8 50.5 56.0 55.6 65.5

H4 62.3 73.7 78.3 81.7 80.7 82.7

H4ac 25.5 38.4 38.6 49.1 50.4 61.7

PD (AVG.) 77.1 35.0 84.6 88.1 84.2 82.3

All 75.8 47.4 90.4 91.0 86.8 86.0
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CNN HyenaDNA DNABERT NT-2.5B-Multi DNABERT-2 METAGENE-1

No-TATA 85.1 52.2 93.6 94.0 94.3 93.7

TATA 70.3 5.3 69.8 79.4 71.6 67.4

CPD (AVG.) 62.5 48.4 73.0 71.6 70.5 69.9

All 58.1 37.0 70.9 70.3 69.4 66.4

No-TATA 60.1 35.4 69.8 71.6 68.0 68.3

TATA 69.3 72.9 78.2 73.0 74.2 75.1

SSD 76.8 72.7 84.1 89.3 85.0 87.8

COVID 22.2 23.3 62.2 73.0 71.9 72.5

GLOBAL WIN % 0.0 0.0 7.1 21.4 25.0 46.4

Table 4. Results on the Genome Understanding Evaluation (GUE) benchmark. Non-METAGENE-1 results are

adapted from[4]. The metric used for all evaluations is MCC, except for the COVID task, which uses F1 score.

The header rows report macro-averaged performance metrics. The �nal row shows Global Win %, i.e., the

percentage of tasks in which a given method achieves top score under the associated metric.

5.5. Anomaly Detection from Wastewater

Our �nal experiment aims to show the feasibility of METAGENE-1 to detect out-of-distribution (OOD)

data at scale, as it serves as a primer for reliable anomaly detection from wastewater samples. In this

early study, we sample 5000 sequences from, respectively, our metagenomics pretraining data, the

mouse and human genomes from the GUE dataset, as well as uniform random sequences as a control

group. All sequences are truncated to 100 base pairs in accordance with the sequence lengths from the

GUE dataset. As a baseline, we implement a threshold-based anomaly detector, which classi�es samples

with length-normalized cross entropy losses below a certain threshold as non-anomalies, and vice versa.

We select a threshold of 3 based on our observations from the validation curve in Figure 5. Note that this

anomaly detection study is performed using a checkpoint of METAGENE-1 that has only been pretrained

on metagenomic data (i.e., without second-stage training).

Figure 6 indicates a clear separation between metagenomics sequences and other data sources. The in-

distribution data behaves within our expectation; the human and mouse genomic data both attain a
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similar mode and spread, and their loss distributions are more similar to that of random sequences,

compared to our in-distribution data. Table 5 reports numerical results of our OOD detection tests.

METAGENE-1 achieves strong performance for separating metagenomics sequences from other data

sources.

Figure 6. Distribution of the length-normalized cross entropy loss across all datasets, given by METAGENE-1.

Group F1 Loss (Std. Err) Tokenized Seq Len (Std. Dev)

Metagenomics - 1.24 (1.31) 24.91 (3.35)

Random 0.91 5.83 (0.29) 27.16 (1.32)

Human 0.94 5.22 (0.22) 27.29 (1.33)

Mouse 0.91 5.38 (0.54) 27.2 (1.34)

Table 5. OOD detection performance between metagenomics sequences and other data sources.

6. Safety Considerations

Metagenomic foundation models like METAGENE-1 demonstrate improved capabilities on tasks that can

aid in biosurveillance, genomic anomaly detection, and pandemic monitoring. While still relatively small

in scale compared with many modern language models, METAGENE-1 shows state-of-the-art results on

benchmarks and enables potential downstream uses. However, these capabilities merit careful

consideration of safety and must be balanced against potential risks. This category of genomic model—
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and especially, future larger variants of it—could pose risks to human health and safety by enabling

harmful applications, such as the design of novel pathogenic DNA sequences or synthetic genetic

materials. These potential abuses were considered when deciding to open source METAGENE-1. The �nal

decision was based on weighing the bene�cial applications, such as pandemic preparedness, against the

potential for misuse. Based on our safety considerations, which we outline below, we believe that the

current iteration of METAGENE-1 poses minimal risk, and its release is justi�ed by its signi�cant positive

potential. However, we also recognize and discuss the need for careful safety considerations before open

sourcing increasingly capable models of this type.

Relation to other open source genomic models. METAGENE-1 is a genomic foundation model that builds

upon a lineage of similar open-source efforts, such as NucleotideTransformer[3], DNABERT[1],

HyenaDNA[2], Evo[32], and more. At 7 billion parameters, METAGENE-1 matches the largest of these

existing models. The key distinction of METAGENE-1 lies in the model’s training data: a highly diverse

set of metagenomic sequences derived from wastewater, with a focus on the human microbiome. This

dataset, comprising short uncurated sequences from tens of thousands of species, allows METAGENE-1 to

excel at representing the complexities of microbial and viral diversity in metagenomic samples,

providing unique advantages in biosurveillance applications. Similar to other genomic foundation

models, and unlike large language models, these models alone do not possess signi�cant reasoning or

control capabilities (given that complex control instructions cannot easily be provided via input context,

which is restricted to genomic sequences).

Tailored for detection, not design. METAGENE-1 was speci�cally designed for anomaly detection in

metagenomic data, not for complex genomic design tasks. The training data, model architecture, and

task design are geared toward detecting and classifying anomalies in short sequences of a few hundred

base pairs. Notably, all metagenomic data used in pretraining METAGENE-1 consist exclusively of

sequences ranging from 100 to 300 base pairs. Unlike large genomic models focused on longer sequence

generation, METAGENE-1’s capabilities are tailored to analyzing these short metagenomic reads. Its

architectural constraints, including a maximum context length of 512 tokens, further limit its

applicability to sequence design tasks. These design decisions ensure that the model’s primary utility lies

in detecting pathogens and monitoring biosurveillance trends, rather than enabling misuse in synthetic

biology.

Pros and cons of open source. Open sourcing a model of this type is a balance between the potential for

help and harm. In the case of METAGENE-1, we believe that open source is net positive for research in the
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area of anomaly detection for pathogen monitoring. We hope that the availability of this model can have a

positive impact on facilitating safety research, a prospect that we discuss in Section 7. Nonetheless, we

recognize the importance of caution when releasing models in this domain. For future iterations of

PATHOGEN-DETECTion models with improved capabilities, we believe strongly in (and we ourselves are

are committed to) thoroughly evaluating the safety and potential for misuse before an open source

release. Larger-scale models, in particular, present additional risks, and we advocate for rigorous safety

assessments in determining whether such models should be released publicly. By prioritizing careful

oversight and responsible scaling, we aim to mitigate risks while maximizing the bene�ts of this

technology for public health and biosurveillance.

7. Discussion, Limitations, Conclusion

We have reported our current progress on pretraining and evaluating METAGENE-1, the �rst large-scale

foundation model pretrained on metagenomic sequences. We detail our dataset construction, model

training, and �ne-tuning procedure to facilitate open-science research. Additionally, we open-source our

training code and model checkpoints.

Our downstream performance on genomic benchmarks indicates the potential of METAGENE-1 as a

general-purpose foundation model. Our results also indicate that METAGENE-1 bene�ts from continual

pretraining on a diverse mixture of data sources in addition to metagenomic data (at least for tasks

similar to these genomic benchmarks). We are continuing to actively explore this direction, through

incorporating additional human reference genomes and multi-species genomic datasets in our

metagenomic pretraining data.

Limitations. METAGENE-1 is pretrained on a dataset consisting primarily of wastewater metagenomics

and multi-species genomic sequences, making it well-suited for downstream tasks within this

distribution. However, like many foundation models, it requires additional �ne-tuning to achieve optimal

performance for speci�c applications. Additionally, the pretraining data predominantly consist of short

metagenomic sequencing reads, limiting the model’s performance to contexts involving shorter

metagenomics inputs. This may restrict its effectiveness for tasks involving long-read or full-genome

data, where long-sequence models may be necessary[32][2].

Future directions. There are many potential avenues for future research. An area that we are particularly

excited about concerns the understanding of genomic foundation models. While a great deal of prior
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work has studied the mechanistic interpretability of language models[48][49][50][51], their extensions

beyond language and vision have been limited. Future work could systematize approaches to mechanistic

interpretability in genomics by leveraging sparse autoencoders (SAEs)[43][44][52]  to identify biologically

meaningful features, employing attribution methods to trace model predictions to genomic regions[53]

[54][55], and developing new tools for probing model representations using task-speci�c datasets[56][57]. A

better understanding of these models would not only advance their reliability but also help mitigate

risks, such as inadvertently generating or propagating harmful genomic sequences.

Finally, we are actively developing a standardized evaluation suite consisting of classi�cation,

embedding, out-of-distribution detection, and pandemic monitoring tasks for metagenomics sequences.

We hope our effort can facilitate objective evaluation of METAGENE-1 and future metagenomic models,

and we invite both domain experts and the machine learning community to contribute to this research.

Appendix A. Additional Details on the Metagenomic Pretraining

Dataset

In Figure  7, we show a visualization of (a relatively small subset of) the composition of metagenomic

information contained in our pretraining dataset. This composition is estimated through the Kraken  2

metagenomic sequence classi�cation software[30], which gives taxonomic hits for reads in our

pretraining set (where taxonomic classi�cation is performed using exact  -mer matches). We show three

plots in Figure  7: �rst, the full pretraining dataset distribution (top); then, an example subset of this

showing the distribution of viruses (middle); and �nally, an example subset of this showing the

distribution of the Steitzviridae family of viruses (bottom).

k
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Figure 7. A visualization of the composition of metagenomic information contained in our

pretraining dataset, based on Kraken 2 metagenomic sequence classi�cation hits[30]. We �rst

show the full pretraining dataset distribution (top), and then as an example show the

distribution of viruses (middle), and �nally the distribution of the Steitzviridae family of

viruses (bottom).
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Appendix B. Tokenizer Details

Our tokenizer implementation is adapted from minbpe7. It is trained on a subset of sequences consisting

of 2 billion base pairs. These sequences are uniformly sampled from all of the available wastewater

sequencing runs from our data sources. Similarly to BPE tokenizers trained on natural language datasets,

we treat the beginning of each sequence differently, in our case by prepending a ‘_’ character to the

beginning of each read. During pretraining, we postpend a [BOS] token to separate each sequence. Our

tokenizer consists of the following special tokens: [PAD], [UNK], [SEP], [BOS], [EOS], and [MASK] to allow

for diverse applications during �ne-tuning. In total, it has of a vocabulary size of 1024.

In our preliminary experiments, we also experimented with a larger vocabulary size of 4096, but due to

length characteristics of our metagenomic data, this design choice results in many short tokenized

sequences that may not be able to provide meaningful learning signal. We thus decided to move forward

with a vocabulary size of 1024 to balance ef�ciency and downstream performance.

Appendix C. Additional Experimental Details

C.1. Additional Details for the Pathogen Detection Benchmark

In Table 6, we show our choices of hyperparameters for �ne-tuning experiments.
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DNABERT- Full Model

NT- LoRA

METAGENE-1 LoRA

LoRA Modules query, key, value, dense

LoRA Rank 8

LoRA  16

LoRA Dropout 0.1

Optimizer AdamW

Optimizer Momentum ,   = 0.9, 0.999

Learning Rate 1e-4Λ

LR Scheduler Linear Warmup + Constant LR

Warmup Steps 50

Weight Decay 0.01

Denominator  1e-8

Precision BF16-mixed

Batch Size 32

Epochs 10

Hardware NVIDIA A100 80GB

Table 6. Hyperparameter settings for the Pathogen Detection �ne-tuning experiments.  : for DNABERT-S,

we halve the learning to 5e-5 as we observe clear oscillation behavior in the training loss.

C.2. Additional Details for the GUE Benchmark

In Table 7, we show our choices of hyperparameters for �ne-tuning experiments.

⋆

⋆

α

β1 β2

ϵ

Λ
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LoRA Modules query, key, value, denseΛ

LoRA Rank 8

LoRA  16

LoRA Dropout 0.1

Optimizer AdamW

Optimizer Momentum ,   = 0.9, 0.999

Learning Rate {1e-4   1e-3}Ω

LR Scheduler Linear Warmup + Constant LR

Warmup Steps 50

Weight Decay 0.01

Denominator  1e-8

Precision BF16-mixed

Batch Size 32

Epochs 10

Hardware NVIDIA A100 80GB

Table 7. Hyperparameter settings for the GUE �ne-tuning experiments.  : LoRA is applied to query-value or

query-key-value-dense modules.  : learning rates are tuned over a equally-spaced grid of 1e-4, 2e-4,  , 1e-3.

All hyperparameters are selected according to performances on validation sets.
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Footnotes

1 Where RNA sequences are �rst converted into DNA via reverse transcription.

2 https://bondlsc.missouri.edu/person/marc-johnson

3 https://jasonrothman.weebly.com/

4 Named function �ash_attn_varlen_func in the FlashAttention-2 Python package.

5 We use the 2024-06 Standard Database for identi�cation.

6 We use the 2024-06 GenBank release available at https://www.ncbi.nlm.nih.gov/genbank/.

7 https://github.com/karpathy/minbpe
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